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Abstract

In this work, we study predicting the effect of non-synonymous SNPs on
several cancers. We trained classifiers on both sequential and structural features
extracted from the affected genes and assessed the predictions made by the
trained classifiers using cross validation. Specifically, we investigated how the
prediction performance can be improved by connecting SNPs in the context of
haplotype and interacting sites of proteins encoded by affected genes. We found
that accuracy was consistently enhanced by combining sequential and structural
features, with increase ranging from a few percentage points up to more than 20
percentage points. The results for putting SNPs in the context of interacting
sites were less consistent. Compared to individual SNPs, these that appear
together in haplotype showed stronger correlation with one another and with the
phenotype, and therefore led to significant improvement inprediction
performance, with ROC score increased from 0.81 to 0.95. Although some
similar effect has been expected for connecting SNPs to interacting sites in
proteins, the performance actually got worse. This decrease in prediction
accuracy may be caused by the small data set being used in the study, as many
affected proteins in the study do not have known interacting sites.
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1. Introduction

It has been widely accepted that genetic variations can be associated with diseases.

Missense non-synonymous single nucleotide polymorphism (nsSNP) is considered

as one of the most common type of variation [1]. Missense nsSNP is a variation in

which an amino acid in the protein sequence is changed due to a single point

mutation. Because of the association between genetic variations and diseases,
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there has been active research to identify SNPs and to determine their phenotypic

effects, with some reported success in finding the variants as causes to diagnose,

treat and prevent complex diseases [1].

Understanding how these nsSNPs affect protein function remains a critical task.

Protein-Protein interaction sites have been considered as a hotspot for nsSNP

associated with diseases [2]. In order to unveil genetic variations and functional

effect on a protein, multiple methods have been developed, such as enzyme

activity prediction [3] [4], detection of disease potential of a SNP [5]. And

recently, the computational alanine scanning method is developed to study SNPs

effect on protein-protein interaction, essentially by replacing every single residue

with alanine tosee the effect on protein by estimating free energy change between

the wild and the mutated one [6] [7] [8] [9] [10]. Another recent work has been

done for disease associated nsSNPs on protein-protein interactions by

investigating the change in binding energy using force field and electrostatic

calculation [11].

While most methods have primarily focused on either using sequence based

properties such as conservation score alone like SIFT [12] or using only structure

based properties such as PoPMuSiC [13], recently there are attempts at hybrid

approaches for SNP prediction, such as Polyphen 2, which have showed promising

prediction results as compared to using sole properties of structure or sequence

[14]. It has also been reported that individual SNPs and haplotypes have different

effect on the protein function [15]. In certain cases, it has been found that, with the

presence of two SNPs, the disease-causing SNP becomes recessive and does not

exert effect on protein function [15]. Despite of the pro- gress, accurate prediction

of effect of nsSNP on PPI leading to specific diseases remains a major challenge.

In this paper, we study predicting the effect of non-synonymous SNPs on

several cancers, acute myeloid leukemia, breast cancer, colorectal cancer, and

esophageal cancer, particularly in the context of haplotype and interaction sites.

We formalize the prediction of SNP effects on diseases as a classification problem

and then apply machine learning techniques, including support vector machines

(SVM) and random forest (RF), to learn from training examples and to classify

unseen SNPs. Our comprehensive comparative analysis of different classifiers

using a set of evaluation metrics explores not only the utility of various machine

learning methods for this problem but also whether and how prediction of SNP’s

effect is affected for genetic variations by their presence at interacting sites and

non-interacting sites of the protein, or for individual SNPs versus SNPs as

haplotype associated with a specific disease.

2. Methods

As mentioned above, we formalize the prediction of SNP’s effects on proteins

associated with specific diseases as a classification problem and adopt supervised

learning strategy. Specifically, two powerful classifiers, random forest [22] and

support vector machines [23], are selected for this study. For SVM, 3 different

kernels were adopted and assessed: Linear, Radial Basis Function
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( , ) exp( )GK x x x x c    where the values for C = 3.46 and Polynomial

 ( , ) , 1
dPK x x x x   with degree d = 2 was applied. These values of C and

degree of polynomial d were optimized by using Opunity 1.1.1, a python package.

