
Journal of Data Analysis and Information Processing, 2017, 5, 49-66 
http://www.scirp.org/journal/jdaip 

ISSN Online: 2327-7203 
ISSN Print: 2327-7211 

DOI: 10.4236/jdaip.2017.52004  May 16, 2017 

 
 
 

A Basic Study of the Forecast of Air 
Transportation Networks Using Different 
Forecasting Methods 

Yuya Takahashi, Rie Osawa, Susumu Shirayama 

Graduate School of Engineering, The University of Tokyo, Tokyo, Japan 

           
 
 

Abstract 
This research applies network structuring theories to the aviation domain and 
predicts aviation network growth, considering a flight connection between 
airports as a link between nodes. Our link prediction approach is based on 
network structure information, and to improve prediction accuracy, it is ne-
cessary to estimate the mechanism of aviation network growth. This research 
critically evaluates the prediction accuracy of two methods: the receiver oper-
ating characteristic curve method (ROC) and the logistic regression method. 
We propose a four-step method to evaluate the relative predictive accuracy 
among different link prediction methods. A case study of US aviation net-
works indicated that the ROC method provided better prediction accuracy 
compared with the logistic regression method. This result suggests that tuning 
of the prediction distribution and the regression model coefficients can fur-
ther improve the accuracy of the logistic regression method. 
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1. Introduction 

In recent years, the number of air passengers has been increasing, with the 
worldwide annual number of passengers up by approximately 34% from 2010 to 
2014 [1]. According to this trend, it is assumed that the demand for the air 
routes will keep increasing and that the aviation network will change in response 
to the increased the demand.  

Our focus in this study is to predict how the aviation network will change in 
the future to accommodate increased demand. In addition to being of impor-
tance for the industrial aspects of aviation, predictive tools for the evolution of 
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aviation are also critical to improve our understanding of environmental and so-
cial impacts. In terms of advantages to industry, accurate and concrete forecast-
ing of flight demands, including passenger fluctuation, will allow airlines to effi-
ciently plan the frequency of flights, select the appropriate size of aircrafts, and 
optimize flight plans for each airport. Additionally, a forecast of this type may 
assist aircraft manufacturers in the design of future development plans [2]. The 
results of network predictions, such as the frequency of flights and the geo-
graphic distances traveled, are environmentally relevant since this data can be 
used to forecast CO2 emission [3]. Therefore, it will potentially be possible to 
identify eco-friendly aircrafts and to petition airlines to introduce and prioritize 
fuel efficient aircrafts. From a social perspective, traffic jams due to traffic con-
centration can be predicted by analyzing both demand and local characteristics, 
such as population distribution. This perspective is important to aviation safety 
because the number of accidents caused by human errors is increasing owing to 
the traffic jams [4]. 

Many studies have been conducted to forecast the aviation network based on 
estimates of the demand for a given air route and to evaluate the impacts caused 
by change in demand [5] [6] [7]. However, it is challenging to clearly isolate the 
main factors that affect aviation networks due to the large number of these fac-
tors, which include financial considerations (e.g., business conditions), local 
characteristics (e.g., population distribution, geographic distance, climate, alti-
tude), social factors (e.g., terrorism), and environmental factors (e.g., natural 
disasters). Currently, most discussions of the variation of the aviation network 
remain qualitative.  

Quantitative studies have, however, been conducted to investigate the charac-
teristics of aviation networks and to consider network changes in terms of the 
network structure. In these studies, airports are regarded as nodes, and airlines 
and the number of flights or the number of passengers above a threshold are re-
garded as links.  

Analysis of the global aviation network structure by Guimera et al. determined 
that the network is scale-free and small-world, and that community structure is 
best explained from the point of view of geopolitical considerations in cities that 
have airports [8]. Although this study did not consider the variation of aviation 
networks, it is pioneering in the sense that complex network theory was applied 
for the first time to aviation networks. In terms of the complex network, the 
formation of the aviation network has been explored through network models. 
Sawai and Sato proposed a method to create star networks from random net-
works in a bottom-up manner, and studied their characteristics [9] [10]. While 
this method fails to forecast network change based on the current aviation net-
work structure, it provides the knowledge necessary to efficiently reconstruct 
future aviation networks from the viewpoint of network structure.  

