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Abstract 
Road crash prediction models are very useful tools in highway safety, given 
their potential for determining both the crash frequency occurrence and the 
degree severity of crashes. Crash frequency refers to the prediction of the 
number of crashes that would occur on a specific road segment or intersection 
in a time period, while crash severity models generally explore the relation-
ship between crash severity injury and the contributing factors such as driver 
behavior, vehicle characteristics, roadway geometry, and road-environment 
conditions. Effective interventions to reduce crash toll include design of safer 
infrastructure and incorporation of road safety features into land-use and 
transportation planning; improvement of vehicle safety features; improve-
ment of post-crash care for victims of road crashes; and improvement of driv-
er behavior, such as setting and enforcing laws relating to key risk factors, and 
raising public awareness. Despite the great efforts that transportation agencies 
put into preventive measures, the annual number of traffic crashes has not yet 
significantly decreased. For instance, 35,092 traffic fatalities were recorded in 
the US in 2015, an increase of 7.2% as compared to the previous year. With 
such a trend, this paper presents an overview of road crash prediction models 
used by transportation agencies and researchers to gain a better understand-
ing of the techniques used in predicting road accidents and the risk factors 
that contribute to crash occurrence. 
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1. Introduction 

Road traffic accidents are the world’s leading cause of death for individuals be-
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tween the ages of one and twenty-nine [1]. Throughout the world, cars, buses, 
trucks, motorcycles, pedestrians, animals, taxis and other categories of travelers, 
share the roadways, contributing to economic and social development in many 
countries. Yet each year, many vehicles are involved in crashes that are responsi-
ble for millions of deaths and injuries. Globally, every year, about 1.25 million 
people are killed in motor vehicle crashes and approximately 50 million more 
are injured. Following current trends, about two million people could be ex-
pected to be killed in motor vehicle crashes each year by 2030 [1]. Currently, 
road crashes are ranked as the ninth most serious cause of death in the world, 
and without new initiatives to improve road safety, fatal crashes will likely rise to 
the third place by the year 2020 [1]. In developed countries, road traffic death 
rates have decreased since the 1960s because of successful interventions such as 
seat belt safety laws, enforcement of speed limits, warnings about the dangers of 
mixing alcohol consumption with driving, and safer design and use of roads and 
vehicles. For example, road traffic fatalities have declined by about 25.0 percent 
in the United States from 2005 to 2014 and the number of people injured has 
decreased 13.0 percent from 2005 to 2014 [2]. In Canada, the number of road 
traffic fatalities has declined by about 62.0 percent from 1990 to 2014, and the 
number of injuries has declined by about 68.0 percent during the same period 
[3]. However, traffic fatalities have increased in developing countries from 1990 
to 2014 (i.e. 44.0 percent in Malaysia and about 243.0 percent in China) [1]. De-
veloping countries bear a large share of the burden, accounting for 85.0 percent 
of annual deaths and 90.0 percent of the disability-adjusted life years. More than 
one-half of all road traffic deaths globally involve people ages 15 to 44, during 
their most productive earning years. Moreover, the disability burden for this age 
group accounts for about 60.0 percent of all disability-adjusted life years. The 
costs and consequences of these losses are significant. Three-quarters of all poor 
families who lost a member in a traffic crash reported a decrease in their stan-
dard of living, and about 61.0 percent reported having to borrow money to cover 
expenses following their loss [4]. The World Bank estimates that road traffic in-
juries cost 2.0 percent to 3.0 percent of the Gross National Product of developing 
countries, or twice the total amount of development aid received worldwide by 
developing countries [5]. Although transportation agencies often try to identify 
the most hazardous road sites, and put great efforts into preventive measures, 
such as illumination and policy enforcement, the annual number of traffic 
crashes has not yet significantly decreased. For instance, 35,092 traffic fatalities 
were recorded in the US during 2015, an increase of 7.2% as compared to the 
previous year [6]. The fatality rate per 100 million vehicle miles traveled (VMT) 
increased 3.7% between 2014-2015. Thirty-five States had more motor vehicle 
fatalities in 2015 than in 2014. Every month except November saw increases in 
fatalities from 2014 to 2015, and the highest increases occurred in July and Sep-
tember [6]. Given this trend, it is imperative to gain a better understanding of 
the risk factors that may be associated with traffic crashes. This paper aims at 
presenting an overview of road crash prediction models used by transportation 
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agencies and researchers to help understanding the techniques used in predict-
ing road accidents and the risk factors that contribute to crash occurrence. 

2. The Importance of Traffic Accidents Prediction Models 

Traffic accidents prediction models are very useful tools in highway safety, given 
their potential for determining both the frequency of accident occurrence and 
the contributing factors that could then be addressed by transportation policies. 
Vehicular crash data can be used to model both the frequency of crash occur-
rence and the degree of crash severity. Crash frequency refers to the prediction 
of the number of crashes that would occur on a specific road segment or inter-
section in a time period [7]. Crash severity methods generally explore the rela-
tionship between crash severity injury categories and contributing factors such 
as driver behavior, vehicle characteristics, roadway geometry, and road-environ- 
ment conditions. Traffic accident related-fatalities and injuries can be prevented 
or at least minimized by a joint involvement from multiple sectors (i.e. transpor- 
tation agencies, police, health departments, education institutions) that oversee 
road safety, vehicles, and the drivers themselves. Effective interventions include 
design of safer infrastructure and incorporation of road safety features into land- 
use and transport planning; improvement of vehicle safety features; improve-
ment of post-crash care for victims of road crashes, and improvement of driver 
behavior, such as setting and enforcing laws relating to key risk factors, and 
raising public awareness [8]. Transportation agencies and research institutions 
often seek to identify the most dangerous road sites, and this will require mod-
eling road crash data to determine both crash frequency and crash severity de-
gree. In addition, traffic accidents prediction models can also assist with the de-
velopment of generalized theories concerning road safety. A range of basic laws 
have been put forth to help explain the relationship between the occurrence of 
road crashes and potential risk factors, such as: the universal law of learning, 
which implies that the crash rate tends to decline as the number of kilometers 
travelled increases; the law of rare events, which states that rare events, such as 
environmental hazards, would have more effect on crash rates than regular 
events; and the law of complexity, which implies that the more complex the traf-
fic situation road users encounter, the higher the probability of crash occurrence 
[9]. 

