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Abstract 
Improvements in sanitation and the provision of clean drinking water led to 
the elimination of typhoid fever from developed countries in the beginning of 
the 20th century. However, Salmonella typhi and paratyphi remain a major 
source of morbidity and mortality in many developing countries today. The 
dynamics of typhoid transmission are poorly understood. In this study, we 
develop a novel mathematical model that captures the role of both human to 
human interaction and human to environment interaction in the transmission 
dynamics of typhoid fever. Our results have shown the feasible impact of dif-
ferent methods of typhoid control, including vaccination, improved treatment 
strategies, and investment in clean water and sanitation. 
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1. Introduction 

Typhoid fever is a communicable disease, found only in man and occurs due to 
systemic infection mainly by Salmonella typhi organism [1]. The disease is en-
demic in many developing countries and despite recent progress in water and 
sanitation coverage, it remains a substantial public health problem. Globally, it is 
estimated that typhoid causes over 16 million cases of illness each year, resulting 
in over 600,000 deaths [2]. Typhoid has a long storied history as a public health 
scourge. Salmonella enterica serovar Typhi (S. Typhi) is a human restricted bac-
terial pathogen transmitted via fecal contamination of food and water [3]. While 
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improvements in water and sanitation led to the elimination of typhoid from 
most developed countries during the twentieth century, the global burden of ty-
phoid fever has recently been estimated to be between 13.5 and 26.9 million epi-
sodes and 190,000 to 216,000 deaths annually [4]. In many developing nations, 
the public health goals that can help prevent and control the spread of typhoid 
fever disease through safe drinking water, improved sanitation and adequate 
medical care may be difficult to achieve. Health education is paramount to raise 
public awareness and induce behavior change [5]. Several mathematical models 
have been developed to explain the dynamics of typhoid including [2] [6]-[12], 
but none has incorporated both direct and indirect transmission dynamics in 
typhoid fever model. 

Our main objective in the present paper is to develop an SIIcR-B (susceptible, 
symptomatic infectious, asymptomatic infectious, recovered, bacteria concentra-
tion) model of typhoid fever with vaccination, treatment and water sanitation as 
control strategies that has not been investigated in prior studies. Our major as-
sumption is existence of both direct transmission of typhoid from infected indi-
viduals to susceptible and indirect transmission of bacteria from the environ-
ment to the susceptible, the other assumptions; all susceptible individuals are 
equally likely to be infected by infectious individuals in case of contact, and we 
also assume direct transmission of typhoid from infected to susceptible individ-
uals and that there is a constant recruitment rate to the susceptible population. 
Furthermore, we assume that the rate of transmission for carriers is greater than 
that of symptomatic infectious individuals. 

2. Model Formulation 

We first develop a more realistic model for typhoid. The model subdivides the 
human population of interest into four compartments: susceptible humans (S), 
infected humans (I), carrier humans (Ic), and recovered humans (R). Previous 
models of typhoid dynamics [2] [6]-[12], assume direct transmission of typhoid 
from infected individuals to susceptible individuals. However, typhoid is largely 
contracted from environmental bacteria through contaminated water and/or 
food and drinks [13] [14], and transmission of typhoid through direct per-
son-to-person contact, if any, is negligible [15]. To incorporate this real biologi-
cal phenomenon, we consider an additional compartment, B, which represents 
bacteria in the environment. We assume that susceptible individuals get infected 
with typhoid at a rate proportional to the susceptible population, S, and the en-
vironmental bacteria concentration, B, at a constant rate τ . 

Individuals in the class, I, can recover from typhoid at the rate, 1η . The carri-
er individuals can also either progress to carrier class, cI , at rate α  or recover 
from typhoid, but with a significantly slow rate, 2η . Infected individuals in both 
infectious state and carrier state excrete bacteria into the environment. However, 
the rate of excretion by the infectious group, 1 , is significantly higher than that 
by the carrier group, 2 . Note that despite low excretion of bacteria by the car-
rier group, because of its extremely long duration without showing any sickness 
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the carrier group plays an important role on infection dynamics of typhoid. 
Growth curves of organisms are often described well with the 2 logistic models 
[16]-[21], so we assume that the bacteria in the environment grows according to 
a logistic growth rate and becomes non-infectious at a rate bµ . r  and K  
represent per capita growth rate and carrying capacity, respectively, and 1 2,d d  
denotes the typhoid induced mortality in Infectious and carriers individuals re-
spectively. The constant recruitment rate into the susceptible human is 
represented by Λ , while the natural death rate of human is represented by hµ . 
The developed model can be expressed as the following differential equations 
detailed in section 2.1. 