Features, both sequential and structural, of proteins encoded by genes with

SNPs that are believed to be relevant for the phenotypic properties are collected

and quantified for use as input vector x to the classifier. Specifically, for this

study, we are interested in two types of phenotypic properties: detrimental or

polymorphic, corresponding to the output y of the binary classifier, namely, y = 1

for detrimental and 0 for polymorphic. The classifier is to learn the actual mapping

from input to output: y = F(x), with a hypothesis function H(x, ɵ), where ɵ

collectively represents the parameters of the classifier, for example the degree d of

a polynomial kernel for SVM. The classifier is trained to minimize the empirical

error

 i  1 to nmin { | F H( , ) |} i ix x (1)

for a set of n training examples xi, i = 1 to n, whose phenotypic property yi = F(xi)

is known. Once the classifier is trained, it is used to make prediction /

classification on unseen data, i.e., SNPs whose phenotypic property is not known a

prior.

Feature selection plays a critical role in ensuring effective learning and reliable

prediction. It has been known that mutations that occur at the interface between

interacting proteins are more likely to cause detrimental effect as compared to

present on other sites. Also, previous studies suggest that haplotype may have

influence on whether a particular SNP may or may not manifest its phenotypic

effect. Therefore, in this study, we are particularly interested in predicting the

effect of non-synonymous SNPs on four types of common cancers in the context

of SNPs being on protein interaction sites or within a haplotype.

The pipeline developed for this study consists of steps for data collection,

feature characterization/quantification, classifier training, testing and evaluation,

as shown in Figure 1. Detail for each step is given in the following subsections.

2.1. Data and Feature Characterization

SNPs and phenotypic effect for the four different types of cancers-acute myeloid

leukemia (MIM # 601626), breast cancer (MIM#114480), colorectal cancer

(MIM#114500) and esophageal cancer (MIM#114480) are collected from OMIM,

one of the biggest databases which provides detailed information about

phenotype-genotype relation [16].

To determine whether SNPs occur at protein-protein interaction sites, we used

STRING database to identify the interaction sites for the affected proteins (i.e., the

gene products) [17]. For Acute Myeloid Leukemia, 16 genes are in-
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Disease Selection (OMIM)

Gene and Related Protein Search 
(String and UniProt)

nsSNP Search (Swiss Prot)

Feature Characterization 
(FoldX, Fathmm, Panther)

Training and Evaluation (SVM 
(kernel= Linear, RBF and Polynomial) 
and Random Forest) 

Figure 1. Pipeline constructed for nsSNP prediction starting from gene collection to
classification estimation.

volved, which result in 171 proteins that have certain interactions with each other.

Due to unsolved 3D protein structures the set is reduced to 111 proteins. There are

several databases which provide SNP data, including SwissProt and dbSNP. For

this study we used SNP from SwissProt database [18] because of its large

collection as compared to other databases. The queries to SwissProt identified

1399 nsSNP for these 111 proteins. The same data collection protocol is used for

the other three cancers as well. After filtering with required protein structural as

well as sequence properties, the final data set consists of 4056 SNP’s in total, as

listed in Table 1.

Using these nsSNP, feature vector was constructed using several properties of

both sequence and their respective structure. FoldX was used to calculate

parameters which are important for protein stability [19]. It provides several

important features along with the calculation of total energy for the mutant and the

wild type protein. Panther software calculates Substitution Position-Specific

Evolutionary Conservation (subPSEC) Scores and it is based on hidden Markov

model (HMM). It was used to collect subPSEC score. Fathmm was used to

calculate HMM cancer-specific pathogenicity weights [21]. In total 21 features

were collected and all these features are shown in supplementary data S1.

We also collect haplotype data for genes associated with Acute Myleoid

Leukemia. A haplotype is considered as set of polymorphic, which are inherited

together. It is referred to a combination of alleles or a set of SNP that are found on

the same chromosome [15]. To collect haplotype information two databases were

used in this study. One is HapMapProject and the other is UCSC genome browser

[25] [26]. HapMap Project has a wide range of SNPs, which are collected from

dbSNP. Since our dataset consists of SNPs collected from SwissProt, to collect as

many as haplotype data, we incorporate UCSC genome browser, which provides

gene based common allele variants taken from 1000 genome project [27].