3. Factors Affecting Road Traffic Accidents 

A traffic accident may have many contributing factors, such as those related to 
driver behavior, road geometry, traffic volumes, vehicle, and environment. The 
influence of such variables on crash occurrence could significantly vary on a 
case-by-case basis, but in general, both behavioral factors related to the driver’s 
errors, and non-behavioral factors related to road geometry, traffic flow condi-
tions, vehicle, and environment are thought to significantly affect traffic crashes 
[10]. Research has revealed that there are generally six major groups of risk fac-
tors affecting traffic crash occurrence [11] [12] [13] [14] [15]: 
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1) Driver behavior: alcohol and drug use, reckless operation of vehicle, failure 
to properly use occupant protection devices, the use of cell phones or texting, 
and fatigue. 

2) Vehicle factors: vehicle type, and the engineering and the safety design 
standards for vehicle performance. For example, the design of windshield glass 
and the location and durability of gas tanks can increase safety. Passenger pro-
tection systems in vehicles (i.e. air bags, safety belts), if used, can eliminate inju-
ries or reduce their severity. 

3) Roadway characteristics: road geometries and road side conditions, such as 
well-designed curves and grades, wide lanes, adequate sight distance, clearly vis-
ible striping, flared guardrails, good quality shoulders, roadsides free of obsta- 
cles, well-located crash attenuation devices, and well-planned use of traffic sig-
nals.  

4) Traffic volumes: average annual daily traffic (AADT) or the vehicle miles 
travelled (VMT). AADT is the average number of vehicles passing a point along 
a particular road section each day. Thus, AADT represents the vehicle flow over 
a road section on an average day of the year. VMT refers to the distance travelled 
by vehicles on roads. It is often used as an indicator of traffic demand and is 
commonly applied to evaluate mobility patterns and travel trends.  

5) Environmental factors: weather conditions, and light conditions. 
6) Time factors: the season of the year, the month of the year, weekdays, and 

the hour of crash occurrence. 

4. The Costs of Road Traffic Accidents 

The highest cost of traffic crashes is in the loss of human lives; however, society 
also bears the consequences of many costs associated with motor vehicle crashes. 
Highway crashes currently cost the USA about $1078.0 billion a year, approx-
imately 5.0 percent higher than 2000. Total costs include both economic costs 
and societal harm [16]. In the year 2010, 3.9 million people were injured and 
32,999 killed in 13.6 million motor vehicle crashes in the US [2]. The economic 
costs of these crashes totaled $242.0 billion including lost productivity, medical 
costs, legal and court costs, emergency service costs, insurance administration 
costs, congestion costs, property damage, and workplace losses. The $242.0 bil-
lion cost of motor vehicle crashes represents the equivalent of nearly $784.0 for 
each person living in the United States, and 1.6 percent of the $14.96 trillion U.S. 
Gross Domestic Product for 2010 [16]. When quality of life valuation is consi-
dered, the total value of societal harm from motor vehicle crashes in 2010 was 
$836.0 billion, roughly three and a half times the value measured by economic 
impacts alone. Lost market and household productivity accounted for $77.0 bil-
lion of the total $242.0 billion economic costs, while property damage accounted 
for $76.0 billion. Medical expenses totaled $23.0 billion. Congestion caused by 
crashes, including travel delay, excess fuel consumption, greenhouse gases and 
criteria pollutants accounted for $28.0 billion. Each fatality resulted in an aver-
age discounted lifetime cost of $1.4 million. Each critically injured survivor cost 
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an average of $1.0 million [16].  

5. Literature Review 

Early crash analysis models were generally based on simple multiple linear re-
gression methods assuming normally distributed errors. However, researchers 
soon discovered that crash occurrence could be better fitted with a Poisson dis-
tribution. Hence, a Poisson regression model based upon a generalized linear 
framework was soon adopted over conventional multiple linear regression tech-
niques. Several such Poisson regression approaches for exploring the relation-
ship between the risk factors and crash frequency have been proposed [15] [16] 
[17] [18] [19] [20]. However, it has been found that Poisson regression ap-
proaches have one important constraint that the mean must be equal to the va-
riance which if violated, the standard errors estimated by the maximum likelih-
ood method, will be biased, and the test statistics derived from the model will be 
incorrect. Recent studies have shown that crash data are usually over-dispersed, 
when the variance exceeds the mean, therefore, incorrect estimation of the like-
lihood of crash occurrence could result in applications of the Poisson regression 
model [7]. In efforts to overcome the problem of over-dispersion, researchers 
began to employ the Negative Binomial (NB) distribution (also called the Pois-
son-Gamma) instead of the Poisson distribution, which relaxes the mean equals to 
variance constraint, and hence can accommodate over-dispersion in crash data 
counts [7]. NB models have been widely used in crash frequency modeling [14] 
[15] [19] [21] [22] [23]. However, NB models have some limitations such as the 
inability to handle under-dispersion of crash counts when the mean of the crash 
counts is higher than the variance. Although rare, this phenomenon can arise 
when the sample size is very small, leading to erroneous parameter estimates 
[24] [25]. To address the limitations of NB models, Poisson-lognormal models 
have been proposed, in which the error term is Poisson-lognormal rather than 
gamma-distributed to better handle the under-dispersed crash counts [21] [26] 
[27]. Another widely used type of crash prediction model is the zero-inflated 
Poisson and zero-inflated negative binomial models, which have been intro-
duced mainly to deal with the over-dispersion problem caused by excessive ze-
roes (i.e. locations where no crashes can be observed) in traffic data counts. The 
zero-inflated models have shown great flexibility, although their applicability in 
crash prediction has been criticized because of the long term mean equals zero in 
the safe state that could produce some biased estimates [7] [22]. Generalized ad-
ditive modeling approaches have also been proposed which provide smoothing 
functions for the explanatory variables. However, these models typically include 
more parameters than the traditional count models, and therefore their applica-
bility to the crash prediction has been very limited [28] [29]. Random- parame-
ters models have been applied to take the effect of the unobserved heterogeneity 
from one roadway site to another, however, their application in practice has 
been very limited [30] [31] [32]. The finding that road crashes are poorly ex-
plained by linear functions of independent variables, has encouraged the explo-

