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Abstract 
We develop a field theory-inspired stochastic model for description of tumour 
growth based on an analogy with an SI epidemic model, where the susceptible 
individuals (S) would represent the healthy cells and the infected ones (I), the 
cancer cells. From this model, we obtain a curve describing the tumour vo-
lume as a function of time, which can be compared to available experimental 
data. 
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1. Introduction 

In a recent letter [1], we have shown how the standard field theoretical language 
based on creation and annihilation operators (building blocks of the second 
quantization method [2]) may be used for a straightforward derivation of closed 
master equations [3] to describe the population dynamics of multivariate 
stochastic epidemic models. This was mainly motivated by the observation that, 
as remarked in [4], for the kinds of model studied in population biology and 
epidemiology, a field theoretical description is notationally neater and more 
manageable than standard methods, in often replacing sets of equations with 
single equations with the same content. Indeed, a single hamiltonian function 
sums up the dynamics compactly, even when births and deaths allow the 
population size to change, and it may be easily written down from a verbal 
description of the transitions presented in these models. 

In the present work, we employ the very same methodology established in [1] 
to develop a field-theory inspired stochastic model for description of tumour 
growth based on an analogy with an SI epidemic model [5], where the 
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susceptible individuals (S) would represent the healthy cells and the infected 
ones (I), the cancer cells. From this model, we were able to obtain a curve to 
describe the time evolution of the tumour volume, which is then compared to 
available experimental data for liver cancer. Our main motivation comes from 
the pioneering ideas about cancer as a phase transition presented in [6], more 
specifically, from the following observations: (1) progression of cancer must also 
involve a population-level shift due to a competition between two co-existing 
phenotypes: normal and cancerous ; (2) given enough time and resources, cancer 
cells will usually outcompete healthy cells in the organ or tissue where they 
coexist, in the competition for space and resources. 

The rest of this work is organized as follows. In Section 2, we introduce the 
basic aspects of our model which allow us to obtain differential equations to 
describe the time evolution of the mean number of individuals in the interacting 
populations we are dealing with, i.e., normal (healthy) and cancer cells. The 
analytical solutions for these differential equations, besides the specific curve 
which describes the time evolution of the tumour volume and its comparison to 
experimental data are presented in Section 3. Finally, in Section 4 we present our 
concluding remarks. 

2. Building the Model 

We will start by considering interacting populations, whose total sizes are 
allowed to change, composed of two types of individuals: the normal (healthy) 
cells and the tumour (cancer) cells. Let us introduce ( )t  and ( )t  as 
random variables which represent, respectively, the number of normal and 
cancer cells at a given time instant t. 

We will then consider a bivariate process ( ) ( ){ } 0
;

t
t t

∞

=
   with a joint 

probability function given by 

( ) ( ) ( ) ( ){ }, Prob ; .n mp t t n t m= = =               (1) 

Our aim is to compute time-dependent expectation values of the observables 
( )t  and ( )t , which may be defined in terms of the configuration 

probability according to  

( ) ( ) ( )

( ) ( ) ( )

,
,

,
,

,

.

n m
n m

n m
n m

t n p t

t m p t

=

=

∑

∑




                  (2) 

Let us represent the probabilistic state of the system by the vector  

( ) ( ),
,

, , ,n m
n m

p t n mµ ν = ∑                   (3) 

with the normalization condition ( ) ( ),, 1n mn m p t =∑ . 

As an example, the vector ( )1 1,1 2,1 1, 2 2, 2
4

+ + +  represents the 

probability distribution where there are 1 or 2 healthy/cancer cells present, each 

one with probability 1/4, i.e. ( ) ( ) ( ) ( )1,1 2,1 1,2 2,2
1
4

p p p p= = = = . 
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Since the configurations are given entirely in terms of occupation numbers 
( ),n m , which calls for a representation in terms of second-quantized bosonic 
operators [7], we will introduce creation and annihilation operators for the 
normal cells, respectively, †h  and h , and for the cancer cells, namely, †c  and 
c . These operators must satisfy the following commutation relations  

† †, , 1,h h c c   = =     

[ ] † † † †, , , , 0.h c h c c h h c     = = = =                    (4) 

As usual in the second quantization framework, we say that †h  and †c  
“create”, respectively, normal and cancer cells when applied over the reference  
(vacuum) state 0,0 . This allows us to build our space from basis vectors of the 

form ( ) ( )† †, 0,0
n m

n m h c= . 

