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Abstract 
In this paper, based on classical Lie group method, we study a multidimen-
sional double dispersion equation, and get its infinitesimal generator, symme-
try group and similarity reductions. In particular, similarity solutions and 
travelling wave solutions of the multidimensional double dispersion equation 
are derived from the reduction equations. 
 

Keywords 
Lie Group, Multidimensional Double Dispersion Equation, Similarity 
Solutions, Travelling Wave Solutions 

 

1. Introduction 

The double dispersion Equation (1) was introduced as a mathematical model of 
nonlinear dispersive waves in various contexts (see [1] [2] [3] [4]) 

( ) ,tt xx xxxx xxtt xxu u au bu f u− + − =                   (1) 

where ( ),u u x t=  is a real-valued function, ,a b  are positive real constants 
with a b≥ . It also presents the plots of the instability/stability regions of travel-
ling waves for various values of p, where ( ) 1 , 1pf u u u p−= > . The present pa-
per provides an overview of results obtained in [5] and [6] for travelling wave 
solutions of the Equation (1). 

Considering the possibility of energy exchange through lateral surfaces of the 
waveguide in the physical study of nonlinear wave propagation in waveguide, 
the longitudinal displacement ( ),u x t  of the rod satisfies the following double 
dispersion equation (DDE) (see [7] [8] [9]) 
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( )21 6 ,
4tt xx tt xx xx

u u u au bu− = + −                   (2) 

and the general cubic DDE (CDDE) 

( )3 21 6 ,
4tt xx tt xx t xx

u u cu u au bu du− = + + − +              (3) 

where ,a b  and c  are positive constants. The Equations (2) and (3) were stu-
died in some literatures, the travelling wave solutions, depending upon the phase 
variable z x ct= ±  were studied by Samsonov in [10] [11]. 

In [12] [13], Chen and Wang studied the initial-boundary value problem and 
the Cauchy problem of the following generalized double dispersion equation 
which includes above Equation (3) as special cases 

( ) ,tt xx xxtt xxxx xxt xxu u au bu du f u− − + − =               (4) 

where 0, 0a b> >  and d  are constants. 
Recently in [14], the authors considered the Cauchy problem of the multidi-

mensional nonlinear evolution equation 

( )2 , , 0,n
tt tt tu u u u k u f u x R t− ∆ − ∆ + ∆ − ∆ = ∆ ∈ >            (5) 

( ) ( ) ( ) ( )0 1, 0 , , 0 , ,n
tu x u x u x u x x R= = ∈                   (6) 

where k is an arbitrary real constant. The authors gave the existence of local so-
lution and the existence of global solution. And in [15], Zhijian Yang et al. stu-
died the existence of global attractor for the generalized double dispersion equa-
tion arising in elastic waveguide model. And there have been lots of research 
studies on the well-posedness, blowup, asymptotic behavior and other properties 
of solutions for both the IBVP and the IVP of the equation of type (6) (see 
[16]-[24]) and references therein). While for the investigation on the global at-
tractor to Equation (6), one can see [25] [26] [27] and references therein. 

Symmetry reductions have several important applications in the context of 
differential equations. Since solutions of partial differential equations asymptot-
ically tend to solutions of equations obtained by symmetry reduction, some of 
these special solutions will illustrate important physical phenomena (see [28] [29] 
[30] [31] [32]). Solitary wave solutions and similarity solutions are usually ap-
plied to describe physical phenomena and to check on the accuracy and reliabil-
ity of numerical algorithm, so deriving travelling wave solutions and similarity 
solutions has a great significance (see [33] [34] [35]). 

In [36], the authors applied the method of Lie and the nonclassical method of 
Bluman and Cole to undertake the following equation 

( ) ,xxxx ttxxu f u u+ =                        (7) 

In [37], the authors applied the Lie-group formalism to deduce symmetries of 
a generalized double dispersion equation 

( ) 0,n
tt xx xxxx xxtt xx

u u u u u− + − − =                  (8) 

and they obtained exact solutions which can be expressed by various single and 
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combined nondegenerative Jacobi elliptic function solutions. 
In [38], the authors consider the generalized double dispersion equation 

( ) 0,tt xx xxtt xxxx xxt xxu u au bu du f u− − + − − =               (9) 

where 0, 0a b> >  and d are constants. They study the functional forms ( )f u  
for which Equation (9) with , 0a b ≠  admits classical symmetries. 