194 



A. Abdulhafedh 
 

ration of non-linear approximators such as fuzzy logic and neural networks. For 
example, a fuzzy logic approach was used for prediction of urban highway crash 
occurrence and it was found that the use of fuzzy sets in crash prediction is in-
deed a viable approach [33]. Neural networks have been applied to highway 
safety applications as predictive tools, such as in driver behavior analysis, pave-
ment maintenance, vehicle detections, traffic signal control, and vehicle emis-
sions, however, their application to crash analysis has been limited [28] [34] 
[35]. For instance, an artificial neural network was utilized to analyze the free-
way crash frequency in Taiwan, and the results indicated that an artificial neural 
network can provide a consistent alternative method for analyzing crash fre-
quency [36]. Also, a group of artificial neural networks was applied to model the 
non-linear relationships between the injury severity levels and crash-related fac-
tors. The findings indicated that artificial neural network models can predict 
crashes more effectively than the traditional statistical methods [37]. In crash 
severity models, a wide variety of statistical approaches such as the binary and 
the multinomial logit models, nested logit models, mixed logit models and or-
dered probit models have been investigated. For example, the ordered probit 
model was applied to predict crash severity on roadway sections, signalized in-
tersections and toll plazas in Florida [38]. A mixed logit model was applied that 
used the injury outcome of the crash using limited crash data to investigate the 
proportion of crashes of each severity level on a specific roadway segment over a 
specified time period. Then, the number of crashes by severity level was deter-
mined without the need for detailed crash-specific data [39]. Also, a multinomial 
logistic regression was applied to model the severity injury of different vehicle 
collision patterns in urban highways in Arkansas, and the researchers recom-
mended the use of the MNL over other models [40]. 

6. A Review on the Statistical Approaches of Road Crash 
Prediction Models 

There are different statistical approaches for modeling traffic crashes. The fol-
lowing approaches present some of the mostly used methods. 

6.1. Multiple Linear Regression 

Early models of traffic accident models were based on the simple multiple linear 
regression approach assuming normally distributed errors. The general form of 
the linear crash prediction model can be expressed as follows:  

( ) ( )with , ,Y Dist f Xθ θ θ β ε∼ =                    (1)  

where, 
Y: the dependent variable (i.e. crash frequency), 
θ: the crash dataset, 
Dist(θ): the model distribution, 
X: a vector representing different independent variables (i.e. risk factors), 
β: a vector of regression coefficients,  
f(.): link function that relates X and Y together, 
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ε: the disturbance or error terms of the model. 

6.2. Poisson Regression 

Although multiple linear regression models have been widely applied, it has 
been found that crash occurrence can often be better fitted with a Poisson dis-
tribution. One frequent pitfall is to model crash data as continuous data by ap-
plying an ordinary least square regression [41]. This approach is inappropriate 
because regression models can produce predicted values that are non-integers 
and can also predict values that are negative, both of which are inconsistent with 
continuous data modeling. In addition, many distributions of crash data are po-
sitively skewed with many observations in the data set having a value of 0.0. The 
high number of zeros in the data set prevents the transformation of a skewed 
distribution into a normal one, which is a requirement of normal distribution. 
An alternative is to use a Poisson distribution or one of its variants. Poisson dis-
tributions have a number of advantages over an ordinary normal distribution, 
including a skew, discrete distribution, and the restriction of predicted values to 
non-negative numbers [41]. Hence, generalized linear modeling variates of the 
Poisson regression model have been proposed to explore the relationship be-
tween the risk factors and traffic accident modeling [15] [17] [18] [19]. Poisson 
regression has been applied to a wide range of transportation count data, in-
cluding crash frequency. A Poisson regression model is similar to an ordinary 
linear regression, with two exceptions. First, it assumes that the errors follow a 
Poisson (not normal) distribution. Second, rather than modeling the response 
variable Y as a linear function of the regression coefficients, it models the natural 
log of the response variable, ln(Y), as a linear function of the coefficients [7]. The 
Poisson model can be expressed as follows: 

( ) ( )
i !

iEX
n

P n
P iλ λ−

=                      (2) 

where, 
P (ni): the probability of n crashes occurring on a highway segment i,  
ni: the number of observations per time period (such as a year), 
λi: the expected crash frequency on road segment i per time period (i.e. the 

mean of distribution) which can be estimated as follows: 
( )i iEXP Xλ β=                         (3) 

where 
Xi: a vector of the independent variables (i.e. risk factors), 
β: a vector of the estimates (coefficients) of the independent variables Xi. 
This model is estimable by standard maximum likelihood methods, with the 

log likelihood (LL) function given as: 

( ) ( ) ( ) ( )
1

!
n

iEXP X n Xi Ln nLL β ββ  − + − = ∑          (4) 

One assumption of Poisson Models is that the mean and the variance are 
equal, an assumption that is sometimes violated [7]. This can be dealt with by 
using a dispersion parameter if the difference is small, or by using a negative bi-
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nomial regression model if the difference is large [42]. 

