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Abstract

In this paper, we prove the existence of common random fixed point for two
random operators under general quasi contraction condition in a complete p-
normed space X (with whose dual separates the point of X). Also, the well-
posedness problem of random fixed points is studied. Our results essentially
cover special cases.
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1. Introduction

Let Xbe alinear space and || ||p be a real valued function on Xwith 0< p <1.

The ordered pair (X ,|| ||p) is called a p-normed space [1] if for all X,y in

Xand scalars A:

D [x],20 and |x| =0 iff x=0

2) [|ax], =1AF I,
3) [+ vl <[l + 1,

for more details about p-normed spaces, see [2] or [3]. Throughout this article,

X will be complete p-normed space whose dual separates the points of it,

@+ Ac X be a separable closed, (Q,Z) be the measurable space with X a

sigma algebra of subsets of Q.

Definition (1.1): [4]
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A mapping F:Q — X is called measurable if, for open subset B of,
F*(B)={reQ:F(y)NB=@}ex.

Definition (1.2): [4]

A mapping h:QxX — X is called a random operator if for any xe X,
h(.,x) is measurable.

Definition (1.3): [5]

A measurable mapping A:Q — A is called random fixed point of a random
operator h:Qx X — X ifforevery yeQ, A(y)= h(;/,/i(;/)).

Definition (1.4): [6]

A measurable mapping A4:Q — A is called common random fixed point of
arandom operator h:QxA— X and G:QxA— A ifforall yeQ

A(r)=h(r.2(7))=G(r.4(r))-
Definition (1.5): [7]

A random operator h:Qx A— X is called continuous (weakly continuous)
ifforeach yeQ, h ( 7, ) is continuous (weakly continuous).

The stochastic generalization of fixed point theory is random fixed point
theory. Many researchers are interesting in this subject and it’s applications in
best approximations, integral equations and differential equations such as [8]-
[14].

Saluj [15] establish some common random fixed point theorems under con-
tractive type condition in the framework of cone random metric spaces. Rash-
wan and Albageri [16] obtained common random fixed point theorems for six
weakly compatible random operators defined on a nonempty closed subset of a
separable Hilbert space. In 2013, Arunchaiand Plubtieng [17] proved some ran-
dom fixed point theorem for some of weakly-strongly continuous random oper-
ators and nonexpansive random operators in Banach spaces. Singh, Rathore,
Dubey and Singh [18] obtain a common random fixed point theorem for four
continuous random operators in separable Hilbert spaces. Vishwakarme and
Chauhan [19] proved common random fixed point theorems for weakly com-
patible random operators in symmetric spaces. Khanday, Jain and Badshah [20]
proved the existence of common random fixed point theorems of two random
multivalued generalized contractions by using functional expressions. Chanhan
[21] obtained common random fixed point theorems for four continuous ran-
dom operators satisfying certain contractive conditions in separable Hilbert
spaces. In 2017 Abed, Ajeel, and Alsaidy [22] proved the existence of common
random fixed point for two continuous random operators under quasi contrac-
tion condition in a complete p-normed space X. Also, the random coincidence
point results are proved in [23] for & -weakly contraction condition under two
pairs of random operators.

Now, we define a new type of random operators

Definition (1.6):

Let A be a nonempty subset of a p-normed space, let (€2,X) be a measurable
space and let h,G:Qx A— A be tow random operators. The random operator
his called
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1. Generalized quasi contraction (gqc) random operator if for each yeQ,

the mapping h(y,.): A— A satisfies the following condition
[n(r0)=n(r. ), <kmax{fx=yl, Jx=h(0, Jy-n(ry)l, Je=h(rv),
Jy=hGr0l, 0 (o0 =], 0 Grox) =0 rox), 0 o) =], o (0 =h )]

Forall x,yeA and 0<k<1/2.
2. G-generalized quasi contraction (G-gqc) random operator if for each
7 € Q, the mappings h(y,.),G(7,.): A— A satisfies the following condition

InGx)-6 (), <kmax{f=yl, Jx=n( 0, Jy=G (vl Jx -G (),
Iyl I ) -, I 0, 1), I -6 )
Forall x,ye A and 0<k<1/2.

2. Common Random Fixed Point Theorems

We begin with the following result

Theorem (2.1):

Let J=Ac X, G:QxA—> A be a continuous random operator and
h:Qx A— A be a nonexpansive random operator. If A be a separable closed
subset of a complete p-Normed space X and A be G-gqc random operator, then
hand Ghave a unique common random fixed point.