2.1. Model Equations 

From the assumptions, descriptions and the compartmental diagram in Figure 
1, we formulate the following system of differential equations.  

( )d
d h
S R S
t

φ λ µ θ= Λ + − + +                    (1) 

( )1 1 1
d
d c h
I p S I d I
t

λ α µ η= + − + + +                 (2) 

( ) ( )2 2 2
d 1
d

c
h c

I p S d I
t

λ α µ η= − − + + + +               (3) 

1 2
d 1
d c b
B Br B I I B
t K

µ = − + + − 
 

                  (4) 

( )1 2
d
d c h
R I I S R
t

η η θ µ φ= + + − +                  (5) 

1 2
d
d h c
N N d I d I
t

µ= Λ − − −                     (6) 

where  

c
BI I

K B
τλ β γ= + +
+

 

 

 
Figure 1. A compartmental diagram for a typhoid model with con-
trol strategies. 
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Equation (1) describes the dynamics of susceptible in the community of size 
N. The death rate of the susceptible individuals is represented by, is the rate of 
recruitment into susceptible class, is the rate of exposure to contaminated food 
and water, is the probability of susceptible catching typhoid fever, is the sus-
ceptible and is the concentration of Salmonella typhi bacteria in food and water. 
Equations (2) and (3) describes the dynamics of infected people in the commu-
nity, their number increases as susceptible become infected and decreases as the 
infected recovers or die from the disease or natural death. Measures to limit the 
spread of the disease, such as hygiene and total sanitation reduce the amount of 
Salmonella typhi bacteria in the environment. Equation (4) describes the dy-
namics of pathogenic Salmonella typhi bacteria in environment, comprising the 
contaminated food or water consumed by people and unhygienic handling of 
typhoid fever patients and their waste products. Equation (5) describes the dy-
namics of effect of treatment or lack of treatment to the population of infected 
people. 

2.2. Basic Properties of the Model 
2.2.1. Positivity of Solutions 
We show that if the system starts with non-negative initial conditions  

( )0 0 0 0 0, , , ,cS I I R B , the solutions/trajectories of (1)-(5) will remain non-negative 
for all ( )0,t∈ ∞ . This is an ideal condition to check since the model monitors 
human population and the pathogen concentration in the aquatic environment. 
We thus have the following theorem: Theorem 1. Given that the initial conditions 
of the system (1)-(5) ( )0 0 0 0 00, 0, 0, 0, 0cS I I R B> > > > > , the resulting solu-
tions ( ) ( ) ( ) ( ) ( )( ), , , ,cS t I t I t R t B t  are all non-negative for all ( )0,t∈ ∞ . 

Proof. To show positivity of solution, it is enough to show that each of the 
tra-jectories of system (1)-(5) is non negative for all 0t > . From Equation (1), 
the differential inequality describing the evolution of the susceptible population 
over time is given by 

( )d
d h
S S
t

λ µ θ≥ Λ − + +                       (7) 

The resulting differential inequality can be solved by separation of variables. 
Since at ( ) 00, 0t S S= = , then the complete solution to the differential inequa-
lity for the susceptible population is given by  

( ) ( )0 e h t

h h

S t S µ θ

µ θ µ θ
− + Λ Λ

≥ + − + + 
               (8) 

( )lim inf 0n S t→∞ ≥  

Using the same principle, the rest of the phase space variables as t approaches 
infinity can be shown to satisfy  

( ) ( )1 1 10e h d tI t I µ η− + + +≥  , 

( ) ( )2 2 20e h d t
cI t I µ η− + + +≥   
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( ) ( )
0e h tR t R µ φ− +≥  

From which the limit inf of the corresponding state variables can be shown to 
be non-negative. Using the equation describing the evolution of the pathogen 
concentration, we have a differential inequality given by  