In this paper, we consider the following multidimensional double dispersion 
equation 

( )2 , , 0,n
tt tt tu u u u k u f u x R t− ∆ − ∆ + ∆ + ∆ = ∆ ∈ >           (10) 

where ( )3, , 1pn f u u p= = >  or ( ) 2 , 1, 2, ,kf u u k= = ⋅ ⋅ ⋅  
In this paper, the symmetry group of the n-dimensional double dispersion 

Equation (10) is obtained by using the classical method in Section 2. In Section 3, 
we discuss the Lie symmetry group of Equation (10). Finally, we obtain similari-
ty solutions or travelling wave solutions of Equation (10) by using similarity va-
riables to obtain reduction equations, and solving the reduction equations in 
Section 4. 

2. Lie Symmetry Analysis of the Double Dispersion Equation 

In this section, we perform Lie symmetry analysis for Equation (10), and obtain 
its infinitesimal generator. 

Theorem 1. [28] Assume 

( ) ( )1 1, , ,p pi
iiV x u x u

x xα ααξ φ
= =

∂ ∂
= +

∂ ∂∑ ∑  

be a vector field on X U× , where ( )1 2, , , pX x x x=  , ( )1 2, , , qU u u u=  . 
Then its n-st prolongation is defined a vector on X U×  

( ) ( )( )1 1 , ,pn nJ
J

J

pr V V x u
uα αα φ

= =

∂
= +

∂∑ ∑  

where, by definition 
( )( ) ( )11, , , , , 0 , 1 ,pnJ i

J Ji l kix u D Q u J j j k n j pα
α αφ ξ

=
= + = ≤ ≤ ≤ ≤∑ 

 

where, ( ) ( )1, ,p i
ii

i

Q x u x u
x uα α αφ ξ

=

∂
= −

∂∑ , 1, , qα =  , ( ) ( )1, , , qQ x u Q Q=   

is referred to as the characteristic of the vector field V . 
Here are four independent variables , ,x y z  being spatial coordinates and t the 

time. According to the method of determining the infinitesimal generator of non-
linear partial differential equation [28], we take the infinitesimal generator of equ-
ation as follows: 

( ) ( ) ( )

( ) ( )

, , , , , , , , , , , ,

, , , , , , , , ,

V x y z t u x y z t u x y z t u
x y z

x y z t u x y z t u
t u

ξ η ζ

τ φ

∂ ∂ ∂
= + +

∂ ∂ ∂
∂ ∂

+ +
∂ ∂

     (11) 

be a vector field on X U× . Where , , , ,ξ η ζ τ φ  are coefficient functions of the 
infinitesimal generator to be determined. We wish to determine all possible coe- 
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fficient functions , , ,ξ η ζ τ  and φ  so that the corresponding one-parameter 
group ( )exp Vε  is a symmetry group of the double dispersion equation. Ap-
plying the forth prolongation of V  to Equation (10), we find the invariance 
condition ( ) ( )4 0pr V

∆
∆ = , where ∆  is ( )2 p

tt tt tu u u u k u u− ∆ − ∆ + ∆ + ∆ − ∆  
and with help of Maple software, we find the following system of symmetry 
equations 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3 2 2 2

2 1

1 2

1 2 ,

tt xx yy zz xxtt yytt zztt

xxxx yyyy zzzz xxt yyt zzt

p
x y z

p x p xx yy zz

k

p p p u u u u

p p u u u pu

φ φ φ φ φ φ φ

φ φ φ φ φ φ

φ

φ φ φ φ φ

−

− −

− + + − + +

+ + + + + +

= − − + +

+ − ∇ + ∆ + + +

      (12) 

which must be satisfied whenever u satisfy Equation (10). Here ,tt xxφ φ , etc. are  

the coefficients of the second order derivatives ,
tt xxu u
∂ ∂
∂ ∂

, etc. appearing in 

( )4pr V . 

According to Th. 1, ( )( ) ( ) ,, nJ i i
J i J ix u D u uα α

α αφ φ ξ ξ= − Σ + Σ , we have 

2 2 2 2 2

2 2 2 2 .

xx
x x x y x z x t x

xx x xy x xz x xt x

D u D u D u D u D

u D u D u D u D

φ φ ξ η ς τ

ξ η ς τ

= − − − −

− − − −
 

Similarly, we can get , ,tt xxt xxxxφ φ φ , etc. we find the determining equations for 
the symmetry group of Equation (10) to be the following: 

( )
( )

( )
( )

( )