6.3. Negative Binomial Regression Model (NB) 

In order to overcoming the problem of over-dispersion, the Negative Binomial 
(NB) distribution (also called the Poisson-Gamma) has been investigated as an 
alternative to the Poisson distribution given that it relaxes the condition of mean 
equals to variance, and hence can take into account over-dispersion in the crash 
data counts [7]. As a result, NB models have been widely applied in crash fre-
quency modeling [14] [15] [19] [21] [22] [23].  

The NB uses a Gamma probability distribution and can relax the assumption 
of the mean equals the variance and, hence, the NB can accommodate over-dis- 
persion that may exist in the crash data counts [43]. A primary source of over- 
dispersion is the clustering of data, and the possible omission of relevant inde-
pendent variables influencing the Poisson rate across observations [44]. In order 
to obtain the NB model, the Poisson regression can be rewritten by adding an 
error term to its expected number of crashes, and becomes [7]: 

( )ii EXP Xiλ β ε= +                       (5) 

where EXP (εi) is a gamma-distributed error with mean equals one and variance 
equals α. The addition of this term allows the variance VAR (ni) to differ from 
the mean E (ni) as shown in Eq. 6: 

( ) ( ) ( )( )1i i iVAR n E n E nα= +                   (6) 

This error term is called the over-dispersion parameter, and both α and β can 
be estimated from the maximum likelihood function. When α is zero, the model 
becomes Poisson regression, and if α is found to be significantly different from 
zero, then the NB regression can be used instead of the Poisson regression model 
to handle the over-dispersion in crash data. However, the NB model also has 
some limitations such as its inability to handle the case of under-dis- persion of 
the data count, when the mean of the crash counts is higher than the variance 
[25] [44].  

6.4. Poisson-Lognormal Regression Model 

To address the limitations of the NB models, the Poisson-lognormal model was 
introduced, in which the error term is Poisson-lognormal rather than gamma- 
distributed so as to better handle under-dispersed data counts [21] [26] [27]. 
The Poisson-lognormal model is similar to the negative binomial model, how-
ever, the EXP (εi) term used in the model is lognormal-rather than gam-
ma-distributed. The Poisson-lognormal model provides more flexibility than the 
negative binomial model, but it does have some limitations, such as, its complex 
estimation of parameters due to the fact that the Poisson-lognormal distribution 
does not have a closed form [26]. 

6.5. Zero Inflated Poisson and Negative Binomial Regression 
Models 

Another widely used crash frequency modeling approach is the zero-inflated 
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Poisson and zero-inflated negative binomial models, which have been intro-
duced primarily to deal with the over-dispersion problem caused by excessive 
zeroes (i.e. locations where no crashes can be observed) in traffic data counts. 
The zero-altered procedure allows modeling the crash frequencies in two states, 
namely; the zero-crash state, and the non-zero crash state (where crash frequen-
cies follow Poisson or negative binomial distribution), and the probability of a 
section being in zero or non-zero states can be found by a binary logit or probit 
model. In crash data, large numbers of zero observations are commonly present 
largely due to under reporting of minor crashes at these sites, the presence of 
dangerous crash sites (i.e. non-zero crash sites) in close proximity to the neigh-
boring zero crash sites rendering the zero-crash sites to the safe mode, and given 
that some of zero crash sites may be free from only certain type of crashes, not 
all types of crashes [45]. Zero-inflated models attempt to account for such excess 
zeros. A dual state crash system may be assumed, in which one state is the zero 
crash state that can be regarded as virtually safe during the observation period, 
while the other state is the non-zero crash state. For example, consider vehicle 
crash occurring per year on 1-kilometer sections of highway. For straight sec-
tions of roadway with wide lanes, low traffic volumes, and no roadside objects, 
the likelihood of a vehicle crash occurring may be extremely small, but still pre- 
sent because an extreme human error could randomly cause an accident. These 
sections are considered to be in a zero-crash state that refer to situations where 
the likelihood of an event occurring is extremely rare in comparison to the 
non-zero state where crash occurrence is inevitable and follows some count dis-
tribution [46]. To address the zero-inflated modeling processes, the zero-inflated 
Poisson (ZIP) and the zero-inflated negative binomial (ZINB) regression models 
have been developed. The probabilities of the two possible zero- and non-zero 
states are: pi for the zero crash state, and (1-pi) for the non-zero crash state, and 
the overall probability of crashes is the sum of the probabilities from each state. 
The probability of crash frequency in the zero state can be modeled as: 

( ) ( ) ( )0 1 0i i i iPr n p p R= = + −                 (7) 

where Ri(0) is the probability of zero crashes that occurs in the zero state. The 
probability of crash frequency in the non-zero state can be modeled as: 

( ) ( ) ( )0 1i i i iPr n p R n> = −                  (8) 

where Ri (ni) is the probability of non-zero crashes in the non-zero state. Maxi-
mum likelihood estimates can be used to estimate the parameters of both ZIP 
and ZINB regression models and confidence intervals are constructed by like-
lihood ratio tests. In zero-inflated models, the two state process is assumed to 
follow a logit (logistic) or probit (normal) probability process [45]. Zero-inflated 
models have shown great flexibility in both states, although their applicability to 
crash prediction has been criticized because of the long term mean equals to zero 
in the safe state, and hence, biased estimates may result [7].  