( )
2d

d b
B Br B
t K

µ+ − ≥ −                      (9) 

Equation (9) is a Bernoulli type of equation. It is solved by substitution i.e. 
1B y−=  to obtain  

( )
( )

( )
e b r t

b

B t
AK r

µ

µ

− −

≥ −
−

                     (10) 

2.2.2. Boundedness of Solutions 
The model can be separated into two parts which include, the human population 

HT  and the concentration of the pathogen in the aquatic environment BT  such 
that ( ) ( ) ( ) ( )( ){ }4, , , :H c cT S t I t I t R t S I I R N+= ∈ + + + =�  and  

( ){ }1
BT B t += ∈�  respectively. From Equation (1) the differential inequality of 

the susceptible population is given by  

( )d
d h
S R S
t

φ λ µ θ= Λ + − + +  

( )d
d h
S S R
t

µ θ φ+ + ≤ Λ +                    (11) 

Using a suitable integrating factor, . e tI F µ−= , the differential inequality (11) 
can be solved to obtain  

( ) ( )
0

e e d
tt x

h

S t R x xµ µω
µ

− −Λ
≤ + ∫                  (12) 

Following the theorem of differential inequality by Birkhoff and Rota [21] we 
obtain  

( )lim Supt
h

S t
µ→∞
Λ

≤  

Therefore, the state variable describing the evolution of the susceptible popu-
lation is less or equal to the ratio of the recruitment rate and the natural mortal-
ity rate. We note also that the total population is given as  

cN S I I R= + + + . If we take the time derivative of N  i.e. d
d
N
t

 and substitute  

the Equations (1)-(4) into the resulting expression we obtain  

1 2
d
d h c
N N d I d I
t

µ= Λ − − −                    (13) 

The solution (12) can be obtained by separating variables and integrating both 
sides with respect to the corresponding variable. This result into  

ln h hN t cµ µΛ − ≥ − +  

where c is a constant of integration. If we exponentiate both sides and assume 
that the initial total population is 0N , the solution becomes  
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0 e ht

h h

N N µ

µ µ
− Λ Λ

≤ − − 
 

                   (14) 

therefore,  

( )lim Supt
h

N t
µ→∞
Λ

≤  

Since N  is the sum of all state space variables, then each of the individual  

state variables is less or equal to 
hµ
Λ . Using Equation (5), we assume that the  

growth rate of the pathogen in linear at a constant rate r . We therefore obtain a 
differential inequality  

( ) 1 2
d
d b c
B r B I I
t

µ+ − ≤ +                     (15) 

( ) ( )1 2
d
d b

h

B r B
t

µ
µ
Λ

+ − ≤ +                    (16) 

The solution to this equation can be obtained by using a suitable integrating 
factor to obtain  

( ) ( )
( )

( )1 2 e b r t

h b

B t A
r

µ

µ µ
−+ Λ

≤ +
−

 
                  (17) 

therefore,  

( ) ( )
( )

1 2lim Supt
h b

B t
rµ µ→∞

+ Λ
≤

−
 

 

The domain of biological significance of the system (1)-(5) is  

( ) ( ) ( )
( )

1 2, , , , 0 : , .c c
h h b

T S I I R B t S I I R B t
rµ µ µ

 + ΛΛ
= ≥ + + + ≤ ≤ −  

    (18) 

The domain T  is positively invariant under the flow induced by the system 
(1)-(5). Therefore, the system (1)-(5) is biologically meaningful and it is feasible 
to analyze the model in the domain T . 

2.3. The Basic Reproduction Number, R0 

The basic reproduction number denoted by 0R  is the average number of sec-
ondary infections caused by an infectious individual during his or her entire pe-
riod of infectiousness Diekmann et al. [22]. The basic reproduction number is an 
important non-dimensional quantity in epidemiology as it sets the threshold in 
the study of a disease both for predicting its outbreak and for evaluating its con-
trol strategies. Thus, whether a disease becomes persistent or dies out in a com-
munity depends on the value of the reproduction number, 0R . Furthermore, 
stability of equilibria can be analyzed using 0R . If 0 1R <  it means that every 
infectious individual will cause less than one secondary infection and hence the 
disease will die out and when 0 1R < , every infectious individual will cause more 
than one secondary infection and hence the disease will invade the population. A 
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large number of 0R  may indicate the possibility of a major epidemic. For the 
case of a model with a single infected class, 0R  is simply the product of the in-
fection rate and the mean duration of the infection. In more complicated epi-
demics we compute the basic reproduction number, 0R  using the next genera-
tion operator approach by Van den Driessche and Watmough [23]. We calculate 
the basic reproduction number by using the next generation operator method on 
the system Equation (1)-(5). The basic reproduction number is obtained by tak-
ing the largest (dominant) eigenvalue (spectral radius)  