Bonnefoy and Hansman predicted the influence of very light jets (VLJs) by 
considering the overlaps in performance and capability between light jets and 
VLJs. The authors proposed a method for network structure analysis and a re-
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sultant network growth model [11]. 
Conversely, other works have suggested that the existing prediction methods 

are unable to sufficiently explain the real-world variation in aviation networks 
and have proposed other predictive methods based on complex network analy-
sis. Kotegawa et al. attempted to predict future aviation networks utilizing three 
prediction methods and prediction measures based on the network structure 
[12]. Essentially, the network growth mechanism was understood through inves-
tigation of prediction accuracy and attempts to improve the performance of the 
prediction method. Furthermore, this work indicated that the scale-free network 
structure is important for aviation transportation efficiency [13]. Additionally, it 
was determined that when the ratio between the sum of degrees in the actual 
network structure and the sum of degrees in the same size (node number) of 
complete graph is high, the actual network more closely approaches the random 
graph and the more robust the network becomes. In terms of the robustness of 
utilizing aviation networks as the network structure, Wei et al. proposed me-
thods to maximize robustness by adding and cutting links [14]. 

The results of these studies imply that the structural characteristics and the 
growth process in the current aviation network affect the future network. For 
example, according to Bonnefoy and Hansman, the scale-free characteristics and 
the growth limits of hub airports provide an estimate of the future structure of 
the aviation network. The network structure described by Sawai and Sato and 
the robustness optimization described by Wei et al. will likely affect the recon-
struction of a next-generation aviation network. Furthermore, the methods and 
measures proposed by Kotegawa et al. provide directly useful estimates of the 
variation of future aviation networks.  

However, the work of Bonnefoy and Hansman relied on one network growth 
model that was not compared to other models and was not validated. Additional 
difficulties are associated with the previously mentioned studies, for instance the 
method of Sawai and Sato is somewhat unfeasible, and it is uncertain whether 
the method of Wei et al., which employed a relatively small network consisting 
of sixteen nodes, can be extended to larger networks. Furthermore, the predic-
tive power of the approach of Kotegawa et al. is challenged by low accuracy since 
multi-year data was not employed. 

Based on the above discussion, in the current study, we aim to improve the 
prediction accuracy of the future aviation network by the method of link predic-
tion coupled with predictive measures calculated from the network structure. 

2. Proposed Method 
2.1. Outline of Proposed Method 

First, link prediction was conducted according to two methods that utilize the 
measures introduced in Section 2.3. These measures are calculated from the 
network structure to identify missing links, and to determine which measure 
achieves the best prediction accuracy and the highest contribution. Next, the 
growth mechanism was estimated based on the following hypothesis: network 
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growth depends on the measures that have high contributions. Furthermore, the 
factors that change the network structure were analyzed.  

To compare results, we applied a four-step method that is popular in traffic 
engineering. This method incorporates population, income, and other statistical 
data as measures. 

2.2. Subject Network 

In the current study, we analyzed the annual variation of the aviation network in 
the US.  

The data supplied by the Bureau of Transportation Statistics (BTS) [15], as 
part of the United States Department of Transportation were employed in the 
network construction. A sampling of the data is presented in Table 1. 

The data set consists of scheduled departures, performed departures, passen-
ger numbers, the origin and destination, including the distance between these 
locations, and the aircraft type, year, and class. (Although additional data are al-
so available, we utilized these annual data.) The names of airports are according 
to the 3 letter abbreviations provided by the International Air Transport Associ-
ation. 

