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Abstract 
An investigation of origins of the quantum mechanical momentum operator 
has shown that it corresponds to the nonrelativistic momentum of classical 
special relativity theory rather than the relativistic one, as has been uncondi-
tionally believed in traditional relativistic quantum mechanics until now. 
Taking this correspondence into account, relativistic momentum and energy 
operators are defined. Schrödinger equations with relativistic kinematics are 
introduced and investigated for a free particle and a particle trapped in the 
deep potential well. 
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1. Introduction 

The known attempts to apply the ideas of special relativity theory (SRT) in quan-
tum mechanics, formulated in the third decade of 20-th century and present in 
numerous textbooks, are based on using the quantum mechanical momentum op-
erator p̂ i= − ∇  in the nonrelativistic Schrödinger equation for the free particle 
with the Hamiltonian corresponding to the classical SRT expression for energy: 

2 4
2 4 2 2 2

3 22 8
p pE m c p c mc
m m c

= + = + − +           (1) 

The first term of this expansion 2mc  is constant in an arbitrary reference 
frame, hence it can be considered as part of the potential, defined with an ac-
curacy up to a constant. The second term in the right hand side looks like the 
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nonrelativistic kinetic energy, hence the third one is the first order correction. 
The modified Schrödinger equation with relativistic kinematics becomes 

ˆ .i E
t
∂
Ψ = Ψ

∂


                       (2) 

The accepted treatment of operator present in left hand side i
t
∂
∂


 is that it is  

associated with the total relativistic energy, i.e. 

ˆ .E i
t
∂

=
∂


                           (3) 

However, this Schrödinger equation with relativistic kinematics does not cor-
respond to the requirement that the operator of relativistic equation has to be 
invariant in respect of Lorentz transformations. Two possible solutions of this 
problem are known. The first one gives the Klein-Gordon equation, following 
directly from square of total energy of free particle expression applying defined 
quantum mechanical operators p̂  and Ê : 

( )

22

2 .mc
ct

 ∂   ∆ − Ψ = Ψ    ∂  

                   (4) 

Right hand side of this equation is invariant in any reference system, so the 
problem of Lorentz invariance is satisfied and the eigenfunctions of equation 
transform according to the irreducible representations of the Lorentz group. 

The other method is introduced by Dirac. He postulated the possibility of 
quantum operator Ê  linearization, i.e. presentation in form 

1 2 3 4
ˆ ˆ ˆ ˆ ,x y zE p p pβ β β β= + + +                   (5) 

where jβ  is fourth order matrices. The conditions for these matrices follow 
from square of relativistic energy expression, present in operator form: 

2 2 2 2 4ˆ ˆ .E p c m c= +                         (6) 

Finally, the Dirac equation, satisfying invariance in respect of Lorentz trans-
formations, is 

( )1 2 3 4ˆ ˆ ˆ .x y zi p p p
t

β β β β∂
Ψ = + + + Ψ

∂


                (7) 

In this paper, we show the statements applied for these equations’ construc-
tion are problematic and an alternative way is necessary. We challenge the exist-
ing ideas by defining quantum mechanical momentum and energy operators as 
corresponding to classical, rather than the relativistic momentum and energy 
correspondingly. The new definition of operators is then further inspected solv-
ing the well-known problems for a free particle and particle trapped in the deep 
potential well. 

2. Main Points of Classical SRT and Quantization 

For successful quantization, first the main equations of SRT have to be present 
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in terms of momenta instead of velocities. The Lorentz factor: 

( )( ) ( )( ) 1 21 2 22
01 / 1 ,v c p mcγ

−−
= − = −               (8) 

hence the relativistic momentum p mvγ= , expressed in terms of nonrelativistic 
one 0p mv= , is 

( )( ) 1 22
0 01 .p p p mc

−
= −                     (9) 

This expression, essential for relativistic dynamics, defines relativistic mo-
mentum, approaching infinity at 0p mc→  and undefined for larger values of 

0 ,p  hence satisfying the condition 0 ,p mc<  following from the usual v c< . 
The quantum operator i− ∇  is without any dependence on speed of light, 

its eigenvalues are not restricted, hence it demonstrates the correspondence to 

0p  rather than to the relativistic momentum .p  Moreover, the origin of this 
operator is nonrelativistic, because it appears in quantum mechanics at least in 
three different ways, following directly from classical mechanics. 