( ) ( )
1

0 01 i i

j j

E E
FV

x x

−

−
   ∂ ∂

=    
∂ ∂      

 
                 (19) 

where iF  is the rate of appearance of new infection in compartment i , iV  is 
the transfer of infections from one compartment i to another and 0E  is the 
disease-free equilibrium. From system equation of the system (1)-(4), we 
re-write the equations with infectious classes, , cI I  and B . This leads to the 
system  

( )1 1 1
d
d c h
I p S I d I
t

λ α µ η= + − + + +   

( ) ( )2 2 2
d 1
d

c
h c

I p S d I
t

λ α µ η= − − + + + +   

1 2
d 1
d c b
B Br B I I B
t K

µ = − + + − 
 

   

Jacobian at diseases free point ( 0E ) is computed and found to be  

( ) ( ) ( ) ( )0
1

1 1

0

c

c

p BS p IS p I S
K B

p BS
J E p IS p I S

K B

τ β γ

τ
β γ

 + + + 
− = + − + − + 

 
  

         (20) 

from which we obtain:  

( ) ( ) ( )1
1 1

0

c

i c

p BS p IS p I S
K B

p BS
p IS p I S

K B

τ β γ

τ
β γ

 + + + 
− = + − + − + 

 
  

            (21) 

( )
( )

1 1 1

2 2 2

1 2 1

h

i h c

b c

d I
d I

BB I I r B
K

µ η
µ η

µ

 
 + + + 

= + + + 
 

  − + −    


 

 

                (22) 

Partial differentiation of iF  and iV  with respect to , cI I  and B gives  
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( ) ( ) ( )

0
0 0

0
0 0 1

1 1

0 0 0

p Sp S p S
K
p S

F p S p S
K

τβ γ

τ
β β

 
 
 
 −

= − − 
 
 
 
 

           (23) 

( )
( )

1 1 1

2 2 2

1 2

0 0
0 0

h

h

b

d
V d

r

µ η
µ η

µ

 + + +
 = + + + 
 − − − 




 
        (24) 

1V −  was computed and found to be: 

( )

( ) ( )
( )

2
1

1
1 2

1 2 2 1

0
1 0 0

b b

b
b

a r r
V a r

a a r
a a a

µ α µ
µ

µ
−

 − −
 = − −    

 

Lastly 1−FV  was calculated and results is:  

( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 00
0 01 2 1

2 1

0 0 0
1 2 1 11 0 0

2 1
1 2

1 1 11 1 1

0 0 0

b b

b b
b

p S a pa Sp S fp S a u r p a S u r
K K K
p S a p a S f p a S

FV p S a u r p a S u r
a a r K K K

τ ττβ γ

τ τ τ
β γ

µ
−

 
− + − + 

 
 − − −

= − − + − − + 
−  

 
 
 



  

The eigenvalues of 1−FV  was calculated as follows: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 00
0 01 2 1

2 1

0 0 0
1 2 1 10 0

2 1
1 1 1

det 1 1 0

0 0

b b

b b

p S a pa Sp S fp S a u r p a S u r
K K K

p S a p a S f p a S
p S a u r p a S u r

K K K

τ ττλ β γ

τ τ τ
β λ γ

λ

  
− − + − +  
  

  − − − − − + − − − + =    
 
  
 



  

let  

( )
0

0 1 2
1 2 b

p S aZ p S a u r
K

τβ= − +


 

( ) ( )
0

0 0
2 1b b

p S fZ p S u r p a S u r
K
τβ α γ= − + − +  

0

3
p SZ

K
τ

=  

( ) ( ) ( ) 0
1 20

4 2
1

1 b
p S a

Z p S a u r
K
τ

β
−

= − − +


 

