
Open Journal of Optimization, 2017, 6, 39-46 
http://www.scirp.org/journal/ojop 

ISSN Online: 2325-7091 
ISSN Print: 2325-7105 

 
 
 

A New Augmented Lagrangian Objective 
Penalty Function for Constrained  
Optimization Problems 

Ying Zheng1, Zhiqing Meng2 

1Department of Basic Courses, College of Basic Science, Ningbo Dahongying University, Ningbo, China 
2College of Economics and Management, Zhejiang University of Technology, Hangzhou, China 

 
 
 

Abstract 
In this paper, a new augmented Lagrangian penalty function for constrained 
optimization problems is studied. The dual properties of the augmented La-
grangian objective penalty function for constrained optimization problems are 
proved. Under some conditions, the saddle point of the augmented Lagran-
gian objective penalty function satisfies the first-order Karush-Kuhn-Tucker 
(KKT) condition. Especially, when the KKT condition holds for convex pro-
gramming its saddle point exists. Based on the augmented Lagrangian objec-
tive penalty function, an algorithm is developed for finding a global solution 
to an inequality constrained optimization problem and its global convergence 
is also proved under some conditions. 
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1. Introduction 

Augmented Lagrangian penalty functions are effective approaches to inequality 
constrained optimization. Their main idea is to transform a constrained optimi-
zation problem into a sequence of unconstrained optimization problems that are 
easier to solve. Theories on and algorithms of Lagrangian penalty function were 
introduced in Du’s et al. works [1]. Many researchers have tried to find alterna-
tive augmented Lagrangian functions. Many literatures on augmented Lagran-
gian (penalty) functions have been published from both theoretical and practical 
aspects (see [2]-[8]), whose key concerns cover zero gap of dual, existence of 
saddle point, exactness, algorithm and so on. 
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All augmented Lagrangian functions consist of two parts, a Lagrangian func-
tion with a Lagrangian parameter and a penalty function with a penalty parame-
ter (see [2]-[8]). Dual and saddle point is the key concerns of augmented La-
grangian function. Moreover, zero gap of Lagrangian function’s dual is true only 
for convex programming and augmented Lagrangian function. Therefore, aug-
mented Lagrangian function algorithms solve a sequence of constrained optimi-
zation problems by taking differential Lagrangian parameters and penalty para-
meters in [2] [3] [4] [5]. Lucidi [6] and Di Pillo et al. [7] obtained some results of 
exact augmented Lagrangian function, but numerical results were not given. R. 
S. Burachik and C. Y. Kaya gave an augmented Lagrangian scheme for a general 
optimization problem, and established for this update primal-dual convergence 
the augmented penalty method in [8]. However, when it comes to computation, 
to apply these methods, lots of Lagrangian parameters or penalty parameters 
need to be adjusted to solve some unconstrained optimization dual problems, 
which make it difficult to obtain an optimization solution to the original prob-
lem. Hence, it is meaningful to study a novel augmented Lagrangian function 
method. 

In recent years, the penalty function method with an objective penalty para-
meter has been discussed in [9]-[16]. Burke [12] considered a more general type. 
Fiacco and McCormick [13] gave a general introduction to sequential uncon-
strained minimization techniques. Mauricio and Maculan [14] discussed a Boo-
lean penalty method for zero-one nonlinear programming. Meng et al. [15] stu-
died a general objective penalty function method. Furthermore, Meng et al. stu-
died properties of dual and saddle points of the augmented Lagrangian objective 
penalty function in [16]. Here, a new augmented Lagrangian objective penalty 
function which differs from the one in [16] is studied. Some important results 
similar to those of the augmented Lagrangian objective penalty function in [16] 
are obtained. 

The main conclusions of this paper include that the optimal target value of the 
dual problem and the optimal target value of the original problem is zero gap, 
and saddle point is equivalent to the KKT condition of the original problem un-
der the convexity conditions. A global algorithm and its convergence are pre-
sented. The remainder of this paper is organized as follows. In Section 2, an 
augmented Lagrangian objective penalty function is defined, its dual properties 
are proved, and an algorithm to find a global solution to the original problem 
(P) with convergence is presented. In Section 3, conclusions are given. 