This vacuum state has the following properties: 0,0 0,0 0h c= =  (from 
which “annihilation” operators) and 0,0 0,0 1=  (inner product). 

Following the above definitions, we also have  
† †, 1, ; , , 1 ,

, 1, ; , , 1 .

h n m n m c n m n m

h n m n n m c n m m n m

= + = +

= − = −
          (5) 

At this point it is worth to note that † , ,h h n m n n m=  and  
† , ,c c n m m n m= . Thus, the operators †n h h=  and †m c c=  just count the 

number of cells in a definite state. This is the main reason why they are usually 
called number operators. The vector state of our system may be then rewritten in 
terms of creation and annihilation operators as  

( ) ( ) ( ) ( )† †
,

,
, 0, 0 .

n m

n m
n m

p t h cµ ν = ∑               (6) 

The time evolution of our system will then be generated by a linear operator 
  (called hamiltonian) which may be constructed directly from the transition 
rates present in our model according to Table 1 (cf. [4], Table 1). Note that, 
upon summing up the terms presented in Table 1, we may write our 
hamiltonian as  
 
Table 1. Transition rates presented in our model and corresponding terms in the hamil- 
tonian  . 

Transition Description Contribution to   

hb→ +    birth of normal cell (rate hb ) ( ) ( )† † † †
h hb h h h h h b n h n− = −  

cb→ +    birth of cancer cell (rate cb ) ( ) ( )† † † †
c cb c c c c c b m c m− = −  

hd→∅  death of normal cell (rate hd ) ( ) ( )†
h hd h h h d n h− = −  

cd→∅  death of cancer cell (rate cd ) ( ) ( )†
c cd c c c d m c− = −  

λ→   change normal → cancer (rate λ ) ( ) ( )† † †h h c h n c hλ λ− = −  
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( ) ( ) ( )† † † .h h c c h c h cb d n b d m b h n b c m d h d c c hλ λ= + + + + + − + + + +  (7) 

The notational advantage of this field theoretical description is made clear at 
this point if we observe that, from the above definitions, the equation which 
represents the flux of probability between states at rates defined by our model 
(the so-called master equation or forward Kolmogorov differential equation [5]) 
takes the very compact form of an imaginary-time Schrödinger-type linear 
equation, namely  

d , , .
dt

µ ν µ ν= −                     (8) 

We can get, after some algebra, a more common representation for the master 
equation by substituting the expressions for the hamiltonian, Equation (7), and 
the vector state, Equation (3), into Equation (8)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

, ,

1, , 1

1, , 1

1, 1

d
d

1 1

1 1

1 .

h h c cn m n m

h cn m n m

h cn m n m

n m

p b d n b d m p
t

b n p b m p

d n p d m p

n p

λ

λ

− −

+ +

+ −

 = − + + + + 

+ − + −

+ + + +

+ +

         (9) 

In order to compute the time-dependent expectation values of the observables 
( )t  and ( )t  through the above master equation, we will follow the well- 

established methodology presented in [5] and introduce the following moment 
generating function (mgf ) 

( ) ( ) ( )
( ),

,
, ; e e e .t t n m

n m
n m

M t pφ θ φ θφ θ += = ∑             (10) 

Note that from the above equation we have  

( ) ( )

( ) ( )

,
,, 0

,
,, 0

,n m
n m

n m
n m

M n p t

M m p t

φ θ

φ θ

φ

θ

=

=

 ∂
= = ∂ 

∂  = = ∂ 

∑

∑





               (11) 

and, in general 

( ) ( )
, 0 , 0

; .
k k

k k
k k

M Mt t
φ θ φ θθ φ

= =

   ∂ ∂
= =   ∂ ∂   
          (12) 