The first one, suggested by Dirac [1], applies Poisson brackets of Lagrangian 
dynamics for canonical coordinate and momentum, proportional to the imagi-
nary constant. The postulation that corresponding operators of quantum dy-
namics have to satisfy the analogous condition 

ˆ,i j ijx p i δ  =                              (10) 

gives 

ˆ .j
j

p i
x
∂

= −
∂


                           (11) 

The second way of introducing this operator follows from de Broglie wave [2] 
definition 

( ) ( )
2

1 2, 2π exp .
2p

i px t t px
m

ψ −   
= − −     





                (12) 

The equation, whose solutions are these waves, is the Schrödinger equation 
for free nonrelativistic particle. This can be demonstrated by taking the time de-
rivative 

( ) ( )
2

, ,
2p p
pi x t x t

t m
ψ ψ∂

=
∂
                       (13) 

and two coordinate derivatives 

( ) ( )
2 2 2

2 , , .
2 2p p

px t x t
m mx

ψ ψ∂
− =

∂


                    (14) 

The right hand sides of both equations coincide, hence the de Broglie wave 
and arbitrary superpositions of these waves are solutions of the Schrödinger eq-
uation. Obviously, the conclusion follows that the operator i x− ∂ ∂  corre- 
sponds to the nonrelativistic momentum and i t∂ ∂  is the quantum operator 
of nonrelativistic kinetic energy 2 2p m . 

The third method of momentum operator definition follows from translations 
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in the space generator 

( ) dˆ exp
d

P a a
x

 =  
 

                        (15) 

definition and momentum conservation law [1]. Action of this operator gives 
the translation of argument: 

( ) ( ) ( )ˆ .P a x x aψ ψ= +                      (16) 

Intrinsic Hamiltonian of a quantum system is invariant in respect of transla-
tions. As a result it gives the center of mass of the system momentum conserva-
tion, hence the momentum operator is proportional to the derivative of the cor-
responding variable. Again, this is the classical momentum. 

Therefore, the consideration of origins of the quantum mechanical momen- 
tum operator leads to the conclusion that it cannot be associated with relativistic 
momentum p mvγ= , having characteristic dependence on speed of light and 
present in the classical relativity expression 2 2 2 2 4E c p m c= + . The relativistic 
momentum operator can be expressed in terms of the nonrelativistic one as 

( )( ) 1 22
0 0

2
0

0
0

ˆ ˆ ˆ1

2 ˆ
ˆ ,

2

k

k

p p p mc

k p
p

k mc

−

∞

=

= −

  =   
  

∑
                    (17) 

where 
( )

!
! !

n n
k k n k
 

=  − 
 is the binomial coefficient. 

Now the relativistic momentum operator obtains the necessary dependence 
on .c  Both operators have the same system of eigenfunctions but different cor-
responding sets of eigenvalues, expressible in the same way, as operators. 

The relativistic energy of particle, moving in a laboratory reference frame with 
constant velocity ,v  equals 

1 2
2 2 0

2

2
1 .

T
E mc mc

mc
γ

−
 = = − 
 

                 (18) 

Here again one has the characteristic for SRT energy dependence on velocity. 
At 2

0 2T mv=  approaching 2 2mc  , the energy takes infinite value, hence it is 
defined only for smaller, allowed by SRT, values of nonrelativistic kinetic energy. 
The corresponding quantum mechanical operator is 

2 0
2

0

ˆ2ˆ ,
2

k

k

k T
E mc

k mc

∞

=

  
=      

∑                      (19) 

where 
2

0̂ 2
T

m
= − ∆



                           (20) 

is the nonrelativistic kinetic energy operator. The above consideration and con-
clusions concerning the relativistic momentum are valid for the eigenvalues and 
eigenfunctions of the relativistic energy operator. 

The relativistic kinetic energy operator T̂  can be expressed in terms of the 
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nonrelativistic one as 

2 2 0
2

1

ˆ2ˆ ˆ .
2

k

k

k T
T E mc mc

k mc

∞

=

  
= − =      

∑                 (21) 

In terms of momentum operators, the total relativistic energy operator of a 
free particle is 

2
2 0

0

2 ˆˆ .
2

k

k

k p
E mc

k mc

∞

=

  =   
  

∑                      (22) 

Obviously, this expression contains only even degrees of the momentum op-
erator and hence cannot be linearized in terms of 0p̂ . 

Moreover, in the most popular in traditional applications equation 
2 2 2 2 4ˆ ˆE p c m c= +                          (23) 

relativistic energy and momentum operators are present, not the nonrelativistic 
ones, applied deriving mentioned above Klein-Gordon and Dirac equations. 
Taking proper operators, this equation appears as identity, because 

( ) ( ) ( )2 222 2 2 2
0ˆ ˆ ˆ .mc p c mcγ γ− ≡                     (24) 

Finally, consider the expansion of the relativistic energy operator in terms of 
the relativistic momentum operator: 

( )
2 41 22 2 2 4 2

3 2

ˆ ˆˆ ˆ
2 8
p pE p c m c mc
m m c

= + = + − +             (25) 

If the second term in the right hand side is considered to be the nonrelativistic 
kinetic energy (as believed in mentioned approaches), we arrive at a strange, not 
consistent with SRT conclusion that the correction of this is negative, i.e. the re-
lativistic kinetic energy of the particle is smaller than the nonrelativistic one. 
From the definition of the relativistic kinetic energy operator (21) it follows that 
the expectation value of relativistic kinetic energy, as necessary, is always larger 
than the nonrelativistic. 