6.6. Conway-Maxwell Poisson Regression Models 

The Conway-Maxwell Poisson model has been recently investigated with respect 
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to highway safety issues, but its application in crash frequency modeling has 
been rather limited [7]. Generalized additive models have been explored given 
that they can provide smoothing functions for the explanatory variables. The 
Conway-Maxwell Poisson distribution is a generalization of the Poisson distri-
bution that can handle both under-dispersed and over-dispersed crash data. The 
main advantage of this model is to handle the under-dispersion in crash data 
that cannot be modeled by the Poisson model or the Negative Binomial model. 
However, the low sample-mean, and small sample size of the under-dispersed 
crash data can influence the estimated parameters, and therefore, it has been li-
mited in the application of crash frequency [24]. However, in practice, the esti-
mation of these models can become very difficult as they require more parame-
ters, a problem that has likely impeded their application to crash frequency pre-
diction [29] [47].  

6.7. Random-Parameter Models 

Random-parameters models have also been investigated to take the effect of the 
unobserved heterogeneity from one roadway site to another [31] [32].   

The motivation for random-parameter models is to account for unobserved 
heterogeneity across observations. Random-parameter models can be derived by 
assuming that the estimated parameters vary across observations according to 
some distribution. Estimated parameters can be modeled as [48]: 

n nβ β ω= +                           (9) 

where 
βn: a vector of estimated parameters of the n observations, 
ωn: a randomly distributed term.  
With this equation, the Poisson, and the Negative Binomial parameters be-

come: 

( )n n ni EXP Xλ ω β=                      (10) 

( ) n ni EXP n Xnλ ω β ε= +                   (11) 

6.8. Artificial Neural Networks and Fuzzy Logic models 

Given that a linear function may not sufficiently explain the relationship be-
tween the dependent variables and the associated independent variables in crash 
modeling, non-linear approximators such as fuzzy logic and neural networks 
have also been explored. Artificial Neural Networks (ANNs) are a class of com-
putational intelligence tools that can be used for prediction and classification 
problems. ANNs can model very complex non-linear functions to high accuracy 
levels using a process of learning that is similar to the learning procedure of the 
cognitive system in the human brain. The network body is composed of input 
layers, hidden layers, and output layers. These models can be trained to appro- 
ximate any nonlinear function to a required degree of accuracy using a learning 
algorithm (such as back propagation) that would give the desired output, in a 
supervised learning process. ANNs have some advantages over the statistical 
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models. For instance, regression models need a pre-defined relationship or func-
tional form between the dependent variable (crash frequency) and the indepen-
dent explanatory variables that can be estimated by some statistical approaches, 
whereas the ANNs do not require the establishment of these functional forms, 
and can be easily applied in the analysis. On the other hand, the ANNs differ 
from the statistical models in that they behave as black-boxes and do not provide 
interpretation for the parameter estimates [15] [18] [35] [36]. Fuzzy logic appli-
cations have increasingly been proven to have a significant crash-predicting ca-
pability in recent years [49]. Fuzzy logic system is defined as the nonlinear map-
ping of an input data set to a scalar output data, and the first step of the process 
(known as fuzzification) consists of gathering a crisp set of input data that will 
be converted to a fuzzy set using fuzzy linguistic variables, fuzzy linguistic terms, 
and membership functions. After that, an inference is made based on a set of 
fuzzy rules, and then, the resulting fuzzy output is mapped to a crisp output us-
ing the membership functions, in the defuzzification step [33]. 

6.9. Logit and Probit Models 

Logit and Probit models can be applied to study crash severity modeling. The 
data used in modeling crash severity is often attributed with many details relat-
ing to the crash occurrence (i.e. such as the number of vehicles involved, age of 
victims, weather conditions, types of vehicles involved, and crash type) which 
can be integrated in statistical models. Since the dependent variable (i.e. crash 
severity) usually has two or more outcome categories (i.e. fatal, injury, proper-
ty-damage-only), logit and probit models are often used to model the severity of 
crash data. Discriminant analysis could also be used to model crash severity, but 
given its rigid assumptions, logit and probit models have been viewed as prefer-
able [32] [50]. Binary models consider two response outcomes (i.e. fatal vs. 
non-fatal or injury vs. property-damage-only), and multinomial models consider 
three or more response outcomes. Traffic accident severity models can be gener-
ally classified as either nominal or ordinal. Although there is no consensus on 
which model is the best, as the selection of the model is often governed by the 
characteristics of the data, some researchers have opted for nominal models over 
ordinal models. The rationale for this choice is likely due to the influence that 
independent variables in ordinal models could exert on the ordered discrete 
outcome probabilities. That is, in closely related categories (i.e. no injury and 
possible injury) there may be some shared unobserved effects among adjacent 
injury categories. Failing to account for such correlation could generate incor-
rect inferences [32] [51]. Others still prefer ordinal models due to their simplici-
ty and overall performance, especially when less detailed data are available. Bi-
nary models consider two outcomes, and multinomial models consider three or 
more outcomes. In binomial logit or probit models, the dependent variable, Y, 
can take one of two values 0.0 or 1.0. For example, injury or non-injury, fatal or 
non-fatal. The general shape of binomial logit model is (assuming iπ  = Pr (Yi= 
1)): 
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( )Logit log
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i
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π
βπ

π−
 

= == 
 

                  (12) 

where, 
Xi: a vector of explanatory variables (i.e. risk factors), 
β: a vector of regression coefficients. 
As π  approaches zero, logit (π ) tends toward -∞ ; and as π  approaches 

1.0, logit (π ) tends toward +∞  [52]. The binomial probit model is an alterna-
tive to the binomial logit model, in which the probit ( iπ ) is the standard cumu-
lative normal distribution function (θ−1) that can be expressed as: 

( ) ( )1Pro i ibit Xiθπ π β−= =                 (13) 