2.2. Cross‐Validation and Evaluation

To assess the prediction performance, we adopt the widely accepted cross-vali-
Table 1. Data distribution for cancer type representing polymorphic and detrimental SNP’s.
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Cancer Polymorphic Detrimental Total

Acute Myeloid Leukemia 1131 268 1399

Breast Cancer 1087 145 1232

Colorectal Cancer 983 131 1114

Esophageal Cancer 961 94 1055

Total 3473 583 4056

dation scheme. Specifically, we used 10-fold cross-validation. The data is

randomly split to 10 equal-sized subsets, and one set is reserved for testing and the

remaining 9 subsets are combined into a training set to train the classifier. This

process is repeated 10 times, with each subset being used as test set once and the

average performance from 10 runs is reported. We used some commonly used

measurements to report the performance, which includes accuracy, precision,

recall, F1 score, and MCC, defined as follows.

TP
Recall

TP FN




TP
Precision

TP FP




TP TN
Accuracy

TP TN FN FP




  

1 2
Precision Recall

F
Precision Recall


 



where TP stands for true positive when a SNP is correctly predicted as

detrimental, TN for true negative when a SNP is correctly predicted as

polymorphism, FP for false positive when a SNP is incorrectly predicted as

detrimental; and FN for false negative when a SNP is incorrectly predicted as

polymorphism.

We also evaluate the performance using receiver operating characteristic (ROC)

curve and Receiver operating characteristic (ROC) score.ROC is a graphical

representation that illustrates the performance of a binary classifier system. The

plot is created by plotting the true positive rate (TPR) against the false positive

rate (FPR) at various threshold settings. The true-positive rate is also known as

sensitivity or recall while false-positive rate is also known (1 − specificity) [28].

3. Results and Discussions

In this study we carried out comprehensive comparative analysis of predicting

SNPs effects on four types of cancers. Specifically, we examined the following

four different scenarios:

1. Comparison using structural properties only, or sequence properties only or

combine effect of both properties using different classifiers;

2. Specific cancer SNP’s prediction or collection of cancers SNP’s prediction;

3. SNP’s prediction for residues at interacting sites or non-interacting sites;

4. SNP’s prediction for SNPs within haplotype or individual SNP’s.
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Note that, due to data collection issues, the last two types of analysis were only

performed for Acute Myeloid Leukemia.

3.1. Comparison Using Structural Properties Only, or Sequence
Properties Only or Combine Effect of Both Properties Using
Different Classifier

For the 4056 SNP’s listed in Table 1, three different datasets were generated. All

three datasets have the same number of instances but different dimensionality of

the feature vector. First dataset had 3 (sequential) features in it, second dataset had

18 (structural) features and the last dataset had all 21features in it. Receiver

operating characteristic (ROC) score was calculated for 10-Fold cross validation

and the mean of those score is represented in Table 2 and Figure 2 respectively.

The results clearly show that using structural and sequence based features

together for SNP Prediction provides better results as compared to individual

protein properties. It also suggests that hybrid features provide better results for

any combination of features used. It also shows that random forest performs better

among other classifiers used in this task.

3.2. Specific Disease SNP’s Prediction or Collection of Diseases
SNP’s Prediction

For this task, data was collected for four different cancers that are breast cancer,
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Figure 2. Classifier performance using ROC Score for sequence based, structure based and
hybrid protein properties.

Table 2. Mean ROC score for SNP prediction using different classifiers for specific protein
based properties.

Classifier
Sequence Based

Features
Structure Based

Features
Hybrid Features

SVM Linear 0.63 0.5 0.74

SVM RBF 0.76 0.7 0.81

SVM Polynomial 0.58 0.6 0.67

Random Forest 0.9 0.82 0.92

colorectal cancer, esophageal cancer and acute myeloid leukemia, see Table 1. It

was observed that very few genes, such as TP53, were common for all types of
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cancers collected for this study and generally in all types of cancers. It can be seen

from Table 1 that the number of detrimental SNPs is low as compared to the

polymorphic SNP’s. The difference is almost three times between two types of

SNPs. Prediction performance for every classifier for each disease was studied.

Table 3 lists the performance of each classifier on both detrimental as well as

polymorphic SNP.

Table 3. Evaluation metric score for each cancer using four different classifiers.