3. Relativistic Kinematics 

Therefore, the present arguments have shown that the problem of relativistic 
dynamics application in quantum mechanics needs deeper investigation. The 
SRT considers free particles, therefore this problem works best for the start of 
SRT application in quantum mechanics. 

From the Schrödinger equation for a free particle and present arguments it fol-
lows that two quantum mechanical operators—the first, dependent on time variable 

,i t∂ ∂  and the second, dependent on radius vector 2 2 ,m− ∆  are associated 
with the nonrelativistic kinetic energy of particle under consideration. Let us mark 
them as ( )0̂T t  and ( )0̂T r  correspondingly. Taking this into account opens two 
different possibilities for the same relativistic kinetic energy operator presentation: 

( ) ( )
1 2

02
2

ˆ2ˆ 1 1
T t

T t mc
mc

−  
 = − −     

                   (26) 
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and 

( ) ( )
1 2

02
2

ˆ2ˆ 1 1 .
T

T mc
mc

−  
 = − −     

r
r                   (27) 

Due to equivalence of introduced operators one can define the eigenvalues 
equation as 

( ) ( ) ( ) ( )ˆ ˆ .T t t T tΨ = Ψr, r r,                      (28) 

Let us call this the relativistic Schrödinger equation. The essential part of equ-
ation, independent of speed of light, is the Schrödinger equation for free particle: 

( ) ( ) ( ) ( )0 0 0 0
ˆ ˆ .T t t T tΨ = Ψr, r r,                     (29) 

Taking into account the expansions for these operators like given in Equation 
(21), one can present Equation (28) as 

( ) ( ) ( )0 02
1

2 1 ˆ ˆ 0.
2

k
k k

k

k
T t T t

k mc

∞

=

    − Ψ =      
∑ r r,             (30) 

After some transformation of commuting, due to dependence on different va-
riables, the kinetic energy operators the equation takes the simplified form 

( ) ( ) ( ) ( ) ( )
1

1
0 0 0 02

1 1

2 1 ˆ ˆ ˆ ˆ 0,
2

k k
j k j

k j

k
T t T T t T t

k mc

∞ −
− −

= =

     − Ψ =         
∑ ∑ r r r,   (31) 

leading to the conclusion that the eigenfunctions of the relativistic equation are the 
same as the corresponding eigenfunctions of the nonrelativistic equation, i.e.: 

( ) ( )0 .t tΨ = Ψr, r,                          (32) 

Due to separability of operators of both nonrelativistic and relativistic equa- 
tions, the eigenfunctions are presentable as products of functions, dependent on 
time and spatial variables: 

( ) ( ) ( ).t tΨ = Ψ Ψ r, r                         (33) 

As usual these functions are defined as eigenfunctions of corresponding sta-
tionary equations 

( ) ( ) ( )T̂ Ψ = Ψ r r r                          (34) 

and 

( ) ( ) ( )ˆ .T t t tΨ = Ψ                            (35) 

The eigenfunctions of these operators are identical to the eigenfunctions of 
corresponding stationary nonrelativistic equations, but their eigenvalues are dif-
ferent. If we define the eigenvalue of the nonrelativistic equation as ,E  the ei-
genvalue of the relativistic equation, corresponding to the same eigenfunction, is 

1 2

2 2

21 1.E
mc mc

−
 = − − 
 

                   (36) 

Due to the upper bound for nonrelativistic kinetic energy 2 2,E mc<  this 
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equation implies that the set of eigenvalues of the relativistic stationary equation 
is restricted in comparison to the nonrelativistic set. This fact corresponds very 
well with the spirit of SRT. 

To investigate the discrete spectrum, consider the problem of a free particle, 
trapped in the spherical well with impenetrable walls. The nonrelativistic statio-
nary Schrödinger equation is 

( ) ( ) ( ) ( )0
0̂ ,nl nl nlT r r E rµ µθϕ ψ θϕ ψ θϕ=                    (37) 

where 

( ) ( ) ( )2 22

0 2 2 2

ˆ1ˆ .
2

c L
T r r

rmc r r
θϕ

θϕ
 ∂

= − − 
∂  



                 (38) 

Here and further, for the sake of simplicity, the conversion factor 
( )197.3269788 12  MeVfm,c =  as defined in [3], and rest energy of particle ex-

pressed in electronvolts, are used. For wave functions, written in spherical har-
monics 

( ) ( ) ( ) ,nl nl lr u r Yµ µψ θϕ θϕ=                     (39) 

the boundary condition is: 

( ) 0  if  ,nlu r r R= =                          (40) 

where R  is the radius of the spherical well. The solutions of this equation are 
the spherical Bessel functions. Boundary conditions define the spectrum of the 
nonrelativistic Schrödinger equation. 