 
Table 1. Sample of the data obtained from the BTS. 
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0 2 0 210 ATK SCC 556 2014 P 

0 1 0 677 DQH ENA 556 2014 P 

0 2 0 59 DQH SCC 556 2014 P 

0 1 0 59 ENA ANC 556 2014 P 

0 1 0 203 FAI HUS 556 2014 P 

0 1 0 277 FVQ ANC 556 2014 P 

0 2 0 329 GAL ANC 556 2014 P 

0 1 0 362 HUS ANC 556 2014 P 

0 1 0 268 OTZ AIN 556 2014 P 

0 1 0 466 PHO SCC 556 2014 P 

0 1 0 269 SCC AIN 556 2014 P 

0 1 0 627 SCC ANC 556 2014 P 

0 3 0 210 SCC ATK 556 2014 P 

0 2 0 59 SCC DQH 556 2014 P 

0 1 0 466 SCC PHO 556 2014 P 

0 1 0 765 STG ANC 556 2014 P 

0 1 15 151 ABI MAF 676 2014 F 

0 1 48 1062 ABQ CMI 631 2014 F 

0 8 290 285 AEX DFW 676 2014 F 
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For example, the first record (Table 1; row 2) indicates that the no flights 
were scheduled but that 2 flights were conducted from Atqasuk airport (ATK) to 
Deadhorse airport (SCC), and that the distance between ATK and SCC is 210 
miles. We can assume these were cargo flights since there were no passengers 
aboard either flight. Similarly, the last record indicates 0 scheduled flights and 8 
flights performed between the Louisiana airport (AEX) and the Dallas/Fort 
Worth airport, with 290 passengers transported annually.  

In total, 436,559 records were obtained for 2014. 
To begin, we collected the data for the number of flights performed and the 

number of passengers between any two given airports per year. We combined 
data from different aircraft types or class, which are otherwise separated in the 
records. 

Next, we created an adjacent matrix of the airports. The thresholds were de-
fined for the number of flights and the number of passengers. In this study, links 
are connected if there are two-way flights with a passenger count above the 
threshold. That is to say, no connection between node pairs (two airports) indi-
cates either that the number of flights is below the threshold or that there are no 
flights. Predicted links indicate that the number of flights is expected to be above 
the threshold according to the prediction. 

Weighting of the links was not applied in the current work. Therefore, the 
subject network is a non-directed network, with link prediction applied to this 
network. 

2.3. Prediction Measures 

In this study, according to Zhou et al. [16], the prediction measures are based on 
the similarity of the node pairs (two airports) calculated only from the network 
structure. 

The similarity between node x and node y is represented by Score sxy. For ex-
ample, PA, one of the measures, is calculated as sxy = kxky where kx is the degree 
of node x and ky is the degree of node y. A higher score indicates a greater possi-
bility that a link exists between node x and node y. 

In this study, eleven measures were used to analyze the network: JI, PA, CN, 
SP, Sal, Sør, HPI, HDI, LHN, AA, and RA. 

1) Shortest Path (SP) 
The SP measure is defined as the inverse of Lxy, where Lxy is the vertex distance 

between node x and node y as shown in Equation (1). When no connection ex-
ists, sxy is 0. This measure is created based on the hypothesis that two airports are 
likely to be connected when there are as few hub airports as possible. 

1
xy

xy

s
L

=                              (1) 

2) Common Neighbors (CN) 
The CN measure is defined as the number of common nodes between node x 

and node y as shown in Equation (2). This measure is created based on the hy-
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pothesis that the more airports two nodes have in common, the more likely they 
are to be connected. Here for node x, let Γ(x) denote the set of neighbors of x. 

xy x ys = Γ Γ                           (2) 

3) Salton Index (Sal) 
The Sal measure is defined as the score obtained by dividing the CN measure 

with the geometrical mean of the node pair degrees as shown in Equation (3). 

x y
xy

x y

s
k k

Γ Γ
=



                          (3) 

4) Jaccard Index (JI)  
The JI measure is defined as the score obtained by normalizing the CN meas-

ure by the union of the adjacent nodes to the node pair as shown in Equation 
(4). 

x y
xy

x y

s
Γ Γ

=
Γ Γ





                          (4) 

5) Sørensen Index (Sør) 
The Sør measure is defined as the score obtained by normalizing the CN 

measure by the arithmetic mean of the node pair degrees as shown in Equation 
(5). 

