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Abstract 
In this note, we experimentally demonstrate, on a variety of analytic and 
nonanalytic functions, the novel observation that if the least squares poly-
nomial approximation is repeated as weight in a second, now weighted, least 
squares approximation, then this new, second, approximation is nearly perfect 
in the uniform sense, barely needing any further, say, Remez correction. 
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1. Introduction 

Finding the min-max, or best L∞ , polynomial approximation to a function, in 
some standard interval, is of the greatest interest in numerical analysis [1] [2]. 
For a polynomial function the least error distribution is a Chebyshev polynomial 
[3] [4] [5]. 

The usual procedure [6] [7] to find the best L∞  approximation to a general 
function is to start with a good approximation, say in the 2L  sense, easily ob-
tained by the minimization of a quadratic functional for the coefficients, then 
iteratively improving this initial approximation by a Remez-like correction pro-
cedure [8] [9] that strives to produce an error distribution that oscillates with a 
constant amplitude in the interval of interest. 

In this note, we bring ample and varied computational evidence in support of 
the novel, worthy of notice, empirical numerical observation that taking the er-
ror distribution of a least squares, 2L , best polynomial fit to a function, squared, 
as weight in a second, weighted, least squares approximation, results in an error 
distribution that is remarkably close to the best L∞ , or uniform, approximation. 
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2. Fixing Ideas; The Best Quadratic in [−1, 1] 

The monic Chebyshev polynomial 

( ) 2
2

1 , 1 1
2

T x x x= − − ≤ ≤                     (1) 

is the solution of the min-max problem 

( ) ( ) 2min max , , 1 1.
a x

e x e x x a x= − − ≤ ≤               (2) 

This min-max solution, the least function in the L∞  sense, is a polynomial 
that has two distinct roots, and oscillates with a constant amplitude in 

1 1,x− ≤ ≤  ( ) ( ) ( )1 0 1 .e e e− = − =  Indeed, say 2
1 0 1e x a a x= + +  is such a po-

lynomial, and 2
2 0 1e x p p x= + +  is another quadratic polynomial, then 1 2e e≤  

in the interval, for otherwise 1e  and 2e  would intersect at two points, which is 
absurd; 2 2

0 1 0 1x a a x x p p x+ + = + +  is either an identity, or has but the one 
solution ( ) ( )0 0 1 1x p a p a= − − − . 

Thus, the monic Chebyshev polynomial of degree n is the least, uniform, or 
pointwise, error distribution in approximating nx  by a polynomial of degree 

1n − . 
To obtain a least squares, a best 2L , approximation to ( )2T x  we first mi-

nimize ( )I a  

( ) ( ) ( ) ( )21 12 2
1 1

d , d 0I a x a x I a x a x
− −

′= − = − =∫ ∫            (3) 

to have the value 1 3 0.3333a = = . 
Minimizing next ( )I p , under the weight ( )22 , 1 3x a a− =  

( ) ( ) ( ) ( ) ( ) ( )2 2 21 12 2 2 2
1 1

1 3 d , 1 3 d 0I p x x p x I p x p x x
− −

′= − − = − − =∫ ∫   (4) 

now with respect to p, we obtain 11 21 0.5238p = = , which is surprisingly much 
closer to the optimal value of one half. 

We may replace the difficult L∞  measure by the computationally easier mL  
measure with an even 1m . Let a0 be a good approximation, and 1 0a a δ= +  
be an improved one. Minimization cum linearization produces the equation 

( ) ( ) 11 12 2
0 01 1

d d 0
n n

x a x n x a xδ
−

− −
− − − =∫ ∫              (5) 

where 1n  is odd. 
Starting with 0 11 21 0.5238a = = , we obtain from the above equation, for 

17n = , the value 1 0.495a = , as compared with the optimal 0.5a = . 

3. Optimal Cubic in [−1, 1] 

Seeking to reproduce the optimal monic Chebyshev polynomial of degree three 

( ) 3
3

3 , 1 1
4

T x x x x= − − ≤ ≤                   (6) 

we start by minimizing ( )1I a  

( ) ( ) ( ) ( )21 13 3
1 1 1 11 1

d , d 0I a x a x x I a x x a x x
− −

′= − = − =∫ ∫        (7) 
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and have 1 3 5 0.6a = = . 
Then we return to minimize the weighted ( )1I p  with respect to 1p  

( ) ( ) ( )
( ) ( ) ( )

2 21 3 3
1 1 11

21 3 3
1 1 11

d ,

d 0

I p x a x x p x x

I p x x a x x p x x

−

−

= − −

′ = − − =

∫

∫
              (8) 

and obtain 1 195 253 0.770751p = = , which is considerably closer to the optimal 
value of 0.75. See Figure 1. 

We are ready now for a Remez-like correction to bring the error function closer 
to optimal. The minimum of ( ) 3 0.770751e x x x= −  occurs at m = 0.50687. We 
write a new tentative ( ) 3

1e x x a x= −  and request that ( ) ( )1e m e− = , by which 
we have 

3

1
1 0.750047
1

ma
m

+
= =

+
                     (9) 

as compared with the Chebyshev optimal value of 1 3 4 0.75a = = . 

4. Optimal Quartic in [0, 1] 

Starting with 

( ) 4 3 2
3 2 1 0e x x a x a x a x a= + + + +                (10) 

we minimize 

( ) ( )1 2
0 1 2 3 0
, , , dI a a a a e x x= ∫                  (11) 

and obtain the best, in the 2L  sense, ( )e x  shown in Figure 2. 
Then we return to minimize 

( ) ( ) ( )21 2 4 3 2
0 1 2 3 3 2 1 00
, , , dI p p p p e x x p x p x p x p x= + + + +∫       (12) 

weighted by the previous ( )e x  squared, and obtain the new, nearly perfectly 
uniform ( )e x  of Figure 3. 