The Schrödinger equation with the relativistic kinetic energy operator has the 
same eigenfunctions but different corresponding eigenenergies: 

1 2

2 2

2
1 1.nl nlE

mc mc

−
 = − − 
 

                        (41) 

Obviously, in the nonrelativistic approximation ( )2 2 ,nlE mc  as necessary, 
.nl nlE→  

For angular momentum 0l =  the solutions can be presented in analytical 
form: 

2
2

0 2

1 π , 1, 2,3, ,
22n

cE n n
Rmc

 = = 
 




                (42) 

and 
1 22

20
2 2

π1 1.
2

n c n
mc Rmc

−
  = − −     




                  (43) 

This expression demonstrates that in a spherical well with impenetrable walls, 
the only allowed states are those corresponding to the quantum number 

22 .
π
Rmcn

c
<



                           (44) 

This does not exclude a case where there are no allowed states at all in such a 
well. It happens when 2 π 2.Rmc c<   Taking the given above value of conver-
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sion factor, the right hand side of condition equals approximately 310 MeVfm 
Radius of well multiplied by mass of particle has to be larger than this value for 
at least one bound state to exist. On the other hand, in a corresponding nonrela-
tivistic well there is an infinite number of bound states at any radius of well and 
mass of particle. 

4. Conclusions 

The operator of the introduced Schrödinger equation with relativistic kinematics 
is not invariant in respect of Lorentz transformations and from our considera- 
tion, it follows that construction of such operators, if possible, is immensely dif-
ficult. However, the Lorentz invariant theory is necessary for the description of 
ultrarelativistic processes and problems, like high energy phenomena obtain- 
able in universe or the reactions in colliders. At high relativistic velocities, and 
hence high kinetic energies, the most interesting interactions among particles, 
responsible for surrounding us world structure and development, cannot play a 
remarkable role. 

Therefore, the most actual applications of low energies quantum mechanics 
are obtained by solving the stationary Schrödinger equation, giving qualified de-
scription of bound states and excitation spectra of different quantum systems in 
huge energy intervals. Now, when experimental equipment is able to analyze 
different structures and phenomena with very high precision, the role played by 
relativistic effects stays remarkable and has to be investigated in a proper way. 
The first step in this direction is investigation of the stationary Schrödinger equ-
ation with the relativistic kinetic energy operator instead of the nonrelativistic 
one, present in the original equation. The obtained slight enough modifications 
of corresponding results of the original Schrödinger equation in low energies 
limit demonstrate high quality of nonrelativistic approach. In the larger energies 
region, the introduced innovation produces significant spectrum modifications 
and opens new possibilities for old problems of relativistic quantum mechanics 
solution. 

The consideration of relativistic momentum operator, present in the known 
SRT equation 2 2 4 2 2 ,E m c p c= +  as classical momentum leads to the conclu-
sion that the first order correction of the nonrelativistic kinetic energy has the 
negative sign (Equation (1)), which means the expectation value of relativistic 
kinetic energy is smaller than the nonrelativistic one. This result, until now ex-
isting in applications for relativistic effects evaluation in atomic [3] and nuclear 
theory [4], creates “softer” than necessary kinetic energy and allows strange de-
cisions concerning relativistic corrections of binding energies and excitations 
spectra of these quantum systems. 

Our definition of the relativistic momentum operator classifies Klein-Gordon 
and Dirac equations as not completely relativistic. They are both invariant in 
respect of Lorentz transformations, but apply the definition of the nonrelativistic 
momentum operator instead of the relativistic one. This approach eliminates 
from equations basic for SRT dependence of relativistic energy and relativistic 
momentum on velocity, defined by Lorentz factor. Moreover, the Dirac equation 
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does not contain any input information about the electron, hence predicts the 
spin, equal 2,  for all particles without any exemptions. The equation for free 
particle (7) in the nonrelativistic limit has to be consistent with corresponding 
Schrödinger equation, however, this cannot be established. The operator in front 
of the eigenfunction of right-hand side of this equation, seen as the relativistic 
free particle Hamiltonian, predicts the velocity of particle, equal to the speed of 
light c  [2]. Finally, the Dirac equation is undefined for two- and more-particles 
system. 

Therefore, new ideas of SRT application in quantum mechanics are necessary. 
As will be shown in following publications, our approach is applicable for the 
many-particle system and in the low kinetic energies approximation, reproduces 
the results of the corresponding nonrelativistic Schrödinger equation. 
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