Cancer Type Classifier SNP Type Precision Recall F1-Score Accuracy

Acute
Myeloid

Leukemia

SVM Linear
Polymorphic 0.87 0.91 0.89

Detrimental 0.53 0.41 0.46 0.82

SVM RBF
Polymorphic 0.84 0.94 0.89

Detrimental 0.5 0.26 0.34 0.81

SVM
Polynomial

Polymorphic 0.83 0.96 0.89

Detrimental 0.51 0.17 0.26 0.81

Random
Forest

Polymorphic 0.86 0.92 0.89

Detrimental 0.51 0.35 0.41 0.81

Breast Cancer

SVM Linear
Polymorphic 0.88 0.9 0.89

Detrimental 0.13 0.1 0.11 0.81

SVM RBF
Polymorphic 0.88 0.91 0.9

Detrimental 0.11 0.08 0.09 0.81

SVM
Polynomial

Polymorphic 0.88 0.9 0.89

Detrimental 0.13 0.11 0.12 0.81

Random
Forest

Polymorphic 0.89 0.88 0.88

Detrimental 0.14 0.15 0.15 0.81

Colorectal
Cancer

SVM Linear
Polymorphic 0.88 0.96 0.91

Detrimental 0 0 0 0.84

SVM RBF
Polymorphic 0.88 0.96 0.92

Detrimental 0.07 0.02 0.03 0.85

SVM
Polynomial

Polymorphic 0.88 0.95 0.91

Detrimental 0 0 0 0.84

Random
Forest

Polymorphic 0.89 0.94 0.91

Detrimental 0.26 0.17 0.2 0.84

Esophageal
Cancer

SVM Linear
Polymorphic 0.91 0.99 0.95

Detrimental 0 0 0 0.9

SVM RBF
Polymorphic 0.92 0.99 0.95

Detrimental 0.44 0.07 0.13 0.91

SVM
Polynomial

Polymorphic 0.91 0.99 0.95

Detrimental 0.08 0.01 0.02 0.9

Random
Forest

Polymorphic 0.91 0.98 0.94

Detrimental 0.14 0.03 0.05 0.9

The above table represents that SVM RBF performs better for esophageal and

colorectal cancer and SVM linear performed better for acute myeloid leukemia,
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while all classifiers performed about equally well on breast cancer. It also shows

that for polymorphic SNP prediction precision and recall is much better as

compared to the detrimental SNPs. This may be attributed to the skewed data

distribution. It is also noticeable that in terms of accuracy there is only 1%

difference while using different classifiers.

Further, all the cancer types were lumped together to analyze their performance

(shown in Table 4). It showed that random forest once again performed better.

In order to further evaluate predictive power without using a fixed threshold to

determine positive versus negative, receiver operating characteristic (ROC) score

was calculated for all classifiers using 10-fold cross validation. The mean ROC

score is represented in Figure 3. Results from mean ROC score show that except

for acute myeloid leukemia for each disease random forest provides better score.

And in general, all the ROC Scores are above 0.70.

Initially, it was hypothesized that SNP classification for individual disease will

be better than that of combine diseases but results reflect the opposite. In order to

further investigate couple of tasks were performed. It was noticed that there were

six genes which are common and associated with cancer types selected for this

study. These common genes were completely removed from data set and

classification was performed. Results showed that mean ROC score for all the

cases was less than 0.6 (shown in Figure 3). It provides a clue that if there is no

common gene among diseases than SNP prediction for individual cancer type

Figure 3. Mean ROC score plot for each cancer type using random forest (best classifier for
study).

Table 4. Mean ROC score for balanced and unbalanced collective cancer data

Mean ROC Score Combine Cancers Single Instance Balanced Data

SVM Linear 0.61 0.69 0.88

SVM RBF 0.71 0.73 0.88

SVM Polynomial 0.7 0.72 0.88

Random Forest 0.9 0.76 0.9

will be better but in general almost all the cancers have certain common genes.

Another task was performed to see how training be affected if the combination

of all disease SNP without redundancy i.e. only single instance of SNP occur in
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the final dataset when this gene is shared by more than one cancer type. In this

case ROC score was similar to every individual cancer type SNP classification.

It was noticed and mentioned earlier that detrimental SNP are much less in

number than the polymorphic SNPs. It produces an unbalanced dataset. To see

what impact data would make if the number of detrimental SNP is equal to

polymorphic SNPs. Number of SNPs for polymorphic class was reduced and then

classification task was performed. It does not show any change in ROC score for

best classifier but the F1-score for detrimental SNPs was rapidly increased from

0.45 to 0.86. This change in detrimental SNP evaluation can be seen from Table 5

as well as from the Figure 4. It was noticed that when data is balanced it does not

affect polymorphic SNPs but classification of detrimental SNP is significantly

improved.