Proof:

Let A.:Q — A be arbitrary measurable mapping. We construct a sequence
of measurable mappings </1n> on Q to A as follows

Let 4,4,:Q— A be tow measurable mappings such that

h(7.2(7))=4(r) and G(r.4(7))=%(7)

By induction, we construct sequence of measurable mappings 4, :Q— A

such that
0(7: Aens (7)) = Zan () and G(7, 20 (7)) = hanu(7)  @1)

From (2.1) and (1.2), we have

Fon (7) = Zanis (7, = (7 2ens (7)) - G(m ),

SkmaX{ﬂznl( ~Jon (P, [ (1) =1 (7 2encs (D)) e (7) =G (720 (7))

Aon (1) =G (7120 (7 || Jon (7 (y Do (D)), I (71 Aens (7)) = 2 (7 ||

|02 (7. Zans (7))~ (mm ), ||h2 (72 Zan ()= ()], [P (7 s (1)) = (7 2 ()] |
=kmax{izn1< ~an (7] A2 () = 2 nyllp,izm—ﬂm N, Wans (7 ﬂm( N,
220 (7) = 220 (7, ||ﬂzn+1 ~Aons ()], e () =220 (7],

ﬂqm(y— Ao ()], [ Pznia (7) = Zna (7 ||}

= kmax {2y 1 (7)= 20 (7], W (7) = Zanss (P, ens ()= Zena (P,
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using triangle inequality, we get

}{Qn (y)_%nﬂ || <kmaX{ /12n 1 ||
"ﬁ?n—l - " +||ﬂ’2n _22n+1( )

[ﬂm 7Nl +

ﬂ'Zn ( 22n+1 " - A’

where 4 =(k/1-k)<1.
By similar way, we have

Ao (7) =20 (7))

ﬂ?n j2n+1 (7/)||p ’

)

)~ 2ans ()], ]

hence,

;{Qn—l( )_/1”2n (7)"p

<A Aona (7) = Aons (7/)";1

therefore,

0 (7) = Aana (7)) =4
Vi ()= Zans ()], <27 [ (1) 2 (1),

To prove </?,H> is Cauchy sequence, for nmeN,n>m

) ||

<||ﬂ SO, A ()= A (D], + -+ s (1) =20 ()]
S(/1”'1”"‘2+"'+”")||/10(7) ||p—(ﬂ - ﬂ)llﬂo (-4,

Let ¢>0 be given, choose a natural number Klarge enough such that

22|20, (7)_’12“1(7)”;)

Ao (7) =2 (7)) <

A" ||A1 (7)- 7)" <e forevery m=K.
Hence ||/1 (7)-4 " <e forevery n>m=>K.
So, {/ln (7)} is a Cauchy sequence in, and completeness of X implise that

there exists A(y)e X suchthat 4 (y)—>A(y) as n—>w.
To show that A is a common random fixed point of 2and G, coinsider the

following by using triangle inequality, (2.1) and (1. 2)

||z<y)—h(y,z<7>)||pSllﬂ(n—zw ), #ense (1) -h(r A (),

=12~ Zanea (D), +[I0 (7 2(7)) =G (7. Aans( ||

<[2(r) = 2oz (P, +kmex{(7) = ans ()], 2 ). 2],
Ao (7) =G (7, ﬂm ), [2(r)-6 MM P, Jena (1) =072 ()], -
[ (7. 2(n)-2(1)], IIhWM )

[ (712 ) = Zans ()], 1 (7 27)) =8 (7 e II}

=[a(r —ﬂw ), +kmax{[2(7) = 2w ()], J2 ()02 ()],

Do (7 »W @), J4(r) zm | zml() (m( M,

[ (7, 2(n) =2, o0* (7 A7 )

[ (7.2 y))—zm O, o (20D = 2w (),
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taking the limitas N — o in the above inequality, getting that
A(r)=h(r.4(7), SkmaX{"ﬁ (r) —h(M N, [P (. 2()-2(7)
[ (.47 0|

By using triangle inequality and non-expansive of 4, we have

bl

<kmax{[2(7)-h(r. 2 ()], [ (7 2() -h(r2 (),
+[h(r2())- ” [ (20 ), }

<kmax{[4()-h(r.2())] [n(r.2 7))—z(y)||p
(. 4)= A7), (A1) -2(7)] |

ng”h 7 A 7))_’1(7)";)
this implies that
) -h(r ), <0 o

since 0<k <1/2,(2.1.4) must be true only "/1 (r)- h(;/,/l(;/))”p =0, thus

Ar)=h(r.4(7)) 2.3)
Similarly, we can show that
Ar)=6(r.A(r) 24

hence 1:Q — A isacommon random fixed point of Aand G.