( ) ( ) ( ) 0
10

5 1
1

1 b
p a S f

Z p a S u r
K
τ

γ
−

= − − +  

( ) 0
1

6
1 p a S

Z
K

τ−
=  
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We get  

1 2 3

4 5 6 0
0 0

Z Z Z
Z Z Z

λ
λ

λ

−
− =  

( ) ( )5 1 2 5 0Z Z Z Zλ λ λ − − − =   

( ) ( )( )2
1 5 1 5 2 4 0Z Z Z Z Z Zλ λ λ− + + − =  

it can be shown that 1 5 2 4 0Z Z Z Z− =   

( )( )2
1 5 0Z Zλ λ − + =                     (25) 

1 50,0, Z Zλ = +                        (26) 

thus the maximum eigenvalues is  

1 5Z Z+  

which gives  

1 5eR Z Z= +  

therefore  

( ) ( ) ( ) ( ) 00
1 20 0 1 2

2 1
1

1e b b
p S ap S aR p S a r a p S r

K K
ττβ µ γ µ

−
= − + − − + +

  (27) 

( ) ( ) ( ) ( )
0

2 1 2 1 1 2
1 2

1 1b
b

S r pa a p a p p a
a a r K

τµ β γ
µ

 = − + − + + −       −  
   (28) 

( ) ( ) ( )
( )

00
1

1 2

1
b

b b

p SS p r
a r K K a r

ττ β µ
µ µ

− = − + + − − 


            (29) 

( )
( ) ( )

( )
0 00 0

1 2
1 1 2 2

1 1

b b

p S p SS p S p
a a r K a K a r

γτ τβ γ
µ µ

   − −
= + + +      − −   

      (30) 

This can be written as  

( ) ( )01 03 02 04eR R R R R= + + +  

where  
0

01
1

S pR
a

 
=  
 

                        (31) 

( )0

02
2

1S p
R

a
γ−

=                       (32) 

( )
0

03 1
1 b

S pR
a r K

τ
µ

 
=   − 

                     (33) 

( )
( )
0

04 2
2

1

b

S p
R

a r K
τ

µ
−

=
−

                     (34) 

( )
( )

0 h

h h

S
µ φ

µ µ θ φ
+ Λ

=
+ +

                     (35) 
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1 1 1 1ha dµ η= + + +                      (36) 

2 2 2 2ha dµ η= + + +                      (37) 

Thus Re is the effective reproduction number (basic reproduction number  

with controls). The terms 
1

1
a

 and 
2

1
a

 indicate the maximum time an individual  

is expected to stay in compartments I  and cI  respectively. The reproduction 
number consists of four terms which characterize the contribution from the dif-
ferent pathways to new infections with typhoid. 

3. Results and Discussion 

In this study our objective is to model transmission dynamics of typhoid fever 
via the direct and indirect paths, we want to analyze what happens to the system 
when control measures like vaccination, treatment and water sanitation either 
effected or not. Furthermore we want to know the role of carriers and sympto-
matic individuals to this dynamical system. Various graphical representations 
have been generated with the help of MATLAB which will support our analytical 
results. Since, most of the parameters were not readily available; it was found 
convenient to pick from other sources and unavailable data were estimated. In 
order to perform simulations, baseline values of parameters from Table 1 pre-
sented before were used.  

It can be seen from Figures 2(a)-(d) that sanitation, vaccination, treatment of 
both symptomatic and asymptomatically infected individuals respectively, are 
observed to reduce the severity of the disease if such parameters are increased.  
 
Table 1. Parameters and their description. 