Lastly mean ROC score was calculated using 10-fold cross validation for each

classifier and found that random forest provides better results as compared to any

other classifier. Note that there is no change in the mean ROC score for best

classifier but SVM with its different kernels is performing better.

To assess the statistical significance for the difference between that set of

combine cancers and the set of Acute Myeloid Leukemia, a t-test was performed

on the ROC score of both datasets using random forest, and p-value is 0.007458.

This concludes that random forest performs better than other classifiers when

SNP’s prediction is done for any type of cancer.

Figure 4. Detrimental SNP evaluation for Combined data, single instance data (non-re-
dundant) and Balanced data. In case of balanced data performance is rapidly improved but
in all cases random forest is performing better.
Table 5. Evaluation metric score for combined cancer SNP using four different classifiers.

Cancer Type Classifier SNP Type Precision Recall F1-Score Accuracy

Combine
Cancers

SVM Linear
Polymorphic 0.86 0.98 0.91

Detrimental 0.15 0.02 0.04 0.84
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SVM RBF
Polymorphic 0.87 0.97 0.92

Detrimental 0.49 0.16 0.25 0.86

SVM
Polynomial

Polymorphic 0.86 0.98 0.92

Detrimental 0.45 0.08 0.13 0.85

Random
Forest

Polymorphic 0.9 0.96 0.93

Detrimental 0.6 0.35 0.45 0.87

Single
Instance

SVM Linear
Polymorphic 0.77 0.84 0.8

0.69
Detrimental 0.24 0.18 0.21

SVM RBF
Polymorphic 0.8 0.85 0.82

0.72
Detrimental 0.34 0.27 0.3

SVM
Polynomial

Polymorphic 0.79 0.93 0.85
0.75

Detrimental 0.39 0.14 0.21

Random
Forest

Polymorphic 0.82 0.82 0.82
0.73

Detrimental 0.39 0.4 0.4

Balanced
Data

SVM Linear
Polymorphic 0.83 0.99 0.9

Detrimental 0.93 0.79 0.88 0.89

SVM RBF
Polymorphic 0.82 0.95 0.88

Detrimental 0.94 0.79 0.86 0.87

SVM
Polynomial

Polymorphic 0.63 0.89 0.74

Detrimental 0.81 0.47 0.6 0.68

Random
Forest

Polymorphic 0.83 0.92 0.87

Detrimental 0.91 0.81 0.86 0.87

3.3. SNP Prediction for Residues at Interacting Site or
Non‐Interacting Site

nsSNP prediction was done at interacting site as well as non-interacting site. 3DID

database (release: June 2015) was used to observe presence of a particular residue

at interacting site. It was found that among 40 proteins associated with acute

myeloid leukemia having solved 3D structure and nsSNP there are only 18

proteins which had information for their interacting and non-interacting residues

recorded in the database. Two subsets were created for this problem one having

SNPs at interacting residues and the other with SNPs at non-interacting residues.

Data distribution is shown in Table 6.

Classification prediction was performed using same classifiers. Their

performance with reference to precision, recall, F1-Scoreand accuracy is given

below in Table 7. Data distribution is balanced for both subsets and thus it

p r o v i d e s i m -
Table 6. SNPs at Interacting Sites versus Non-interacting Sites.

Acute Myeloid Leukemia Polymorphic Detrimental Total

Interacting Site Residue 58 43 101
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Non-Interacting Site Residue 131 120 251

Table 7. Evaluation metric score for SNPs at interacting and non-interacting sites using
four different classifiers.