By comparison, the amplitude of the monic Chebyshev polynomial of degree 
four in [0,1] is 1/128 = 0.0078125. 

 

 
Figure 1. (a) Least squares cubic. (b) Weighted least squares cubic. 
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Figure 2. Least squares quartic. 

 

 
Figure 3. Weighted least squares quartic. 

5. Best Cubic Approximation of ex in [0, 1] 

To facilitate the integrations we use the approximation 

2 3 4 5 6 71 1 1 1 1 1e 1
2! 3! 4! 5! 6! 7!

x x x x x x x x= + + + + + + +           (13) 

and minimize 

( ) ( ) ( )1 2 2 3
0 1 2 3 0 1 2 30
, , , d , exI a a a a e x x e x a a x a x a x= = + + + +∫       (14) 

with respect to 0 1 2 3, , ,a a a a . The best ( )e x  obtained from this minimization is 
shown in Figure 4. 
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Then we use the square of the minimal ( )e x  just obtained, as weight in the 
next minimization of 

( ) ( ) ( )21 2 2 3
0 1 2 3 0 1 2 30
, , , e dxI p p p p e x p p x p x p x x= + + + +∫        (15) 

with respect to 0 1 2 3, , ,p p p p . 
The nearly perfect result of this last minimization is shown in Figure 5. 

6. Best Cubic Approximation of sinx in [0, 1] 

To facilitate the integrations we take 

3 5 7 91 1 1 1sin
3! 5! 7! 9!

x x x x x x= − + − +                  (16) 

and obtain the least squares error distribution as in Figure 6. 
The subsequent nearly perfect weighted least squares error distribution is 

shown in Figure 7. 
 

 
Figure 4. Least squares cubic fit to ex. 

 

 
Figure 5. Weighted least squares cubic fit to ex. 
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Figure 6. Least squares cubic fit to sinx. 

 

 
Figure 7. Weighted least squares cubic fit to sinx. 

7. Best Quadratic Fit to x  in [0, 1] 

We start with 

( ) ( )2
0 1 2 , 0 1e x x a a x a x x= − + + ≤ ≤               (17) 

under the condition 

( ) ( ) ( )0 1 2
10 1 , 1
2

e e a a a= − = − −                  (18) 

and minimize 

( )
2

1 2
1 2 1 20

1 1 1, d
2 2 2

I a a x a x a x x    = − − − − −    
    

∫         (19) 

with respect to 1a  and 2a , to have 

( ) 21 121 13 , 0 1
10 70 14

e x x x x x = − + − ≤ ≤ 
 

            (20) 

shown as curve a in Figure 8. 
Next we minimize 

650 



I. Fried, Y. Feng 
 

 

Figure 8. (a) Least squares quadratic fit to x . (b) Weighted least squares quadratic fit 
to x . 

( )
2

1 2
1 2 1 20

2
2

1 1 1,
2 2 2

1 121 13 d
10 70 14

I p p x p x p x

x x x x

    = − − − − −    
    

  ⋅ − + −  
  

∫
         (21) 

and obtain 

( ) ( )20.064 1.949 1.077 , 0 1e x x x x x= − + − ≤ ≤          (22) 

shown as graph b in Figure 8, as compared with the optimal, in the L∞  sense 

( ) ( )20.0674385 1.93059 1.06547 , 0 1.e x x x x x= − + − ≤ ≤      (23) 

8. Best Cubic Fit to x1/4 in [0, 1] 

We start with 

( ) 1 4 2 3
0 1 2 3 , 0 1e x x a a x a x a x x= + + + + ≤ ≤            (24) 

under the restriction ( ) ( )0 1e e= , or 3 1 21a a a= − − − , and minimize 

( ) ( ) ( )( )21 1 4 3 3 2 3
0 1 2 0 1 20
, , dI a a a x x a a x x a x x x= − + + − + −∫      (25) 

with respect to 0 1 2, ,a a a  to have the minimal ( )e x  shown in Figure 9. 
Then we minimize 

( ) ( ) ( ) ( )( )21 2 1 4 3 3 2 3
0 1 2 0 1 20
, , dI p p p e x x x p p x x p x x x= − + + − + −∫    (26) 

and obtain the nearly optimal error distribution as in Figure 10. 

9. Another Difficult Function 

We now look at the error distribution 

( ) ( ) ( )3 2
3 2 1 0ln 1.001 , 1 1e x x a x a x a x a x= + − + + + − ≤ ≤        (27) 
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under the condition that ( ) ( )1 1e e= − , or 3 13.8007012 .a a= −  
Least squares minimization of ( )e x  yields the error distribution in Figure 

11. 
Next we minimize 

( ) ( ) ( ) ( )( )21 2 3 2
0 1 2 3 3 2 1 01
, , , ln 1.001 dI p p p p e x x p x p x p x p x

−
= + − + + +∫   (28) 

 

 
Figure 9. Least squares cubic fit to 1 4x . 

 

 
Figure 10. Weighted least squares cubic fit to 1 4x . 

 

 
Figure 11. Least squares cubic fit to ( )ln 1.001 x+ . 

652 



I. Fried, Y. Feng 
 

 
Figure 12. Weighted least squares cubic fit to ( )ln 1.001 x+ . 

 
under the restriction that 3 13.8007012p p= − , and obtain the nearly perfect 
error distribution shown in Figure 12. 

10. Conclusion 

We experimentally demonstrate, on a variety of continuous, analytic and non-
analytic functions, the remarkable observation that if the least squares poly-
nomial approximation is taken as weight in a repeated, now weighted, least 
squares approximation, then this new, second, approximation is nearly perfect in 
the sense of Chebyshev, barely needing any further correction procedure. 
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