( )3

0, 0,
0,

0,

0,

2 3 0,

2 0,

2 0,

2 0,

2 0,

2 2 0,
2 2 0,

6

u u u t t t

uu

x y z u

x y z t

u xx yy zz

u xx yy zz

u x y z

tu t tt

tu xx yy zz u

u t tu tt
p

u t

k

k k

k
u u p u

ξ η ζ ξ η ζ
φ
τ τ τ τ

ξ η ζ τ

φ ξ η ζ

φ ξ η ζ

φ ξ η ζ

φ τ τ

φ ξ η ζ φ

φ φ φ τ
φ φ τ−

= = = = = =
=
= = = =

+ + − =

∇ − + + =

∇ − + + =

∆ − + + =

− − =

∇ + + + − ∇ =

∆ − ∆ + − =
+ − + =  

− ∆ ( )

( )
( ) ( ) ( )

2 1

2 1

2 1

1

1 2 0,
0,

2 1 4 2 2 2 2

0,

p p
u ttu tu t

p
tt tt t

p p
u u u ttu tu

p
xx yy zz xxxx yyyy zzzz xx yy zz

k p p u pu
pu k

p p u pu k

pu

φ φ φ η τ
φ φ φ φ φ φ

φ φ φ φ φ φ

ξ η ζ ξ η ζ ξ η ζ

− −

−

− −

−





















 + − + − + =

∆ − ∆ −∆ −∆ + + ∆ =
 − ∇ − ∇∆ + ∇ + ∇ + ∇ − ∇

− + + + + + − + + =

 

Since we have now satisfied all the determining equations, we conclude that 
general infinitesimal symmetry of Equation (10) has coefficient functions of the 
following form: 

1,cξ =  
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2 ,cη =  

3 ,cζ =  

4 ,cτ =  

where 1 4, ,c c  are arbitrary constants. Thus the Lie-algebra of infinitesimal of 
the double dispersion equation is spanned by four vector fields: 

1 ,V
x
∂

=
∂

 

2 ,V
y
∂

=
∂

 

3 ,V
z
∂

=
∂

 

4 ,V
t
∂

=
∂

 

so we have 

1 1 2 2 3 3 4 4.V c V c V c V c V= + + +  

3. Symmetry Groups of the Double Dispersion Equation 

In this section, in order to get some exact solutions from a known solution of 
Equation (10), we should find the one-parameter symmetry groups 

( ) ( ): , , , , , , , ,ig x y z y u x y z t u→  of corresponding infinitesimal generators. To 
get the Lie symmetry groups, we should solve the following initial problems of 
ordinary differential equations: 

( ) ( )

( ) ( )
0

d , , , ,
, , , ,

d
, , , , , , , , ,

x y z t u

x y z t u x y z t u
ε

ξ η ζ τ φ
ε

=


=


 =

                (13) 

where 

( ), , , ,x y z t uξ ξ= , 

( ), , , ,x y z t uη η= , 

( ), , , ,x y z t uζ ζ= , 

( ), , , ,x y z t uτ τ= , 

( ), , , ,x y z t uφ φ=  

and ε  is a group parameter. 
For the infinitesimal generator 1 1 2 2 3 3 4 4 ,V c V c V c V c V= + + +  we will take the 

following different values to obtain the corresponding infinitesimal generators: 

Case 1. 1 2 3 41, 0C C C C= = = = , the infinitesimal generator is 1 ,V
x
∂

=
∂

 

Case 2. 2 1 3 41, 0C C C C= = = = , the infinitesimal generator is 2 ,V
y
∂

=
∂

 

Case 3. 3 1 2 41, 0C C C C= = = = , the infinitesimal generator is 3 ,V
z
∂

=
∂
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Case 4. 4 1 2 31, 0C C C C= = = = , the infinitesimal generator is 4 ,V
t
∂

=
∂

 

Case 5. 1 2 3 41, 0C C C C= = = = , the infinitesimal generator is 

5 1 2 3 ,V V V V
x y z
∂ ∂ ∂

= + + = + +
∂ ∂ ∂

 

Case 6. 1 2 3 4 1C C C C= = = = , the infinitesimal generator is 

6 1 2 3 4 ,V V V V V
x y z t
∂ ∂ ∂ ∂

= + + + = + + +
∂ ∂ ∂ ∂

 

Case 7. 1 2 3 4,C C C Cλ β= = = = , the infinitesimal generator is 

7 1 2 3 4 ,V V V V V
x y z t

λ β
 ∂ ∂ ∂ ∂

= + + + = + + + ∂ ∂ ∂ ∂ 
 

The one-parameter groups iG  generated by the iV . The entries give the 
transformed point ( ) ( ) ( )exp , , , , , , , ,iV x y z t u x y z t uε = : 

( )1 : , , , , ,G x y z t uε+  

( )2 : , , , , ,G x y z t uε+  

( )3 : , , , , ,G x y z t uε+  

( )4 : , , , , ,G x y z t uε+  

( )5 : , , , , ,G x y z t uε ε ε+ + +  

( )6 : , , , , ,G x y z t uε ε ε ε+ + + +  

( )7 : , , , , ,G x y z t uλε λε λε βε+ + + +  

where 1 2 3, ,G G G  are space translations, 4G  is a time translation. ε  is an ar-
bitrary constant. 