Cancer Type Classifier SNP Type Precision Recall F-Measure Accuracy

Interacting Site
Residues

SVM Linear
Polymorphic 0.68 0.71 0.7

Detrimental 0.6 0.58 0.59 0.65

SVM RBF
Polymorphic 0.68 0.66 0.67

Detrimental 0.56 0.58 0.57 0.62

SVM
Polynomial

Polymorphic 0.58 0.84 0.69

Detrimental 0.44 0.16 0.24 0.57

Random
Forest

Polymorphic 0.68 0.74 0.71

Detrimental 0.61 0.53 0.57 0.67

Non-interacting
Site residues

SVM Linear
Polymorphic 0.54 0.56 0.55

Detrimental 0.5 0.49 0.5 0.53

SVM RBF
Polymorphic 0.54 0.58 0.56

Detrimental 0.5 0.47 0.48 0.53

SVM
Polynomial

Polymorphic 0.59 0.89 0.71

Detrimental 0.72 0.32 0.44 0.61

Random
Forest

Polymorphic 0.56 0.56 0.56

Detrimental 0.52 0.53 0.52 0.55

proved results for both datasets when compared to task one datasets in terms of

polymorphic and detrimental prediction.

While the overall performance has been dropped, there is an improved

performance for prediction of detrimental SNP’s. Further, ROC score was

determined for all classifiers for both datasets as shown in Figure 6. The upper

panel is for all the classifier trained and tested for SNPs at interacting sites and the

lower panel is for non-interacting site SNP’s. Mean ROC score for SVM RBF and

SVM polynomial were same i.e. 0.86 for both datasets but in case of

non-interacting site residues SVM polynomial is performing better with 0.66

score. It concludes that when overall performance of two datasets is considered

SVM polynomial has better performance than any other classifier. Lastly to verify

the statistical significance of the performance difference, a t-test was performed on

the 10-fold cross validation of SVM polynomial ROC score and it was found that

p-value is 0.020197, confirming the statistical significance of the difference.

3.4. SNP Prediction Individual SNPs vs SNPs within Haplotype

In this analysis, we examine predicting SNPs effect in the context of haplotype,
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Figure 6. Mean ROC score plot for several classifiers at interacting site (upper plot) and at
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i.e., the prediction of individual SNPs versus SNPs within a known haplotype. The

search against database from HapMap Project and the other is UCSC genome

browser only identified haplotypes from 14 genes from the gene pool associated

with acute myeloid leukemia. Haplotypes were considered in pair only that means

each single SNP in haplotype was compared to every haplotype allelic change

within same gene including self-replication. In this task, two subsets were

generated: one set consists of haplotypes pairs and the other set consists of all

individual SNPs associated with genes involved in acute myeloid leukemia. Data

distribution for these two subsets is given in Table 8.

For training 10-fold cross validation was applied to both datasets using SVM

with three kernels and random forest. The results for this classification problem

are shown in Table 9.

In Table 9 we can see easily that the best accuracy in predicting haplotype pair

is 0.91, a significant increase over 0.82, the best accuracy in predicting individual

SNPs. Also, we notice a clear advantage of Random forest for predicting

haplotype pairs across the board on all four metrics, whereas SVM Polynomial

p e r -
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Table 8. Data distribution for haplotype and individual gene in acute myeloid leukemia.

Acute Myeloid Leukemia Polymorphism Detrimental Total

Haplotype Pair 1109 316 1425

Individual SNP’s 1053 217 1270

Table 9. Evaluation metric score for SNPs in haplotype pair or individual SNP using four
different classifiers.

Cancer Type Classifier SNP Type Precision Recall F1-Score Accuracy

Haplotype
Pair

SVM Linear
Polymorphic 0.85 0.81 0.83

Detrimental 0.43 0.5 0.46 0.74

SVM RBF
Polymorphic 0.88 0.87 0.88

Detrimental 0.57 0.6 0.58 0.81

SVM
Polynomial

Polymorphic 0.88 0.88 0.88

Detrimental 0.59 0.59 0.59 0.82

Random
Forest

Polymorphic 0.96 0.92 0.94

Detrimental 0.75 0.88 0.81 0.91

Individual
SNP

SVM Linear
Polymorphic 0.87 0.91 0.89

0.81
Detrimental 0.44 0.35 0.39

SVM RBF
Polymorphic 0.85 0.92 0.88

Detrimental 0.37 0.24 0.3 0.8

SVM
Polynomial

Polymorphic 0.86 0.93 0.9

Detrimental 0.45 0.27 0.34 0.82

Random
Forest

Polymorphic 0.85 0.87 0.87

Detrimental 0.32 0.3 0.32 0.79

forms slightly better for predicting of individual SNPs. In particularly, it is worth

