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Abstract 
Two massive blocks are connected with a massless unstretchable line of 2ℓ. 
One of the masses is placed on a horizontal frictionless table, ℓ distance away 
from the edge of the table the other one is held horizontally equidistance from 
the edge along the extension of the line. The latter is released from rest. As it 
falls under gravity’s pull, it drags the one on the table. It is the interest of this 
investigation to analyze the kinematics of the system. Because of the holo-
nomic constraint of the system, analysis of the problem encounters compli-
cated super nonlinear coupled differential equations. Utilizing Mathematica 
we solve the equations numerically. Applying the solutions we quantify nu-
merous kinematic quantities; most interestingly we evaluate the run-time, and 
the trajectory of the falling block. Analysis is robust allowing us to address the 
“what if” scenarios. 
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1. Motivation and Goals  

The investigation of the proposed scenario outlined in the abstract stems from 
questioning, “For two identical blocks which one reaches the vertical leg of the 
table first?” [1] [2]. Intuitively, it is an easy task without quantifying… Claim the 
block on the table! Quantification of the run-time, however, requires analytic 
analysis. It requires developing either expressions for the horizontal displace-
ments of the blocks or their numeric plots vs. time. A holonomic [3] two-coor- 
dinate dependent constraint of the problem via an explicit time-independent re-
lationship between the coordinates i.e. the length of the line, complicates the 
analysis. It is trivial to set up the equations of motion; solving them simulta-
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neously encounters a set of extraordinary non-linear coupled differential equa-
tions. Applying a Computer Algebra System (CAS), specifically Mathematica 
[4], [5] provides numeric solutions. Having the solutions in hand quantitatively 
we confirm our intuitive claim. In addition to determining numerous kinematic 
quantities, we identify the trajectory of the falling body. We address the pro-
posed quantities by dividing the article in three sections. Section 2 embodies the 
layout of the physics of the problem including a derivation of the needed equa-
tions of motion, their solutions and the results that are mostly graphics. Section 
3 is the conclusion and a few suggestions to augment the scope of the analysis 
addressing the “what if scenarios”. 

2. Physics of the Problem 

Figure 1 shows the setup of the problem. Two identical blocks are connected 
with a massless, unstretchable line of length 2ℓ. Block 2 rests on the frictionless 
horizontal table top and the second one, block 1, is held horizontally along the 
extension of the line, equidistance from the edge. Conveniently the origin of the 
coordinate system is set as shown, with the vertical axis downward. At any given 
instance the coordinates of the blocks are, (x2(t),0) and (x1(t),y1(t)), respectively. 

Block 1 is released from rest, as it falls pulls on block 2. The falling block sets a 
time-dependent tension, T(t), in the line. The massless line holds the same ten-
sion in the line. Tension, T, and angle, θ, with vertical are shown.  

Applying Newton’s law gives the equations of motion for the blocks, 

( ) 1sin ,T mxθ = ��                       (1) 

( ) 1cos ,T ymg mθ− = ��                     (2) 

And 

2 ,T mx= ��                          (3) 

The holonomic constraint is formulated as, 

( ) ( ) ( )2 2
2 1 12 ,x t x t y t= + +�                 (4) 

 

 
Figure 1. Setup of the problem. 
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From Equations (1) and (3) and substituting for 1
2 2
1 1

sin
x

x y
θ =

+
, we de-

duce, 

( ) ( ) ( )
( )
( )

1

2 2
1 21 1

1 1 ,
x t

x t x tx t y t
=

+

��
��

                (5) 

On the other hand from Equations (2)-(4) and substituting for  

1
2 2
1 1

cos
y

x y
θ =

+
 

we have, 

( )
( ) ( ) ( )1

1 1
1

.
y t

g x t y t
x t

− =��                      (6) 

Equation (6) depends only to the coordinates of block 1.  
By the same token Equation (5) is reduced to the coordinates of the block 1 

provided ( )2x t  is replaced applying constraint Equation (4), 

( )
( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

2 2
1 1

1
2 2 2

1 1 1 1 1 1 1 1 1 1
3

2 2 2 22 2
1 1 1 1

1

.

x t

x t y t

x t

x t x t y t y t x t y t x t x t y t y t

x t y t x t y t

+

=
+  + + +  −

   + +   

��

� � � �� ���
 (7) 

Now Equation (7) depends only on the coordinates of block 1. 
Equations (6) and (7) form a set of coupled ordinary differential equations. 

Hopelessly we were unable to solve the set of Equations (6) and (7) analytically. 
We apply Mathematica’s numeric solver NDSolve; we were stunned with its 
power! Coordinates of the blocks are shown in Figure 2. 

For practical reasons the half-length of the line is set ℓ = 1.0 m. Because the 
blocks are identical, derived equations are mass independent. To set the time  
 

 
Figure 2. Coordinates of block 1 and 2 vs. t. The dashed, and gray lines are x1(t), y1(t); the 
solid black line is the x2(t). 
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scale we apply the free-fall run-time, namely 2 0.45 slt
g

= = . 