Theorem 2. If ( ), , ,u f x y z t=  is a known solution of Equation (10), then by 
using the symmetry groups ( )1, 2,3, 4iG i = , so are the functions 

( )1 , , , ,u f x y z tε= −  

( )2 , , , ,u f x y z tε= −  

( )3 , , , ,u f x y z tε= −  

( )4 , , , ,u f x y z t ε= −  

( )5 , , , ,u f x y z tε ε ε= − − −  

( )6 , , , ,u f x y z tε ε ε ε= − − − −  

( )7 , , , ,u f x y z tλε λε λε λε= − − − −  

where ε  is any real constant. 

4. Symmetry Reductions and Exact Solutions of the Double 
Dispersion Equation 

In the previous sections, we obtained the infinitesimal generators ( )1, 2, , 7iV i =  . 
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In this section, we will get similarity variables and its reduction equations, and 
we obtain similarity solutions and travelling wave solutions of Equation (10) by 
solving the reduction equations. 

Case 1. For the infinitesimal generator 1V
x
∂

=
∂

, the similarity variables are 

( ) 1,
3

r t F r x tu= = − , and the group-invariant solution is 
( )1

3
x F r

u
t

−
= , subs- 

tituting the group-invariant solution into Equation (10), we obtain the following 
reduction equation 

0,rF =                             (14) 

Obviously, 1F c=  is a solution of Equation (14), where 1c  is an arbitrary 
constant. Therefore, Equation (10) has a similarity solution as follows: 

1
1
3

x c
u

t

−
=                           (15) 

where 3p = . 

Case 2. For the infinitesimal generator 2V
y
∂

=
∂

, the similarity variables are 

( ) 1,
3

r t F r y tu= = − , and the group-invariant solution is 
( )1

3
y F r

u
t

−
= , subs- 

tituting the group-invariant solution into Equation (10), we obtain the following 
reduction equation 

0,rF =                             (16) 

Obviously, 2F c=  is a solution of Equation (16), where 2c  is an arbitrary 
constant. Therefore, Equation (10) has a similarity solution as follows: 

2
1
3

y c
u

t

−
=                           (17) 

where 3p = . 

Case 3. For the infinitesimal generator 3V
z
∂

=
∂

, the similarity variables are 

( ) 1,
3

r t F r z tu= = − , and the group-invariant solution is 
( )1

3
z F r

u
t

−
= , subs- 

tituting the group-invariant solution into Equation (10), we obtain the following 
reduction equation 

0,rF =                             (18) 

Obviously, 3F c=  is a solution of Equation (18), where 3c  is an arbitrary 
constant. Therefore, Equation (10) has a similarity solution as follows: 

1
1
3

z c
u

t

−
=                           (19) 

where 3p = . 

718 



J. L. Yu et al. 
 

Case 4. For the infinitesimal generator 4V
t
∂

=
∂

, the similarity variables are 

( ),r x y z F r u= + + = , and the group-invariant solution is ( )u F r= , substi-
tuting the group-invariant solution into Equation (10), we obtain the following 
reduction equation 

( ) ( ) ( )( )2 0,pF r F r F r∆ − ∆ + ∆ =                  (20) 

Case 5. For the infinitesimal generator 5V
x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

, the similarity va-

riables are ( ) ( )1
3

F r x y z tu= + + − , and the group-invariant solution is 

( ) ( )1
3

x y z F r
u

t

+ + −
= , substituting the group-invariant solution into Equa-

tion (10), we obtain the following reduction equation 

0,rF =                             (21) 

Obviously, 5F c=  is a solution of Equation (21), where 5c  is an arbitrary 
constant. Therefore, Equation (10) has a similarity solution as follows: 

( ) 5
1
3

x y z c
u

t

+ + −
=                       (22) 

where 3p = . 

Case 6. For the infinitesimal generator 6V
x y z t
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

, the similarity 

variables are ( ),r x y z t F r uλ= + + − = , and the group-invariant solution is 
( )u F r= , If we assume k = 0 of Equation (10), substituting the group-invariant 

solution into Equation (10), we obtain the following reduction equation 

( ) ( ) ( )2 2 2 1 21 1 1 0,p p
rrrr r rr rrF p p F F pF F Fλ λ− −− − − − + − =       (23) 

So that Equation (23) is solvable in terms of Jacobi elliptic function, following 
the method described in [37]. 