2. Augmented Lagrangian Objective Penalty Function 

In this paper the following mathematical programming of inequality constrained 
optimization problem is considered:  

( ) ( )
( )

P min

s.t. 0, 1, 2, , ,i

f x

g x i m≤ =   

where { }: , 1, 2, ,n
ig R R i I m→ ∈ =  . The feasible set of (P) is denoted by  
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( ){ }| 0, 1, 2, , .n
iX x R g x i m= ∈ ≤ = 

 
Let functions { }:Q R∪ +∞  be a monotonically increasing functions satisfy-

ing  

( )
( )
( ) ( )2 1 2 1

0 if 0,
0 if 0,

if 0,

Q t t
Q t t
Q t Q t t t

= ≤
 > >
 > > >  

respectively. For example, ( ) { }2max 0,Q t t=  meet the requirement. 
The augmented Lagrangian objective penalty function is defined as:  

( ) ( )( ) ( ) ( )T T, , , , , ,n m m
ML x u v Q f x M u G x v H x x R u R v intR+ += − + + ∈ ∈ ∈   (1) 

where M R∈  is the objective parameter, u is the Lagrangian parameter, 
mv intR+∈  is the penalty parameter, ( ) ( ) ( ) ( )( )T

1 2, , , mG x g x g x g x=   and 

( ) ( )( ) ( )( ) ( )( )( )T

1 2, , , mH x P g x P g x P g x=   with 1 1:P R R→  and  

( )( )
( ) ( )

( ) ( )

2

2

2

1 if > ,
2

) if .
2

i
i i

i
i

i i i
i i

i ii

ug x g x
v

P g x
u u ug x g x
v vv

 −
= 
− − ≤ −  

When ( )0 1,2, ,iv i m> =  , it is clear that ( )P t  is smooth. Define func-
tions:  

( ) ( ){ }, min , , | ,n
M Mu v L x u v x Rθ = ∈                (2) 

( ) ( ){ }sup , , | 0, 0 .M Mx L x u v u vφ = ≥ >                (3) 

Define the augmented Lagrangian dual problem:  

( ) ( )DP sup , ,
s.t. 0, 0.

M u v
u v
θ
≥ >  

When ( )min
x X

f x M
∈

≥ , we have  

( ) ( )( ){ }arg min arg min | .
x X

f x Q f x M x X
∈

= − ∈
 

By (3), we have  

( ) ( )
0, 0

min sup , , min .
n nM M

x R x Ru v
L x u v xφ

∈ ∈≥ >
=                 (4) 

According to (1), we have ( ) ( )( ), ,ML x u v Q f x M≤ − , for 0, 0,u v x X∀ ≥ > ∈ . 
Let 0, 0,u v x X= > ∈ , then we have ( ) ( )( ), ,ML x u v Q f x M= − . So, 

( ) ( )( )M x Q f x Mφ = − . Hence,  

( ) ( ) ( )( )
0, 0

min sup , , min min .
n nM M x Xx R x Ru v

L x u v x Q f x Mφ
∈∈ ∈≥ >

= = −         (5) 

Theorem 1. Let x be a feasible solution to (P), and u,v be a feasible solution to 
(DP). Then  

( ) ( )( ) ( ), , , 0, 0.M Mx Q f x M u v x X u vφ θ= − ≥ ∀ ∈ ≥ >         (6) 

Proof. According to the assumption, we have  
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( ) ( )( ) ( ) ( ){ }
( )( ) ( ) ( ) ( )( )

T T

T T

, min |

,

n
M u v Q f x M u G x v H x x R

Q f x M u G x v H x Q f x M

θ = − + + ∈

≤ − + + ≤ −
 

and  

( ) ( ){ } ( ) ( )sup , , | 0, 0 , , , .M M M Mx L x u v u v L x u v u vφ θ= ≥ ≥ ≥ ≥
 

Corollary 2.1. Let ( )min
x X

f x M
∈

> . Let *x  be an optimal solution to (P), and 
( )* *,u v  be an optimal solution to (DP). Then  