Parameter Value Description Source 

Λ  106 Constant human recruitment rate [10] [13] 

bµ  0.4/year Mortality rate for bacteria, including phage degradation Estimated 

hµ  0.167/year Natural human mortality rate Estimated 

1d  0.15/year Disease induced death rate [2] 

2d  0.6/year Disease induced death rate Estimated 

β  0.02/year Effective contact rate between individuals (contact sufficient) Estimated 

τ  0.7/year Per capita contact rate for humans and contaminated water Estimated 

1η  0.04/year Recovery rate of infectious humans [4] 

2η  0.05/year Recovery rate of infectious humans Estimated 

1  0.5/year Bacteria shed rate into the water supply by infectious human Estimated 

2  0.4/year Bacteria shed rate into the water supply by infectious human Estimated 

φ  0.33/year Per capita rate at which recovered humans are susceptible Estimated 

θ  0.4/year Per capita rate at which susceptible humans are vaccinated [10] 

r  0.01/year (Maximum) per capita growth rate for S. typhi bacteria [10] 

K  100/year Carrying capacity for S. typhi Estimated 

p  0.8/year Proportion of infected individuals who are symptomatic Estimated 
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(a)                                                          (b) 

 
(c)                                                          (d) 

Figure 2. (a)shows the effect of sanitation effort to the effective reproduction number, (b) shows the effect of variation of vaccina-
tion coverage on the effective reproduction number, (c) shows effect of variation of therapeutic treatment of symptomatic infec-
tious individuals on the effective reproduction number and (d) shows effect of variation of therapeutic treatment of asymptomatic 
(carrier) infectious individuals on the effective reproduction number. 

 
Recovery of infected individuals has a twofold benefit in the fight against the in-
fection; 1) it leads to reduction the likelihood getting new infections through di-
rect person to person transmission, and 2) a negligible amount of the pathogen 
would be shed into the aquatic reservoir greatly reducing the infection risk, most 
especially for the community that may have direct contact with a potentially 
contaminated water source. In addition, recovering individuals acquire some 
immunity to the disease which only wanes over a reasonable period of time 
hence reducing the susceptible. On the other hand, it can be seen from Figures 
3(a)-(e) that increased discharge of fresh bacteria into the aquatic environment 
by either the symptomatic or asymptomatic individuals, increased probability of 
contracting bacteria from the environment. Likewise, high personal contact rate 
with either the symptomatic or asymptomatic individuals increase the risk of 
contracting typhoid fever. The worst case scenario in case of epidemic outbreak 
may be experienced when the level of hygiene is poor; maximizing person-to- 
person contact rate and when there is no accesses to clean water; which max-
imizes disease transmission through contact with the contaminated reservoir. If 
immunization of the susceptible population alone does not bring about typhoid 
elimination, then measures to reduce per case or per carrier infectivity, such as 
improved sanitation or hand washing with soap, might be considered instead  
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(a)                                                          (b) 

 
(c)                                                          (d) 

 
(e) 

Figure 3. (a) shows the effect of infectious individuals polluting the environment with salmonela bacteria to the effective repro-
duction number, (b) shows the effect of carriers individuals polluting the environment with salmonela bacteria to the effective 
reproduction number, (c) shows probability of catching bacteria from the environment, (d) shows effect of variation of contact 
rate with carrier individuals on the effective reproduction number, (e) shows effect of variation of contact with infectious individ-
ual on the effective reproduction number. 
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of or in conjunction with vaccination [24] [25]. The multi- compartment models 
suggest such a reduction in effective contact rates could lead to important reduc-
tion in prevalence [3] [26] [27]. This is consistent with Briscoe’s analytical model 
[28]. 

4. Conclusion 

In this paper, a deterministic model which incorporates person-to-person con-
tact rate and person-environment was presented and analyzed. Important ma-
thematical features of the models such as the threshold for the epidemic, steady 
states, positivity and boundedness of solutions as well as the region of biological 
significance were determined. The model was shown to have a disease free equi-
librium which is both locally and globally asymptotically stable when the repro-
duction number is less than unity. This disease free equilibrium is unstable when 
the disease threshold is greater than unity. The model has a unique endemic 
equilibrium for 1eR > . In general, vaccination coverage, therapeutic treatment 
and water sanitation have been shown to play a pivotal role of diminishing the 
outbreak when they are encouraged in the community. On the other hand, it has 
been found beneficial to minimize contact with typhoid patients, avoid spoiling 
water sources with feces, and people should use Latrines. We acknowledge the 
fact that this work may have shortfalls as follows. The model does not take into 
account education campaigns. However, education is recommended as a pre-
ventive measure for typhoid. Proposed improvements of the model include con-
sideration of a combination of hygiene, vaccination, education campaigns and 
biological control with salmonella specific bacteriophage. 
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