2 x y
xy

x y

s
k k
Γ Γ

=
+



                         (5) 

6) Hub Promoted Index (HPI)  
The HPI measure is defined as the score obtained by dividing the CN measure 

with the lower degree of the node pairs as shown in Equation (6). When the link 
is adjacent to a hub node, the score tends to be higher because the denominator 
is determined by the lower degree only. The name of this measure is derived 
from this attribute. 

{ }min ,
x y

xy
x y

s
k k

Γ Γ
=



                        (6) 

7) Hub Depressed Index (HDI) 
The HDI measure is similar to the HPI. In contrast the HPI, the higher degree 

of the node pairs is applied to the denominator as shown in Equation (7). The 
score tends to be lower when links are adjacent to a hub node. 

{ }max ,
x y

xy
x y

s
k k

Γ Γ
=



                       (7) 

8) Leicht-Holme-Newman Index (LHN) 
The LHN measure is defined as the score obtained by dividing the CN meas-

ure with the product of the node pair degrees as shown in Equation (8). Al-
though this measure appears similar to the Sal, the score tends to be lower when 
both degrees of the node pair are higher even if all adjacent nodes are common. 
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x y
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x y

s
k k

Γ Γ
=



                         (8) 

9) Preferential Attachment (PA) 
The PA measure is defined as the product of node pair degrees as shown in 

Equation (9). This measure is created based on the hypothesis that the more 
airports connected to a given airport, the more likely it is to be connected to 
other airports. 

xy x ys k k=                            (9) 

10) Adamic-Adar Index (AA) 
The AA measure is defined as the sum of the inverse of the logarithm of the 

common node degrees. That is to say, the lower degree node of the common ad-
jacent nodes exerts a higher impact on the score as shown in Equation (10). 
Here, z indicates the common adjacent node of the node pair x and y. 

1
logx yxy z

z

s
k∈Γ Γ

= ∑


                     (10) 

11) Resource Allocation Index (RA) 
The RA measure was proposed by Zhou et al. [16]. This measure is the score 

obtained by removing the logarithm from the AA as shown in Equation (11). 
The AA applies the logarithm to prevent the weights from being too small when 
the degree is high. In the case of the RA, the weights of the nodes with high de-
gree are sufficiently low. 

1
x yxy z

z

s
k∈Γ Γ

= ∑


                      (11) 

2.4. Prediction Methods 

1) ROC curve method 
The method of Zhou et al. [16], which was originally formulated to locate 

missing links, was applied to the link prediction in this work. First, the predic-
tion measures listed in Section 2.3 were calculated to generate the annual net-
work according to the method outlined in Section 2.2. Next, the ROC (Receiver 
Operating Characteristic) curve was calculated for each measure, and finally, the 
point that occupies 95% of the area under the curve (AUC) was considered as a 
threshold, with node pairs above the threshold predicted to become connected. 
An example of a network based on this method is shown in Figure 1. 

Table 2 gives the PA values for the network presented in Figure 1 in des-
cending order. In the last column of Table 2, T indicates that a link exists whe-
reas F indicates no link exists. 

The ROC curve was then calculated based on the data presented in Table 2. 
Specifically, the following X and Y parameters were calculated once the thre-
shold was defined. 

the number of F entries in excess of the threshold
the total number of F entries

X  =  
   
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Figure 1. Example of a targeted network. 

 
Table 2. Measure and link existence for each node pair.

 
Node 1 Node 2 Measure (PA) Link existence 

3 5 9 T 

2 5 9 T 

2 3 9 F 

5 6 6 T 

3 6 6 T 

··· ··· ··· ··· 

··· ··· ··· ··· 

4 6 2 F 

4 1 2 F 

 

the number of T entries in excess of the threshold
the total number of T entries

Y  =  
 

 

The threshold is defined from the score of the measure, and the (X,Y) coordi-
nates are plotted. The ROC curve is an aggregate data of plotted points. Figure 2 
shows an ROC curve with sixteen thresholds calculated from the data presented 
in Table 2. In this case, the AUC is 0.75. 

A perpendicular is drawn down on the X-axis from a certain point on the 
ROC curve. The area, which is right side of the perpendicular and under the 
curve, is calculated. 