If ( )2 26
6

4 81, 5 ,
3 5 5

c F r c dn rλ
 

= + =   
 

, where 8,
5

dn r
 
  
 

 is the Jacobi 

elliptic of the third kind function. Therefore, Equation (10) has a travelling wave 
solution as follows: 

( ) 2 6
6

4 8, , , 5 1 ,
3 5 5

cu x y z t c dn x y z t
 
 = + + − +
 
 

         (24) 

where 2p = , 6c  is an arbitrary constant. 

If ( )2 26
6

4 81, 5 ,
3 5 5

c F r c cn rλ
 

= + =   
 

, where 8,
5

cn r
 
  
 

 is the Jacobi 

elliptic cosine function. Therefore, Equation (10) has a travelling wave solution 
as follows: 
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( ) 2 6
6

4 8, , , 5 1 ,
3 5 5

cu x y z t c cn x y z t
 
 = + + − +
 
 

         (25) 

where 2p = , 6c  is an arbitrary constant. 

Case 7. For the infinitesimal generator 7V
x x x t

λ β∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ 
, following 

the method described in [38], the similarity variables are ( ) ,r x y z tβ λ= + + −  
( )F r u= , and the group-invariant solution is ( )u F r= , Substituting the 

group-invariant solution into Equation (10), we obtain the following reduction 
equation 

( ) ( )
( )

2 2 2 2 2 2 2

2 1 2 2 21 0,

rrrr rrr rr

p p
rr r

F k F F

pF F p p F F

λ β β λβ λ β β

β β− −

− + − −

− − − =
          (26) 

Integrating twice with respect to r, we get 

( ) ( )2 2 2 2 2 2 2 0,p
rr rF k F F Fλ β β λβ λ β β− + − − + =        (27) 

Let us assume that Equation (27) has solution of the form 

( )8
7 ,cF c H r=                         (28) 

where 7 8,c c  are arbitrary constants, and ( )H r  is a solution of the Jacobi 
equation 

2 2 4 ,rH rH Hµ= + +                      (29) 

If ( ) ( ),H r sn r m= , where ( ),sn r m  is Jacobi elliptic sine function, we 
obtain ( ) ( ),F r rsn r m=  is a solution of Equation (27). By substituting ( )F r  

( ),rsn r m=  into (27), we obtain the equation 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

2 2 2 2 2 2 2

2 2 2 2 1 2

2 2 2 1 2 2

2 4 2

4 2 2 1

4 2 2 1

2 2

, , ,

, , , ,

, , , , ,

, , ,

, , ,

, , ,

, 0,

rdn r m m rcn r m sn r m

rsn r m rcn r m dn r m sn r m

rcn r m dn r m sn r m k rcn r m dn r m

rsn r m m rcn r m n r m

rcn r m dn r m sn r m

rcn r m dn r m sn r m

rsn r m

β λ β λ

λ β λ

β λ β

β β

β

β

β

−

−

−

−

− −

− +

− +

+ +

−

+

+ =

    (30) 

If 2 22λ β= , Equation (10) has a travelling wave solution as follows: 

( ) ( ) ( )( ), , , , 1 ,u x y z t x y z t sn x y z tβ λ β λ= + + − + + − −         (31) 

where 1, 2m p= − = . As ( )( ) ( )( ),1sn x y z t tanh x y z tβ λ β λ+ + − = + + − , we 

obtain ( ) ( )1
4

F r tanh r=  is a solution of Equation (27), yb substituting ( )F r  

( )1
4

tanh r=  into Equation (27), we obtain a travelling wave solution as follows: 

( ) 1, , , ,
4 2

tu x y z t tanh x y z = + + − 
 

              (32) 
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where 8, 3k p= =  
If ( ) ( ),F r rcn r m=  is a solution of Equation (27). By substituting ( )F r  

( ),rcn r m=  into (27), when 2 22λ β= , Equation (10) has a travelling wave so-
lution as follows: 

( ) ( ) ( )( ), , , , 1 ,u x y z t x y z t cn x y z tβ λ β λ= + + − + + − −        (33) 

where 1, 2m p= =  

5. Conclusion 

In this paper, we study the symmetry reductions and explicit solutions of a mul-
tidimensional double dispersion equation by means of classical Lie group me-
thod. First, we get the symmetry groups and the infinitesimal generators of Equ-
ation (10). Then, we discuss the Lie symmetry groups of the multidimensional 
double dispersion equation and obtain the group-invariant solution. Finally, we 
obtain similarity solutions and travelling wave solutions of Equation (10) using 
similarity variables. 
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