noting that the F1-score for haplotype pair of detrimental phenotype is 0.81 by

Random Forest classifier, which is a very impressive performance given that the

datasets (Table 8) are quite skewed toward polymorphic phenotype and therefore

present a greater challenge for correctly predicting the detrimental phenotype. The

four metrics used in Table 9 all depend on a fixed threshold for prediction. ROC

curve and score can evaluate a classifier’s predictive power and performance

without relying on a specific prediction threshold. In Figure 7, ROC curves and

scores are shown for haplotype SNP pairs (top panel) and individual SNPs

(bottom panel). The two key observations from Table 9 are essential maintained:

a) pairing SNPs in haplotype help improve phenotype prediction (ROC score =

0.95, achieved by RF), as compared to predicting phenotype for individual SNPs

(ROC score = 0.81, achieved by SVM-RBF); b) while RF generally performs

better, SVM-RBF has a slight edge in predicting individual SNPs.

Again, a t-test was performed on ROC scores from the 10-fold cross validation

using Random Forest for haplotype pair versus individual SNPs. The p-value is
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Figure 7. Mean ROC score plot for haplotype pair (upper panel) and individual SNP
prediction (lower panel).

7.8 × 10−15, confirming the statistical significance of the difference.

Overall, it suggests that Random forest is the better classifier for most of the

tasks performed in this study. An exception was seen for task 3, where SVM

polynomial is providing better results.

4. Conclusions and FutureWork

In this work, we carried out comprehensive comparative analysis for predicting

SNPs effect associated with four types of cancers, in the context of SNPs being

present at protein interacting sites versus non-interacting sites and being paired

within a known haplotype versus being unpaired.

Our results confirm that prediction performance is generally improved from

using both sequential features and structural features than using them separately.

Also, of the two types of classifiers used in the study, random forest outperforms

in most cases.

It is found that generic SNP prediction provides better association of particular

SNP to be detrimental or polymorphic SNPs as compared to disease-specific

SNPs, although this conclusion does not hold if genes associated with one disease

are unique from the other disease. While it is expected that prediction performance

will be increased by associating SNPs to the interacting sites, the results show

instead slight decrease in performance. This decrease in predicting accuracy may

be caused by the small data set, as many affected proteins in the study do not have

known interacting sites.

Compared to individual SNPs, these that appear together in haplotype showed

stronger correlation with one another and with the phenotype, and therefore led to

better prediction performance. Haplotype SNP prediction provided most

promising results. This could be taken to the next level of improving further

accuracy and developing personalized drug. Although currently the haplotype

classification and protein site classification was performed for only Acute Myeloid
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Leukemia, the same protocol can be adopted to perform similar analysis on other

diseases.

Lastly, while this study was performed on cancer diseases only, the same

protocol could be applied for the prediction of non-cancerous diseases in order to

make this protocol generic for all diseases.
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Supplementary Data
S1: Feature name and description about each feature.

No. Feature Name Description

1 Fatthm Score
Fatthm score determining the cancerous nature

of SNP calculated from fatthm tool

2 SubPSEC
Substitution Position-Specific Evolutionary

Conservation (subPSEC) Score

3 Pdeleterious
Probability that a given variant will cause a deleterious

effect on protein function calculated by Panther tool

5 Total Energy Total energy difference of wild and mutant type

6 Backbone HBond The contribution of backbone Hbonds

7 Sidechain Hbond
The contribution of sidechain-sidechain and

sidechain-backbone Hbonds

8 Vander Waals Contribution of the Vander Waals
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9 Electrostatics Electrostatic interactions

10 Solvation Polar Penalization for burying polar groups

11 Solvation Hydrophobic Contribution of hydrophobic groups

12 Vander Waals clashes
Energy penalization due to Vander Waals’ clashes

(interresidue)

13 Entropy side chain Entropy cost of fixing the side chain

14 Entropy main chain Entropy cost of fixing the main chain

15 Torsional clash Vander Waals’ torsional clashes (intraresidue)

16 Backbone clash Backbone-backbone Vander Waals.

17 Helix dipole Electrostatic contribution of the helix dipole

18 Disulfide Contribution of disulfide bonds

19 Electrostatic kon
Electrostatic interaction between molecules

in the pre-complex

20 Partial covalent bonds Interactions with bound metals

21 Energy ionisation Contribution of ionisation energy
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