Point [A] in Figure 2 shows the point that demarks more than 95% of the 
AUC. If we position the threshold at the 2 and 3 node pair in Table 2, [A] is ob-
tained. The PA of the node pair is 9. We predict that node pairs with scores ex-
ceeding this value will be connected. Currently, no link exists between nodes 2 
and 3 as indicated by the F entry (Table 2; row 4). Therefore, the prediction is 
that these nodes will be connected in the future. 

2) Logistic regression and measures method 
Kotegawa et al. conducted link prediction by logistic regression, which takes 

into account node degrees, cluster coefficients, weights, and the difference be-
tween weights as explanatory variables [12]. We expanded upon this method and 
conducted the link prediction according to the following four steps. 
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Figure 2. An example of an ROC curve. 

 
a) Detect the node pairs without connection in each year’s network. 
b) For these node pairs, calculate the values of the eleven prediction measures, 

which are explanatory variables. 
c) Place the link status of these node pairs for the upcoming year in the objec-

tive variable y. If the status of the node pair is T, y is equal to 1 and if the status is 
F, y is equal to 0. 

Build the logistic regression model and conduct the link prediction. The fol-
lowing provides additional details to explain step (4). xi denotes the eleven pre-
diction measures and x is the aggregate of explanatory variables. 

x  is defined as 

( )1 111, , , tx x=x                         (12) 

β  as 

( )0 1 11, , ,β β β= β                       (13) 

and p gives the probability of the objective variable y being equal to 1, and is de-
fined as 

( )
( )

exp
1 exp

p =
+

x
x

β
β

                       (14) 

The above equation is transformed to the linear regression model by a logit 
transformation as shown below. 

0 1 1 11 11log
1

p x x
p

β β β= + + +
−


                (15) 

A logistic regression model is built for each year using data from previous year 
to predict the link status. For example, for the link prediction from 2009 to 2010, 
x gives the eleven prediction measures of the node pairs which were not con-
nected in 2008 and y the statuses of the node pairs in 2009. The logistic regres-
sion model is then built based on these values, and the 2010 link status is pre-
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dicted by applying the eleven measures of the node pairs which were not con-
nected in 2009 to this model. 

3) Utilization of the four-step method 
The four-step method regards the traffic flow as the movement between zones 

and predicts the future Origin-Destination (OD) matrix from the current OD 
matrix based on the two amounts of traffic, which are described as the traffic 
moving AWAY from a certain zone (generated traffic amount) and the traffic 
moving INTO a certain zone (attracted traffic amount) [17] [18] [19]. This me-
thod is different from two methods mentioned above in that it is not based on 
the network structure and does not predict link generation. In this study, this 
method is employed as a reference. 

We show the main procedure for the four-step method below and refer to the 
original paper where it is described [17]. 

a) Traffic is sorted according to the origin and the destination to create the 
OD matrix. 

b) The future generated and attracted traffic amounts are predicted through 
application of the linear regression model. 

c) The calculation is repeated using the Frater method until convergence oc-
curs. 

Step 2 can be further explained as follows.  
Here, Gi and Ai are the generated and attracted traffic amounts in zone i, re-

spectively. For each zone, Gi and Ai are calculated according to the linear regres-
sion model shown below. 

0i m mimG Xβ β ⋅= +∑                       (16) 

0i m mimA Xγ γ ⋅= +∑                       (17) 

In this paper, the following four explanatory variables, Xmi, were employed: 
X1i: The employed population in the state to which airport i belongs. 
X2i: The per-capita disposable income in the state to which airport i belongs. 
X3i: The GDP of the state to which airport i belongs. 
X4i: Whether a northeast corridor station exists in the state to which airport i 

belongs. 
X4i is a dummy variable, which is 1 when a northeast corridor station exists in 

the state to which airport i belongs. The northeast corridor is the railway in the 
east coast of North America. A majority of east coast states have this type of 
railway station. We take this variable into consideration because it is assumed 
that the transfer of the railway affects the utility of airlines. 

The OD matrix for future flights was generated by the four-step method, 
where the number of flights was regarded in terms of traffic flow. Next, we con-
sidered airport pairs as pairs that will connect if the number of flights was above 
the threshold in both directions. 