The run-time of the actual case not being a free fall is a bit longer. Figure 2 is 
the display of the coordinates of the blocks vs. time. Accordingly, as intuitively 
expected, block 2, the one that slides on the table (solid curve) reaches the edge 
first; this figure confirms our intuition. At the beginning blocks are one meter 
away from the edge; their distances change and coordinates as shown change 
accordingly. Block 1 lags behind, so that when block 2 is at the edge, block 1 is 
not quite there. The length of the line is 2.0 m; the end tip of the solid gray curve 
is not quite 2.0 m showing the connecting line is not perfectly vertical.  

By eliminating parameter t between the coordinates of block 1, it enables us to 
display its trajectory shown in Figure 3. 

As shown in Figure 3 by the end of the run-time block 1 horizontally is off 
from the edge of the vertical leg and has fallen 1.8 m. Another interesting geo-
metrical quantity is the time-dependent profile of the θ(t). The plot of this func- 

tion, 1
2 2
1 1

arcsin
x

x y
θ

 
 =
 + 

, vs. t is shown in Figure 4. 

 

 
Figure 3. Trajectory of the block 1. 
 

 
Figure 4. Display of orientation of the hanging line with respect to vertical position, i.e. θ, 
vs. t. 
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As shown, θ, begins at 90˚ and at the end of run-time plunges to about 11˚.  
Next we utilize the solutions evaluating kinematic quantities such as speed 

and acceleration of the individual block. These are displayed in Figure 5. 
Figure 5(a) shows beyond a certain instance, say about 0.4 s, block 2 (solid) 

moves faster than block 1 (dashed). The same is true for their associated accele-
rations depicted in Figure 5(b). These are additional justifications quantifying 
why block 2 should reach the edge first.  

Figure 6(a) is the vertical acceleration of block 1. Figure 6(b) is the tension 
vs. time. 

As depicted the falling block begins with gravity acceleration, g, gains accele-
ration as it falls, Figure 6(a). Had we considered a simple pendulum scenario 
with a constant length pivoted at the edge, the acceleration of the block at the 
bottom would have been 2 g.  

Applying Equation (1) we also depict the tension in the line, T; this is shown 
in Figure 6(b). For the sake of simplicity we assumed m = 1.0 kg. As shown 
the tension at the beginning is zero. While the block falls tension builds 
reaching to its maximum value, over valuing the static limit of 10.0 N by a 
factor nine.  

We complete the analysis by displaying one of many phase diagrams, namely 
the plot of horizontal speed of block 1 vs. its horizontal coordinate, i.e. 

( ) ( )( )1 1,x t x t� . 
Figure 7 shows the falling block while at its farthest distance from the edge 

begins with a zero horizontal speed reaching its maximum speed at closest dis-
tance to the edge.  
 

  
(a)                                           (b) 

Figure 5. (a) is the plot of the horizontal speeds of the blocks; block 1 is dashed, block 2 is 
solid; (b) is the display of their associated accelerations. 
 

  
(a)                                           (b) 

Figure 6. Vertical acceleration of block 1 (a) and tension (b) vs. time. 
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Figure 7. Phase diagram of horizontal speed of block 1 vs. its horizontal coordinate. 

3. Conclusions and Suggestions 

We analyze a problem that on its face is trivial. Although true, its detailed analy-
sis is proven to be challenging. The challenge stems from the fact that the solu-
tion of the needed equations being a set of coupled super nonlinear ordinary 
differential equations analytically is unsolvable. This is another example that one 
needs to apply a Computer Algebra System (CAS). By applying one of the most 
powerful CASs, Mathematica, amazingly we were able to deduce the needed so-
lutions. Having the solutions on hand, various information, e.g. trajectory of the 
falling object, dynamic quantities e.g. tension in the line is evaluated. For the 
majority of the quantities of interest we also applied the superb graphic capabili-
ties of Mathematica displaying the results. An interested reader may extend the 
scope of the investigation considering 1) non-identical masses 2) determining 
masses making the blocks reach the edge simultaneously and 3) replacing the 
massless line with a massive one. Reference [6] embodies Mathematica codes 
and information needed to produce the graphs embedded in this article. 

References 
[1] Halliday, D., Resnick, R. and Walker, J. (2014) Fundamental of Physics. 10th Edi-

tion, Wiley and Sons, New York. 

[2] Prokopenya, A.N. (2017) Motion of a Swinging Atwood’s Machine: Simulation and 
Analysis with Mathematica. Mathematics in Computer Science, 1-9.  
https://doi.org/10.1007/s11786-017-0301-9 

[3] Gantmacher, F. (1970) Lectures in Analytical Mechanics. MIR Publications, Mos-
cow. 

[4] Mathematica™ (2015) Is Symbolic Computation Software. V11.0, Wolfram Research 
Inc. 

[5] Wolfram, S. (1996) Mathematica Book. 3rd Edition, Cambridge University Press, 
Cambridge. 

[6] Sarafian, H. (2015) Mathematica Graphics Example Book for Beginners. Scientific 
Research Publishing. http://www.scirp.org 

0.2 0.4 0.6 0.8 1.0
x1 m0

5

10

15

20

speedx1 ms

https://doi.org/10.1007/s11786-017-0301-9
http://www.scirp.org/


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact wjm@scirp.org 

http://papersubmission.scirp.org/
mailto:wjm@scirp.org

	Characteristics of a Two-Body Holonomic Constraint Mechanical System
	Abstract
	Keywords
	1. Motivation and Goals 
	2. Physics of the Problem
	3. Conclusions and Suggestions
	References