There are many types of the multinomial models that can be used in modeling 
crash severity, such as, the multinomial logistic regression (MNL), the nested 
logistic regression, the mixed logistic regression, and the multinomial probit 
models. For example, The MNL tries to find the best fitted model to describe the 
relationship between the polytomous dependent variable with more than two 
categories and a set of independent variables. The logistic regression model is a 
non-linear transformation of the linear regression model, as it consists of an 
S-shaped distribution function [53]. The logit distribution constrains the esti-
mated probabilities that lie between 0.0 and 1.0, as shown in Figure 1.0. The lo-
gistic regression function is bounded by 0.0 and 1.0, whereas the linear regres-
sion function may predict values above 1.0 and below 0.0.The logistic (logit) 
function can be expressed as: 

( ) 0 1 1 2 2Log k kit p b b X b X b X= + + + +             (14) 

where, 
p: the probability of presence of an outcome of interest, 
Xk: the vector of k independent variables, 
b0: the regression coefficient on the constant term (intercept), 
bk: the vector of regression coefficients on the independent variables Xk, 
The odd ratio is the probability of the event divided by the probability of the 

nonevent, and is defined as follows [50] [53]: 

( )odd ratios 1  p p= −                        (15) 

When p = 0, then odd (p) = 0, when p = 0.5, then odd (p) = 1.0, and when p = 
1.0, then odd (p) = ∞ . The logit transformation is defined as the logged odds: 

( ) ( )Log ln 1it p p p= −                        (16) 

The transformation from odds to log of odds is the log transformation, and 
this is a monotonic transformation. That is, the greater the odds, the greater the 
log of odds and vice versa. Logit (p) can be back-transformed to p by the follow-
ing formula: 

( )
1

1 logit pe
p

−+
=                           (17) 

The transformation from probability to odds is a monotonic transformation 
as well, meaning the odds increase as the probability increases or vice versa. 
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Probability ranges from 0.0 and 1.0. Odds range from 0.0 and positive infinity 
[53] [54]. 

7. Conclusion 

Traffic crash prediction models are very useful tools in road safety programs 
used by transportation agencies, police, health departments, education institu-
tions that oversee road safety, vehicles, and the driver’s education. They can be 
used to predict both the frequency of crash occurrence and the contributing fac-
tors that could then be addressed by transportation policies. According to the 
world health organization (WHO), road crashes are ranked as the ninth most se-
rious cause of death in the world, and present the world's leading cause of death 
for individuals between the ages of one and twenty-nine. Each year, traffic acci-
dents are responsible for killing about 1.25 million people and injuring approx-
imately 50 million more. Following current trends, about two million people 
could be expected to be killed in motor vehicle crashes each year by 2030. The 
World Bank estimates that road traffic injuries cost 2.0 percent to 3.0 percent of 
the Gross National Product of developing countries. Given a such trend, this 
paper presented different types of traffic crash prediction models to gain a better 
understanding of the techniques used to predict road accidents and their con-
tributing risk factors. A wide range of statistical approaches were presented in-
cluding, Poisson regression, Negative Binomial regression, Zero-Inflated models, 
logit and probit models, and machine learning methods. 

References 
[1] World Health Organization (2015) Global Status Report on Road Safety 2015.  

http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/ 

[2] NHTSA—National Center for Statistics and Analysis (NCSA) (2016) NHTSA Stu-
dies Vehicle Safety and Driving Behavior to Reduce Vehicle Crashes.  
http://www.nhtsa.gov/NCSA  

[3] Transport Canada (2016) Road Safety in Canada.  
http://www.tc.gc.ca/eng/motorvehiclesafety/tp-tp15145-1201.htm 

[4] Beirness, D.J. and Beasley, E. (2011) A Comparison of Drug- and Alcohol-Involved 
Motor Vehicle Driver Fatalities. Canadian Centre on Substance Abuse, Ottawa.  

[5] World Bank (2015) The World Bank-Transport for Development.  
http://blogs.worldbank.org/transport/why-vehicle-safety-matters-crash-related-deat
hs?cid=EXT_WBBlogSocialShare_D_EXT 

[6] NHTSA—National Center for Statistics and Analysis (NCSA) (2016) NHTSA.  
https://www.nhtsa.gov/press-releases/us-dot-announces-steep-increase-roadway-de
aths-based-2015-early-estimates   

[7] Lord, D., and Mannering, F. (2010) The Statistical Analysis of Crash Frequency Da-
ta: A Review and Assessment of Methodological Alternatives. Accident Analysis and 
Prevention, 44, 291-305. 

[8] Mohan, D. (2002) Road Safety in Less-Motorized Environments: Future Concerns. 
International Journal of Epidemiology, 31, 527-532.  
https://doi.org/10.1093/ije/31.3.527 

[9] Elvik, R. (2006) Laws of Accident Causation. Accident Analysis and Prevention, 38, 
742-747.  

202 

http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
http://www.nhtsa.gov/NCSA
http://www.tc.gc.ca/eng/motorvehiclesafety/tp-tp15145-1201.htm
http://blogs.worldbank.org/transport/why-vehicle-safety-matters-crash-related-deaths?cid=EXT_WBBlogSocialShare_D_EXT
http://blogs.worldbank.org/transport/why-vehicle-safety-matters-crash-related-deaths?cid=EXT_WBBlogSocialShare_D_EXT
https://www.nhtsa.gov/press-releases/us-dot-announces-steep-increase-roadway-deaths-based-2015-early-estimates
https://www.nhtsa.gov/press-releases/us-dot-announces-steep-increase-roadway-deaths-based-2015-early-estimates
https://doi.org/10.1093/ije/31.3.527


A. Abdulhafedh 
 

[10] Caliendo, C., Guida, M. and Parisi, A. (2007) A Crash-Prediction Model for Multi-
lane Roads. Accident Analysis and Prevention, 39, 657-670. 