2.5. Evaluation of Prediction Accuracy 

When we consider the presence of links as events, the link prediction becomes a 
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two-classification problem. The F-value is generally used to calculate the accu-
racy of this type of problem, and therefore we also employ it in the current re-
search. 

In case the prediction is positive or negative, and the fact is positive or nega-
tive, the prediction result is classified into four groups (TP-true positive, FP-false 
positive, FN-false negative, and TN-true negative) as shown in Table 3. The sum 
of TP and FP indicates the total number of elements predicted to be positive, 
whereas the sum of TN and FN indicates the opposite. Additionally, the sum of 
TP and FN gives the total number of actual elements that are positive, whereas 
the sum of FP and TN indicates the opposite. 

In this paper, positive and negative values indicate that node pairs are either 
connected or not connected, respectively. Therefore, TP, FP, FN, and TN de-
scribe the following scenarios: 

TP: Node pair is predicted to be connected and is actually connected. 
FP: Node pair is predicted to be connected but is actually not connected. 
FN: Node pair is predicted to remain unconnected but actually becomes con-

nected. 
TN: Node pair predicted to remain unconnected and in fact remains uncon-

nected. 
Here, we define a as the number of TP, b as the number of FP, c as the num-

ber of FN, and d as the number of TN. Additionally, PAG represents Precision, 
and POD represents Recall. PAG and POD are defined according to Equations 
(18) and (19), respectively. 

PAG a
a b

=
+

                           (18) 

POD a
a c

=
+

                           (19) 

Furthermore, F as defined in Equation (20) gives the F-value, which indicates 
the harmonic mean of Precision and Recall. 

2 POD PAG
POD PAG

F ⋅ ⋅
=

+
                        (20) 

3. Results and Discussion 
3.1. Experimental Method 

The network was based on the method described in Section 2.2. Here, links are 
composed of node pairs (two airports) with more than 3650 flights. An example 
diagram of the network is presented in Figure 3. 

For the case study employed in this work, when the number of flights per year  
 
Table 3. Classification of prediction and fact. 

Prediction/Fact True (1) False (0) 

True (1) TP FP 

False (0) FN TN 
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Figure 3. An example of a network. 
 
between two given airports is below 3650, we consider that no connection exists, 
and a predicted link indicates that the number of flights exceeds the threshold of 
3650. 

3.2. Experimental Results 

1) Prediction results based on ROC curve  
Table 4 shows the F-value of each measure calculated using the ROC curve 

method. In the table, the values listed under the entry “08_09”, for example, give 
the prediction from 2008 to 2009. 

In terms of the average F-values, the CN value is highest and the values of PA, 
AA, and RA increase in the order listed. Additionally, the F-values for the CN 
measure remain the highest value throughout the years. This indicates that it is 
possible to predict whether two airports will be connected in the future by inves-
tigating whether or not they share many common airports. Furthermore, it is 
assumed that low degrees of common airports will likely result two airports be-
ing connected in the future because the F-values of the AA and RA are high. 

In terms of the average Precision, the Precision of the CN measure has the 
highest score, followed by the values of PA, AA, and RA in the order listed, sim-
ilar to the previously mentioned trend in the F-value. On the other hand, Recalls 
for the SP or LHN measures are higher than for the other measures. The average 
Recall for SP is 0.974. This result means that the vertex distance between most of 
the airport pairs is 2 for the pairs that will be connected in the future. This 
statement is equivalent to saying that two airports have common airports with 
more than 3650 flights. As LHN is defined as the score obtained by dividing the 
number of common nodes with the product of the node pair degrees, LHN is  
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Table 4. F-values calculated by the ROC curves method. 
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JI 0.01986755 0.019933555 0.013303769 0.013003901 0.018592297 0.026785714 0.018581131 

PA 0.044897959 0.039312039 0.030769231 0.027548209 0.062111801 0.055384615 0.043337309 

CN 0.080808081 0.080924855 0.064864865 0.045454545 0.075 0.096256684 0.073884839 

SP 0.013832853 0.013221154 0.006810443 0.011420414 0.023880597 0.016793893 0.014326559 

Sal 0.017424976 0.014522822 0.009960159 0.007168459 0.017094017 0.025940337 0.015351795 