( ) ( )( ) ( )* * * *, .M Mx Q f x M u vφ θ= − ≥                (7) 

By (5), if ( )* * *, ,x u v  is an optimal solution to ( )
0, 0

min sup , ,
n M

x R u v
L x u v

∈ ≥ >
, then 

*x  is an optimal solution to (P) for ( )min
x X

f x M
∈

> . We have  

( ) ( )
0, 0 , 0

sup min , , sup ,
n M M

x Ru v u v
L x u v u vθ

∈≥ > ≥
=                 (8) 

and know that ( )* *,u v  is an optimal solution to (DP) if ( )* * *, ,x u v  is an op-

timal solution to ( )
0, 0

sup min , ,
n M

x Ru v
L x u v

∈≥ >
. By Corollary 2.1 we have  

( ) ( )
0, 0 0, 0

min sup , , sup min , , .
n nM M

x R x Ru v u v
L x u v L x u v

∈ ∈≥ > ≥ >
≥             (9) 

A saddle point ( )* * *, ,x u v  of ( ), ,ML x u v  is defined by  

( ) ( ) ( )* * * * * *, , , , , , , , 0, 0.n
M M ML x u v L x u v L x u v x R u v≤ ≤ ∀ ∈ ≥ >    (10) 

By (10), the saddle point shows the connection between the dual problem and 
the original problem. The optimal solution to the original problem can be ob-
tained by the optimal solution to the dual problem and the zero gap exists in 
Theorem 2. The following Theorems 3 and Theorem 4 show that under the con-
dition of convexity, saddle points are equivalent to the optimality conditions of 
the original problem. By (10), we have  

( ) ( ) ( )* * * * * *, , , .M M ML x u v u v xθ φ= =
 

Hence, we have the following theorems. 
Theorem 2. Let ( )min

x X
f x M

∈
≥ . Then, ( )* * *, ,x u v  is a saddle point of  

( ), ,ML x u v  if and only if *x  is an optimal solution to (P) and ( )* *,u v  is an 
optimal solution to (DP) with ( )( ) ( )* * *,MQ f x M u vθ− = .  

Theorem 3. Let ( ), 1, 2, ,if g i m=   be differentiable and ( )min
x X

f x M
∈

> . 
Let ( )Q t′  for 0t ≤  and ( ) 0Q t′ >  for 0t > . If ( )* * *, ,x u v  is a saddle point 
of ( ), ,ML x u v , then, ( )* *,x u  satisfies the first-order Karush-Kuhn-Tucker 
(KKT) condition.  

Proof. According to the assumption, ( )* * *, ,x u v  is a saddle point of 
( ), ,ML x u v , then, for any 0ε >   

( ) ( ) ( )* * * * * *, , , , , , , , 0, ,n
M M ML x u v L x u v L x u v x R u v ε≤ ≤ ∀ ∈ ≥ ≥     (11) 

and  

42 



Y. Zheng, Z. Q. Meng 
 

( ) ( )( ) ( ) ( )

( )( )

* * * * * * *

1

* *

=1

, ,

0,

m

x M i i
i

m

i i
i

L x u v Q f x M f x u g x

v P g x

=

′∇ = − ∇ + ∇

+ ∇ =

∑

∑
      (12) 

where  

( )( )
( ) ( ) ( )

( ) ( )

* * * * *

*
* * * *

if 0,

if 0.

i i i i i

i i
i i i i

i

g x g x v g x u
P g x u g x v g x u

v

 ∇ + >


∇ = −
∇ + ≤

  
And there are ( )1 1, , , mα α α  and ( )1 1, , , mβ β β  such that  

( ) ( )
* * *

*
, ,

0, 1, 2, , ,M
i i

i

L x u v
g x i m

u
α

∂
= − − = =

∂
            (13) 

( ) ( )( )
* * *

*
, ,

0, 1, 2, , ,M
i i

i

L x u v
P g x i m

v
β

∂
= − − = =

∂
         (14) 

* 0, 0, 1, 2, , ,i i iu i mα α= ≥ =                   (15) 