For uniqueness, let o(y) be another common random fixed point of Sand

T, thatis forall yeQ, a(7)=h(;/,a(y))zG(y,a()/)).
Then for all y € Q, we have

[2()-a ()], =[n(r2() -6 (r.a ()],

From (1.2), (2.3) and (3.2), we have

||ﬂ<y>—a<y>||pskmax{llﬂm—a(y)llp,||ﬂ«<y>—hw<y>)||p,
e (7)=T (ra()), 2(r) =G (r.a(r),,.
e (7)=h(r.2()], IIhW(r =47,
I (7. 4())-2(7)], IIhZ r.4(7)=a(r),
I (7. 2()) -6 (r. ()|

:kmax{ (r)-a(r),. }
=kA(y)-a(r), <A(r)-a(r),

Which is contraction. Hence 1:Q — A is a unique common random fixed

point of Aand. m
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Corollary (2.2):
If A and A as in theorem (2.1) and for each y €, h(y,.):A— A is (gqc):

[n(r.x)=h(z.y),
<kmax{[x=y], Jx=n (), Jy=n ()l x=n (),
ly =0l [0 () = x| [0 (%)= ()

[ (. x) -], 0 (o= ()}

Then there is a random fixed point of A.

Corollary (2.3):
If A, h, G as in theorem (2.1) and for each yeQ, h(y,.),G(7,.):A—> A

satisfies one of the following conditions:

Ih(rx)-G(r.y),
1 <kmax{jx=y], [x=h(z 0, Jy-G (v,
=T Gyl ly=hirxl, -
o0 -6(ry)l, <kmax{lx=yl, Jx=h(z. )|, Jy=G (. v, |

. ||h(;/, x)-G(7, y)"ID <k max{"x— h(y, x)"p ,||y—G(;/, y)"p}
Ih(r ) -G (. y)],

- <max{fx=y], Je=h (0, Jy -6 (),
y2[ -Gy, +ly-n(r0), |}

Ih(rx)-G (),

<kmax{ -y, ¥2[ Jx=n(. ), +[y - (7., ]

]/2|:X—G(7, y)p +y—h(7,x)p]}.

For all x,ye X;0<k <1/2. Then A and G have a unique common random

[\

W

~

w

fixed point.

3. Well-Posed Problem

Definition (3.1):
Let (X ,|| ||p) be a p-normed space and T:Qx X — X arandom mapping.

the random fixed point problem of 7'is said to be well-posed if:
i. Thas a unique random fixed point 4:Q — X ;
ii. for any sequence {ln ( )/)} of measurable mappings in X such that
limy . [T (7,20 (7)) = 2 (7) A (r)=2(r), =0
Definition (3.2):

Let (X," ||p) be a p-normed space and let 7 be a set of a random opera-

=0, we have lim
p

n—o

tors in X. The random fixed point of 7 is said to be well-posed if:
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i. 7 hasaunique random fixed point 4:Q — X ;
ii. for any sequence {ﬂn ()/)} of measurable mappings in X such that

Mo [T (7220 (7)) =0 ()],
Iimnaoo ﬂ'n (7/ - }/ ||p =0.

Theorem (3.3):

If A, A, G as in theorem (2.1) and for each yeQ, h(;/,.),G(}/,.): A—> A
satisfies (1.2), then the common random fixed point for the set of random oper-
ators {h, G} is well-posed.

Proof:

By theorem (2.1), the random operators A and G have a unique common ran-

=0, VT €7 wehave

dom fixed point 1:Q — A. Let {ln (}/)} be a sequence of measurable map-
pings in A such that

lim{[h(7. 2, (7)) =4 (7)], = limG (7.4 () = 4 (7)], =0

n—w n—w p

By the triangle inequality, (1.2), (2.3) and (2.4), we have

[#() =2,

<[a(r.2()-e (4 (7 || +||G 74 (7)-A <y>||p
shmax{||/1 —l(y ~G(7.4 (7 || Ja () )"p
ﬂw)—h( || IIhZ MH 2 ||

2= (A e A D) -4 0,
<t —ew || e tra()-2 H o4 (-4 (71,
=h[2(r)-6(r.4 ()], +@+n)lel,

By the triangle inequality, we get
12(r) =2 (),

sh["/l — 2 ( ||+/1 A 7))||J

+(1+h)[6 (744 ( ||
=h[2(r)- 4 (7) || ||G 7y (7))-in(7)||p
(@-h)|lA(r)-4 || <(1+20)|G (7.4 ( (),
thus we have, lim,,[A(7)-4, (¥ ||p =0, it follows that the common random

fixed point for the set of random operators {h, G} is well-posed. m
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