Sor 0.01986755 0.019933555 0.013303769 0.013003901 0.018592297 0.026785714 0.018581131 

HPI 0.01659751 0.012311902 0.005191434 0.011744966 0.011173184 0.019555556 0.012762425 

HDI 0.018120045 0.017094017 0.013559322 0.014577259 0.02173913 0.022764228 0.017975667 

LHN 0.014449127 0.013767209 0.00702165 0.011851852 0.02143951 0.017120623 0.014274995 

AA 0.055276382 0.052023121 0.033707865 0.023121387 0.056782334 0.055214724 0.046020969 

RA 0.047930283 0.046875 0.03 0.022988506 0.038781163 0.062695925 0.041545146 

 
high when the product of the node pair degrees is low. Therefore, the two air-
ports do not contain a hub airport with high degree. That is to say, it indicates 
that two airports are likely connected when both of the two airports have low 
degrees. 

2) Results from logistic regression method 
The accuracy of the logistic regression prediction of TP (i.e., a node pair that 

is predicted to be connected and is actually connected) is low, the reason for 
which will be explained below. As an example, Table 5 shows the 2010 aviation 
network prediction result, which indicates that most of the node pairs (two air-
ports) are predicted to remain unconnected. Additionally, the partial regression 
coefficient is shown in Table 6. This behavior is also seen in the predictions for 
other years. 

It is known that when the logistic regression model is applied to such imba-
lanced data, the data suggesting that the node pairs will remain unconnected 
strongly affects the result. This is likely the main reason for the low accuracy of 
TP. 

The data used in this paper is imbalanced. The number of flights between two 
airports that exceed the threshold (3650) is much less than the number of flights 
below the threshold. In this case, generally weighting or other adjustments can 
be applied. However, in this paper, we do not apply such adjustments because 
the method of Kotegawa et al., the basis of the current method, did not apply any 
adjustments. 

On the other hand, we can estimate which measures might have impacts on 
the prediction from the partial regression coefficients shown in Table 6. Al-
though the TP accuracy is low, the TN accuracy (recall-TN refers to the predic-
tion that a node pair is unconnected and remained unconnected) is high. Thus it 
may be possible to obtain the knowledge of the variation of the aviation network 
from values of the regression coefficient of each measure in this point. For  
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Table 5. Prediction in 2009-2010. 

Prediction/Fact True (1) False (0) 

True (1) 0 0 

False (0) 12 3338 

 
Table 6. Values of the partial regression coefficient. 

JI PA CN SP Sal Sor HPI HDI LHN AA RA 

−0.1220 −0.1732 0.4830 0.3005 −0.3473 −0.2362 0.0571 0.3686 0.2599 0.1927 0.1087 

 
example, the partial regression coefficient of the CN measure is high. We ex-
amine this result in the next section. 

3) Results from the four-step method 
It is general, the four-step method predicts traffic based on traffic engineering. 

As mentioned earlier, the four-step method does not use the network structure. 
The link prediction goal in this work is to predict the number of flights above 
the threshold. Therefore, we can regard our target as a prediction of the traffic 
amount, and compare our results with the four-step method prediction.  

The distribution of predictions obtained by the four-step method is shown in 
Table 7. In addition, the coefficients used to determine in the linear regression 
model of G (generated traffic amounts) and A (attracted traffic amounts) are 
provided in Table 8. The target is the network from 2013 to 2014. 

Table 7 shows that the accuracy of the prediction is low, and Table 8 shows 
that the coefficients of determination for G and A are low. This result indicates 
that the explanatory variables used in this paper cannot sufficiently satisfy the 
linear regression model of G and A. 

3.3. Comparison and Consideration of Prediction Results 

We first compare the result of the ROC curve method with the logistic regres-
sion model method. Although imbalanced data was applied in the ROC curve 
method, the impact is expected to be small. Specifically, it is noteworthy that 
Precision is high. 