[11] Greibe, P. (2003) Accident Prediction Models for Urban Roads. Accident Analysis 
and Prevention, 35, 273-285.  

[12] Delen, D., Sharada, R. and Bessonov, M. (2006) Identifying Significant Predictors of 
Injury Severity in Traffic Accidents Using a Series of Artificial Neural Networks. 
Accident Analysis and Prevention, 38, 434-444.  

[13] Gelman, A. and Hill, J. (2007) Data Analysis Using Regression and Multilevel Hie-
rarchical Models. Cambridge University Press, London.  

[14] Kim, D.G., Lee, Y., Washington, S. and Choi, K. (2007) Modeling Crash Outcome 
Probabilities at Rural Intersections: Application of Hierarchical Binomial Logistic 
Models. Accident Analysis and Prevention, 39, 125-134. 

[15] Abdulhafedh, A. (2016) Crash Frequency Analysis. Journal of Transportation 
Technologies, 6, 169-180. 

[16] Blincoe, J., Miller, R., Zaloshnja, E. and Lawrence, A. (2015) The Economic and So-
cietal Impact of Motor Vehicle Crashes, 2010. National Highway Traffic, Washing-
ton DC. 

[17] Park, S. and Lord, D. (2007) Multivariate Poisson-Lognormal Models for Jointly 
Modeling Crash Frequency by Severity. Transportation Research Record, 2019, 1-6. 
https://doi.org/10.3141/2019-01 

[18] Ma, J., Kockelman, K.M. and Damien, P. (2008) A Multivariate Poisson-Lognormal 
Regression Model for Prediction of Crash Counts by Severity, Using Bayesian Me-
thods. Accident Analysis and Prevention, 40, 964-975. 

[19] El-Basyouny, K. and Sayed, T. (2009) Collision Prediction Models Using Multiva-
riate Poisson-Lognormal Regression. Accident Analysis and Prevention, 41, 820- 
828.  

[20] Lord, D. and Bonneson, A. (2007) Development of Accident Modification Factors 
for Rural Frontage Road Segments in Texas. Transportation Research Record, 2023, 
20-27. 

[21] Daniels, S., Brijs, T., Nuyts, E. and Wets, G. (2010) Explaining Variation in Safety 
Performance of Roundabouts. Accident Analysis and Prevention, 42, 292-402. 

[22] Malyshkina, N. and Mannering, F. (2010) Markov Switching Multinomial Logit 
Model: An Application to Accident-Injury Severities. Accident Analysis and Pre-
vention, 41, 829-838.  

[23] Geedipally, R., Lord, D. and Dhavala, S. (2012) The Negative-Binomial Lindley Ge-
neralized Linear Model: Characteristics and Application Using Crash Data. Acci-
dent Analysis and Prevention, 45, 258-265.  

[24] Lord, D. (2006) Modeling Motor Vehicle Crashes Using Poisson-Gamma Models: 
Examining the Effects of Low Sample Mean Values and Small Sample Size on the 
Estimation of the Fixed Dispersion Parameter. Accident Analysis and Prevention, 
46, 751-766. 

[25] Oh, J., Washington, S. and Nam, D. (2006) Accident Prediction Model for Rail-
way-Highway Interfaces. Accident Analysis and Prevention, 38, 346-356. 

[26] Lord, D. and Miranda-Moreno, F. (2008) Effects of Low Sample Mean Values and 
Small Sample Size on the Estimation of the Fixed Dispersion Parameter of Pois-
son-Gamma Models for Modeling Motor Vehicle Crashes: A Bayesian Perspective. 
Accident Analysis and Prevention, 46, 751-770. 

[27] Aguero-Valverde, J. and Jovanis, P. (2008) Analysis of Road Crash Frequency with 

203 

https://doi.org/10.3141/2019-01


A. Abdulhafedh 
 

Spatial Models. Transportation Research Record, 2061, 55-63. 
https://doi.org/10.3141/2061-07 

[28] Xie, Y. and Zhang, Y. (2008) Crash Frequency Analysis with Generalized Additive 
Models. Transportation Research Record, 2061, 39-45. 
https://doi.org/10.3141/2061-05 

[29] Li, X., Lord, D., Zhang, Y. and Xie, Y. (2009) Predicting Motor Vehicle Crashes Us-
ing Support Vector Machine Models. Accident Analysis and Prevention, 40, 1611- 
1618.  

[30] Milton, J.C., Shankar, V. and Mannering, F. (2008) Highway Accident Severities 
and the Mixed Logit Model: An Exploratory Empirical Analysis. Accident Analysis 
and Prevention, 40, 260-266.  

[31] Anastasopoulos, P.C. and Mannering, F. (2009) A Note on Modeling Vehicle Acci-
dent Frequencies with Random-Parameters Count Models. Accident Analysis and 
Prevention, 41, 153-159.  

[32] Washington, P., Karlaftis, G. and Mannering, F. (2010) Statistical and Econometric 
Methods for Transportation Data Analysis. 2nd Edition, Chapman Hall, Control 
and Reporting Center, Boca Raton. 

[33] Meng, H., Zheng, L. and Qing, M. (2009) Traffic Accidents Prediction and Promi-
nent Influencing Factors Analysis Based on Fuzzy Logic. Accident Analysis and 
Prevention, 9, 87-92. 

[34] Abdelwahab, H.T. and Abdel-Aty, M.A. (2002) Artificial Neural Networks and Lo-
git Models for Traffic Safety Analysis of Toll Plazas. Accident Analysis and Preven-
tion, 1784, 115-125. https://doi.org/10.3141/1784-15 

[35] Riviere, C., Lauret, P., Ramsamy, M. and Page, Y. (2006) A Bayesian Neural Net-
work Approach to Estimating the Energy Equivalent Speed. Accident Analysis and 
Prevention, 38, 248-259.  