After multiplying Equation (9) by ( )exp n mφ θ+  and summing on ( ),n m , 
we are led, after some algebra, to  

( )

( ) ( ) ( )

( ) ( )

,

, 0

d
e

d

e 1 e 1 e 1

e 1 e 1 .

n m n m

n m

h h

c c

pM
t t

Mb d

Mb d

φ θ

φ φ φ θ

θ θ

λ
φ

θ

+

=

− − +

−

∂
=

∂
∂ = + − + − + −  ∂

∂ + − + −  ∂

∑

       (13) 

Finally, by differentiating the above equation with respect to φ  and 
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evaluating the result at 0φ θ= =  we get the following differential equation for 
( )t   

( ) ( ) ( )
2

, 0

d .
d h h

M t b d t
t tφ θ

λ
φ

=

 ∂
= = − − ∂ ∂ 

          (14) 

On the other hand, if we differentiate Equation (13) with respect to θ  and 
evaluate at 0φ θ= =  we get the following differential equation for ( )t   

( ) ( ) ( ) ( )
2

, 0

d .
d c c

M t t b d t
t tφ θ

λ
θ

=

 ∂
= = + − ∂ ∂ 

         (15) 

3. Comparison to Liver Cancer Data. Fitting the Parameters  
in the Analytical Solution for ( )t  

By defining ( ) 00 N≡ , ( ) 00 C≡ , h h hb dβ ≡ −  and c c cb dβ ≡ −  we 
obtain the following analytical solutions for Equations (14) and (15)  

( ) ( )
0 e h tt N β λ−=                       (16) 

and  

( ) ( )0
0e e e .h c ct t t

h c

Nt Cβ λ β βλ
β λ β

− = − + − −
             (17) 

Finally, if we consider that the number of normal cells is approximately 
constant ( )0hβ ≈  and that the volume of a cancer cell (v) is approximately the 
same of a normal cell, we may write the following expression for the time 
evolution of the tumour volume  

( ) ( ) ( )0
0

e e e ,c ch t tt
c c

c

V
V t Vβ βλλ

λ β
− = − + − −

              (18) 

where ( ) ( )cV t v t≡  , ( ) 00hV vN≡  is the initial volume of the normal tissue, 

and ( ) 00cV vC≡  is the initial tumour volume. 

The above expression is compared to experimental data for liver cancer 
(average tumour volume) in Figure 1. The corresponding data have been ob- 
tained through the analysis of computed tomography (CT) scans for a set of 34 
patients available in [8]. 

4. Concluding Remarks 

We would like to finish this work by making a few comments about Equation 
(18). As far as we know, this is the first time that an expression describing the 
time evolution of the volume of tumours1 is obtained from basic assumptions 
about cancer as a phase transition and, most certainly, this is the very first model 
for description of tumour growth built by using standard field theoretical 
language commonly found in models describing fundamental interactions of 
elementary particles. In a future work we are going to present a qualitative  

 

 

1A comprehensive review of the most common mathematical models for description of tumour 
growth may be found in [10]. 



L. Mondaini 
 

1097 

 
Figure 1. The solid line represents Equation (18) for an initial total volume of the patient 
liver ( ) ( ) ( ) 3

0 0 0
2153.00 cmT h cV V V= + = ; 3 17.07 10 monthsλ − −= − × ;  

1 15.67 10 monthscβ
− −= ×  and ( ) 3

0
29.87 cmcV = . This curve was obtained by fitting the 

experimental data available in [8] (square points in the figure), using the software 
OriginPro 8 [9]. 
 
analysis of the behaviour of solutions for the system of first order linear 
differential equations composed by (14) and (15) in the phase plane, which we 
believe will shed more light on how our model is indeed connected to the idea of 
cancer as a phase transition. 

Last but not least, other possible extensions for the present model should 
consider the inclusion of other kinds of dependence in the birth/death rates of 
cells, as temperature and/or concentration gradients of toxic carcinogens, for 
example. 
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