( )* 0, 0, 1, 2, , .i i iv i mβ ε β− = ≥ =                 (16) 

By (12)-(16), let 0ε → , then we have  

( ) ( )( ) ( ) ( )* * * * * * *

1
, , 0,

m

x M i i
i

L x u v Q f x M f x u g x
=

′∇ = − ∇ + ∇ =∑
 

( )* * *0, 0, 1, 2, , .i i iu g x u i m= ≥ = 

 
For , , ,n m mx R u R v intR+ +∈ ∈ ∈  it is clear that (1) is equivalent to the following  

( ) ( )( ) ( )
2 2

1
, , max ,0 .

2 2

m
i i i

M i
i i i

v u u
L x u v Q f x M g x

v v=

   = − + + −    
∑    (17) 

Clearly, if ( )( ) 0iP g x = , then ( ) 0ig x ≤ . We have that 
( ) ( )T T 0u G x v H x+ ≤  if x X∈ . 

Theorem 4. Let ( )min
x X

f x M
∈

> . ( ), 1, 2, ,if g i m=   are convex and diffe- 
rentiable. Let ( ) 0Q t′ =  for 0t ≤  and ( ) 0Q t′ >  for 0t > . If ( )* *,x u  satis-
fies the first-order Karush-Kuhn-Tucker (KKT) condition, then ( )* * *, ,x u v  is a 
saddle point of ( ), ,ML x u v  for any * 0v > .  

Proof. Let any * 0v > . According to the assumption, ( ), ,ML x u v  is convex 
and differentiable on x by (17). We have *x X∈ , ( )* * *, , 0x ML x u v∇ =  and  

( ) ( ) ( ) ( )
( )

* * * * * * * * *

* * *

, , , , , ,

, , , .

M M x M

n
M

L x u v L x u v x x L x u v

L x u v x R

≥ + − ∇

= ∀ ∈
 

On the other hand, when ( )* *,x u  satisfies the first-order Karush-Kuhn- 
Tucker (KKT) condition, then *x X∈ , ( )*T * 0u G x =  and  

( ) ( )T * T * 0u G x v H x+ ≤ . By the definition of ( )H x , we know that 

( )*T * 0v H x ≥  for * 0v > . So, for any , 0u v ≥  and * 0v > , we have  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

* * * * T * T * *T * *T *

T * T * *T *

, , , ,

0.

M ML x u v L x u v u G x v H x u G x v H x

u G x v H x v H x

− = + − −

= + − ≤
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Example 2.1 Consider the problem:  

( )( ) ( )P 2.1 min

s.t. 0.

f x x

x

= −

≤  
When ( ) { }2max 0,Q t t= , the augmented Lagrangian objective penalty func-

tion is given by  

( ) { }
2 2

2, , max ,0 max ,0 .
2 2M
v u uL x u v x M x

v v
 = − − + + − 
   

The optimal solution to ( )min , ,Mx R
L x u v

∈
 is * 0x =  for 0, 0M v< >  and 

2u M= − . For * 0x = , some * * *0, 2M u M< = −  and * 0v > , it is clear that  

( ) ( ) ( )* * * * * *, , , , , , , , ,n m
M M ML x u v L x u v L x u v x R u v R+≤ ≤ ∀ ∈ ∈

 

holds. Then ( )* *0, 2 ,M v−  is a saddle point of ( ), ,ML x u v .  
Example 2.1 shows that the augmented Lagrangian objective penalty function 

can be as good in terms of the exactness as the traditional exact penalty function. 
For any given ( ), ,M u v , define the following problem as  

( )( ) ( )P , , min , ,

s.t. .
M

n

M u v L x u v

x R∈  

In Example 2.1, ( )* 2, ,
2

u Mx M u v
v

+
= −

+
 is an optimal solution to (P(M,u,v)). 

When v → +∞ , ( )* , , 0x M u v = . 

Now, a generic algorithm is developed to compute a globally optimal solution 
to (P) which is similar to the algorithm in [15]. The algorithm solves the prob-
lem (P(M,u,v)) sequentially and is called Augmented Lagrangian Objective Pe-
nalty Function Algorithm (ALOPFA Algorithm for short).  