[36] Chang, L.Y. (2005) Analysis of Freeway Accident Frequencies: Negative Binomial 
Regression versus Artificial Neural Network. Accident Analysis and Prevention, 43, 
541-557.  

[37] Cameron, A.C., and Trivedi, P.K. (1998) Regression Analysis of Count Data. 
Cambridge University Press, Cambridge, UK.  
https://doi.org/10.1017/CBO9780511814365 

[38] Abdel-Aty, M. (2003) Analysis of Driver Injury Severity Levels at Multiple Loca-
tions Using Ordered Probit Models. Journal of Safety Research, 34, 597-603. 

[39] Chang, L.Y., and Wang, H. (2006) Analysis of Traffic Injury Severity: An Applica-
tion of Nonparametric Classification Tree Techniques. Accident Analysis and Pre-
vention, 38, 1019-1027. https://doi.org/10.1016/j.aap.2006.04.009 

[40] Bham, G., Javvadi, B. and Manepalli, U. (2012) Multinomial Logistic Regression 
Model for Single-Vehicle and Multivehicle Collisions on Urban U.S. Highways in 
Arkansas. Journal of Transportation Engineering, 138, 786-797 
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000370 

[41] Glenberg, A. (1996) Learning from Data: An Introduction to Statistical Reasoning. 
2nd Edition, Lawrence Erlbaum Associates, Mahwah. 

[42] Hilbe, J. (2007) Negative Binomial Regression. Cambridge University Press, Lon-
don. https://doi.org/10.1017/CBO9780511811852 

[43] Hilbe, J. (2014) Modeling Count Data. Cambridge University Press, London.  
https://doi.org/10.1017/CBO9781139236065 

[44] Amoros, E., Martin, J.L., & Laumon, B. (2003) Comparison of Road Crash Incidents 

204 

https://doi.org/10.3141/2061-07
https://doi.org/10.3141/2061-05
https://doi.org/10.3141/1784-15
https://doi.org/10.1017/CBO9780511814365
https://doi.org/10.1016/j.aap.2006.04.009
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000370
https://doi.org/10.1017/CBO9780511811852
https://doi.org/10.1017/CBO9781139236065


A. Abdulhafedh 
 

and Severity between Some French Counties. Accident Analysis and Prevention, 35, 
537-547. https://doi.org/10.1016/S0001-4575(02)00031-3 

[45] Shankar, N., Milton, J.C. and Mannering, F. (1997) Modeling Accident Frequencies 
as Zero-Altered Probability Process: An Empirical Enquiry. Accident Analysis and 
Prevention, 29, 829-837.  

[46] Lambert, D. (1992) Zero-Inflated Poisson Regression with an Application to Defects 
in Manufacturing. Technometrics, 34, 1-14. https://doi.org/10.2307/1269547 

[47] Zhang, J.X., Chang, K.T. and Wu, J.Q. (2008) Effects of Dynamic Effect Model Res-
olution and Source on Soil Erosion Modeling: A Case Study Using the Water Ero-
sion Prediction Project Model. International Journal of Geographical Information 
Science, 22, 925-942. https://doi.org/10.1080/13658810701776817 

[48] Greene, W. (2008) Econometric Analysis. 6th Edition, Prentice-Hall. Upper Saddle 
River. 

[49] Wang, H., Zheng, L. and Meng, X.H. (2011) Traffic Accidents Prediction Model 
Based on Fuzzy Logic. Communications in Computer and Information Science, 
201, 101-108. https://doi.org/10.1007/978-3-642-22418-8_14 

[50] Greene, W. (2012) Econometric Analysis. 7th Edition, Prentice Hall, Upper Saddle 
River. 

[51] Savolainen, P., Mannering, F., Lord, D. and Quddus, M. (2011) The Statistical 
Analysis of Highway Crash-Injury Severities: A Review and Assessment of Metho-
dological Alternatives. Accident Analysis and Prevention, 43, 1666-1676. 

[52] Mannering, F. and Grosdsky, L. (1995) Statistical Analysis of Motorcyclist: Per-
ceived Accident Risk. Accident Analysis and Prevention, 27, 21-31. 

[53] Judge, G., Griffiths, W.E., Hill, R.C., Lutkepohl, H. and Lee, T.C. (1985) The Theory 
and Practice of Econometrics. 2nd Edition, Wiley, New York. 

[54] Baltagi, B.H. (2011) Econometrics. 5th Edition, Springer, Berlin.  
https://doi.org/10.1007/978-3-642-20059-5 

 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jtts@scirp.org 

205 

https://doi.org/10.1016/S0001-4575(02)00031-3
https://doi.org/10.2307/1269547
https://doi.org/10.1080/13658810701776817
https://doi.org/10.1007/978-3-642-22418-8_14
https://doi.org/10.1007/978-3-642-20059-5
http://papersubmission.scirp.org/
mailto:jtts@scirp.org

	Road Crash Prediction Models: Different Statistical Modeling Approaches
	Abstract
	Keywords
	1. Introduction
	2. The Importance of Traffic Accidents Prediction Models
	3. Factors Affecting Road Traffic Accidents
	4. The Costs of Road Traffic Accidents
	5. Literature Review
	6. A Review on the Statistical Approaches of Road Crash Prediction Models
	6.1. Multiple Linear Regression
	6.2. Poisson Regression
	6.3. Negative Binomial Regression Model (NB)
	6.4. Poisson-Lognormal Regression Model
	6.5. Zero Inflated Poisson and Negative Binomial Regression Models
	6.6. Conway-Maxwell Poisson Regression Models
	6.7. Random-Parameter Models
	6.8. Artificial Neural Networks and Fuzzy Logic models
	6.9. Logit and Probit Models

	7. Conclusion
	References