On the other hand, the CN value contributes to the TP in the ROC curve me-
thod and contributes to the TN (i.e., a correct prediction that an unconnected 
node pair will remain unconnected) in the logistic regression model. Based on 
these results, we examine the prediction of the aviation network from the CN, 
PA, and AA values, which have high accuracy in the case of the ROC curve, and 
obtain the following insights: 

A node pair (two airports) that will connect in the future (i.e., the number of 
flights will increase) possesses three main characteristics in accordance with the 
definition of the CN, PA, and AA. 

1) The product of node pair degrees is high. 
2) The node pair has many common nodes. 
3) The common nodes have low degrees. 
Figure 4 shows an example of two airports in such a relationship. 
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Table 7. Prediction from 2013-2014. 

Prediction/Fact True (1) False (0) 

True (1) 0 99 

False (0) 9 2320 

 
Table 8. Coefficient of determination in linear regression. 

 Decision Coefficient 

G 0.000963 

A 0.002016 

 

 
Figure 4. Example of two airports likely to be connected. 

 
Next, we compare the result of the ROC curve method with that of the 

four-step method. 
The four-step method needs statistical measures, such as population or in-

come per airport, to generate the OD matrix and linear regression model. In this 
paper, we use relatively accessible data, such as the employed population, per- 
capita disposable income, the GDP, and whether a northeast corridor rail station 
exists or not in the state where the airport is located. The result may differ de-
pending on the data selected. Therefore, we cannot conclude that the prediction 
by the four-step method is significantly inferior to the other methods in this 
study. 

However, the ROC curve method can predict links without such data. The re-
sult of this study indicates that the ROC curve method has an advantage because 
it only requires measures from the network structure to predict links. 

4. Conclusions 

In this study, we highlight that the accurate prediction of future aviation net-
works is important because of industrial, environmental, and social aspects. Ad-
ditionally, we considered aviation networks as network structures and tried to 
forecast their future development using link prediction, with measures based on 
the network structure.  
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At first, we defined the prediction measures based on the similarity of the 
node pairs calculated only from the network structure. Then, we created two 
methods to utilize those measures. The two methods are the ROC curve and the 
logistic regression model. 

Next, we calculated the measures that achieve the highest prediction accuracy 
and contribution, and determined the growth mechanism of the aviation net-
works based on these measures. 

As a case study, we applied our prediction method to the aviation networks in 
the US by creating a network of the number of flights. 

In the link prediction for this aviation network, the accuracies of the CN, PA, 
and AA values were high in the ROC curve method. The CN measure contri-
buted to the TN (unconnected node pair predicted to remain unconnected) in 
the logistic regression model method. We determined the three characteristics of 
a node pair (two airports), which increase flights: 1) the product of node pair 
degrees is high, 2) the node pair has many common nodes, and 3) the common 
nodes have low degrees. 

Furthermore, we determined that the ROC curve method has advantages 
compared with the result of link prediction based on the four-step method. 

We describe what we consider to be the novelty and utility of our work below. 
The basis of the link prediction of the ROC curve method is the same as was 

employed by Zhou et al. to located missing links. However, the purpose of that 
study was to find the missing links, whereas we employed this method to gener-
ate predictions and interpret their relevance. The novelty in the current ap-
proach is that we demonstrate that it is possible to predict links and to connect 
this prediction to the growth mechanism of the network. 

The link prediction based on the logistic regression model, as was employed 
in this work, is an expansion of the method of Kotegawa et al. While the expla-
natory variables used by Kotegawa et al. were unable to explain the mechanism 
of network generation, the explanatory variables selected in the current work 
were able to do so, suggesting that our method is advantageous in this respect. 

A comparison of the link prediction results by the ROC curve and the four- 
step method indicates that the ROC curve method is better since it only requires 
measures from the network structure to predict the links and it achieves a cer-
tain level of accuracy.  

In the future, we plan on further exploring the following aspects: 
• To narrow down the number of predictions to achieve improved Precision in 

the ROC curve method. 
• To create a way to evaluate the accuracy for imbalanced data, in which the 

number of positives and the number of negatives are significantly different.  
• To extend the models to predict the disappearance of links. 
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