ALOPFA Algorithm: 
Step 1: Choose 0 nx R∈ , 1 1, 1u v > , 0 1, 1a b< < > , 1k = , and 1 0M < . 
Step 2: Solve ( )min , ,

kn

k k
M

x R
L x u v

∈
. Let kx  be a global minimizer. 

Step 3:  If kx  is not feasible to (P), let ( ){ }1 min , k
k kM M f x+ = , 

1k ku au+ = , 1k kv bv+ = , : 1k k= +  and go to Step 2. 
Otherwise, stop and kx  is an approximate solution to (P). 
The convergence of the ALOPFA algorithm is proved in the following theo-

rem. Let  

( ) ( )( ){ }, | , 1, 2, ,k k
kS L f x L Q f x M k= ≥ − =            (18) 

which is called a Q-level set. We say that ( ),S L f  is bounded if, for any given 
0L >  and a convergent sequence *kM M→ , ( ),S L f  is bounded. 

Theorem 5. Let ( )min
x X

f x
∈

 exist. Suppose that Q and ( ) ( ), ,i jf g i I h j J∈ ∈  
are continuous, and the Q-level set ( ),S L f  is bounded. Let { }kx  be the se-
quence generated by the ALOPFA Algorithm. If { }kx  is an infinite sequence 
with 0x X∈ , then { }kx  is bounded and any limit point of it is an optimal so-
lution to (P).  
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Proof. The sequence { }kx  is bounded is shown first. Since kx  is an optimal 
solution to ( )min , ,

kn

k k
M

x R
L x u v

∈
,  

( ) ( ) ( )( )0 0, , , , ,  1, 2, ,
k k

k k k k k
M M kL x u v L x u v Q f x M k≤ ≤ − = 

 
because ( ) ( )T 0 T 0 0k ku G x v H x+ ≤  for 0x X∈ . We have  

( )1 1, 2,k kM M k+ ≤ =  , then there is a bound of sequence { }kM , because 

( )min
x X

f x
∈

 has the optimal solution. Therefore, there a k ′  such that 

( )k
kM f x<  for k k ′> , *

kM a→  and 
2

0
2

i

i

u
v
→  as k → +∞ , and it is con-

cluded that there is some 0A >  such that  

( ) ( )( )
2

1
, , ,  .

2k

km
k k k k i

M k k
i i

uA L x u v Q f x M k k
v=

′> ≥ − − >∑
 

Since the Q-level set ( ),S L f  is bounded, the sequence { }kx  is bounded. 
Without loss of generality, we assume *kx x→ . Let x  be an optimal solu-

tion to (P). Note that  

( )( ) ( )

( )
( )( )

2

1
, ,

2

, ,

,  .

k

k

km
k k k ki

k Mk
i i

k k
M

k

u
Q f x M L x u v

v

L x u v

Q f x M k k

=

− − ≤

≤

′≤ − >

∑

 

Letting k → +∞  in the above inequality, we obtain that  

( )( ) ( )( )* * * ,Q f x a Q f x a− ≤ −
 

which implies ( ) ( )*f x f x= . Therefore, *x  is an optimal solution to (P). 
Theorem 5 means that the ALOPFA Algorithm has global convergence in 

theory. When v is taken big enough, an approximate solution to (P) by the 
ALOPFA Algorithm is obtained. 

3. Conclusion 

This paper discusses dual properties and algorithm of an augmented Lagrangian 
penalty function for constrained optimization problems. The zero gap of the 
dual problem based on the augmented Lagrangian objective penalty function for 
constrained optimization problems is proved. Under some conditions, the sad-
dle point of the augmented Lagrangian objective penalty function i.e. equivalent 
to the first-order Karush-Kuhn-Tucker (KKT) condition. Based on the aug-
mented Lagrangian objective penalty function, an algorithm is presented for 
finding a global solution to (P) and its global convergence is also proved under 
some conditions. There are still some problems that need further study for the 
augmented Lagrangian objective penalty function, for example, the local algo-
rithm, exactness, and so on. 
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