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Abstract 
In order to find stable, accurate, and computationally efficient methods for 
performing the inverse Laplace transform, a new double transformation ap-
proach is proposed. To validate and improve the inversion solution obtained 
using the Gaver-Stehfest algorithm, direct Laplace transforms are taken of the 
numerically inverted transforms to compare with the original function. The 
numerical direct Laplace transform is implemented with a composite Simp-
son’s rule. Challenging numerical examples involving periodic and oscillatory 
functions, are investigated. The numerical examples illustrate the computa-
tional accuracy and efficiency of the direct Laplace transform and its inverse 
due to increasing the precision level and the number of terms included in the 
expansion. It is found that the number of expansion terms and the precision 
level selected must be in a harmonious balance in order for correct and stable 
results to be obtained. 
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1. Introduction 

Laplace transforms play a key role in many applications of mathematics to the 
fields of engineering, physics, and finance, whenever probability density func-
tions, or linear differential equations or integral equations are involved. Laplace 
transform techniques may simplify the task of solving systems of differential eq-
uations [1], [2], [3], and can be considered in terms of typical applications [4], 
[5]. 
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Numerical inversion of Laplace transform is crucial for many applications. 
Unfortunately, when considering interesting examples, it is often difficult to find 
an analytical expression for the inverse Laplace transform. Inverting the Laplace 
transform is a challenging task. This challenge faced in many application areas 
including the finding of various performance measures in queueing and related 
probability models [6], [7], [8], [9], in solving partial differential equations [10], 
and in the pricing and hedging of financial derivatives [11], [12], [13]. 

This paper investigate the complicated and very interesting relationship be-
tween numerical precision and the number of terms in one particular Laplace 
transform inversion algorithm, the Gaver-Stehfest algorithm, and illustrates this 
relationship using several carefully chosen numerical examples. 

For numerous practical situations the inverse of Laplace transform is com- 
plicated and either doesn’t have a closed form, or has a solution which cannot be 
represented by any simple formula, performed even in symbolic software (Maple 
or Mathematica). An alternative is to use a numerical technique for inversion. 
One way to choose among various alternative methods is to provide a large set of 
test problems, and to demonstrate how a specific algorithm works on each of 
them. 

Several algorithms have been proposed for numerical Laplace transforms in-
version, see for instance the surveys in [4] and [14]. The Gaver-Stehfest algo-
rithm [15] is one of the most powerful algorithms for this purpose. The conver-
gence of this algorithm has been examined in [16]. Unfortunately despite its 
theoretical advantages, in many practical applications, numerical inversion often 
encounters numerical accuracy problems [14] [17] [18] [19] [20]. As such, small 
rounding errors in computation in standard double arithmetic may signifi- 
cantly corrupt the results, rendering these algorithms impractical to apply. Ex- 
tended precision allows to add additional significant figures, and produce results 
that converge to the solution. Laplace and inverse transforms for the test func-
tions used in numerical calculations are presented in Table 1. These complicated 
functions are used to test the accuracy of the numerical Laplace transform and 
its inverse. 

In general, lowercase letters used to denote the function ( )f t  to be trans-
formed, and the uppercase letter ( )C s  to denote its Laplace transform, for 
example, ( ){ } ( )f t C s= . If the closed form of ( )C s  inversion is unknown, 
the original ( )C s  compared with numerical solution ( )C s

  after double 
transformation. The results are illustrated in the plots and error estimations. 

With the help of the arprec library [21], C++ and MATLAB numerical class 
library [22], [23] applied, to investigate the role that extended precision can play 
in accuracy of Laplace transform and inversions. 

The remainder of the paper is organized as follows. In Section 2, a brief de-
scription of the underlying theory is given, to introduce numerical Laplace 
double transformation technique. Sections 3 and 4, apply the Gaver-Stehfest al-
gorithm to the test functions with various degrees numerical accuracy. In  
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Table 1. Laplace and inverse transforms for the test functions used in numerical calcu- 
lations. 

Function ( )C s  ( )f t  

1 1
2s +

 2te−  

2 ( )( ) 120.2 1s
−

+ +  ( )0.2 sinte t−  

3 ( ) 12 1s
−

+  ( )sin t  

4 ( )( ) 22 21 1s s
−

− +  ( )cost t  

5 ( )11tan s−−  ( )1 sint t−  

6 21 1 s+  ( ) ( )
( )

2

0 0 2

1

2 !

n n

nn n

t
J t

n
∞

=

−
= ∑  

7 
1

3 2

se
s

−

 ( )sin 2 t

π
 

 
Sections 5 and 6, the stability and accuracy of the Laplace transform inversion 
and the role that the number of expansion terms and precision of the arithmetic 
play in the numerical results is described. Section 7 describes the algorithm and 
software implementation of the numerical direct Laplace transform. This section 
gives background material needed to provide the method, described in the next 
Section 8. In Section 8 the numerical double transformation technique to con-
firm agreement of the numerical inversion results is presented. In Section 9 
compares the execution time for various arbitrary precision calculations. Con-
cluding remarks are given in Section 10. The Appendix introduces C++ code 
used to implement numerical Laplace and inverse Laplace transform in arbitrary 
precision, and illustrates the corresponding graphical user interface with the 
help of several screenshots.  

2. Numerical Laplace Transforms and Their Inverses 
2.1. Laplace Transform 

Let ( )f t  be a function defined for 0t ≥ . Then the integral 

( ){ } ( )
0

dstf t e f t t
∞ −= ∫                  (1) 

is said to be the Laplace transform of ( )f t , provided the integral converges. 
The symbol   is the Laplace transformation operator, which act on the func-
tion ( )f t  and generates a new function, ( ) ( ){ }C s f t=  .  

2.2. Inverse Laplace Transform 

If ( )C s  represents the Laplace transform of a function ( )f t , that is, 
( ){ } ( )f t C s= , then ( )f t  is the inverse Laplace transform of ( )C s  and 

( ) ( ){ }1f t C s−=  . The inverse Laplace transform ( ){ }1 C s−  is uniquely de-
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termined in the sense that if ( ) ( )C s G s=  and ( )f t  and ( )g t  are conti- 
nuous functions, then ( ) ( )f t g t= . This result is known as Lerch’s theorem [4]. 

2.3. Numerical Laplace Transform and Inversion 

The Laplace transform can be inverted either algebraically or numerically. The 
notation ( )f t  used for the numerical approximation to ( )f t  (numerical in-
version of the Laplace transform ( )C s ), and ( )C s  for the numerical Laplace 
transform of ( )f t . 

These results, together with the following well known properties which pro-
vide very useful numerical checks, may be applied to numerical algorithms and 
corresponding software.  

( ) ( )
0

Integral property,  d 0ste f t t C
∞ − =∫              (2) 

( ) ( )
0

Initial value theorem,  lim lim
t s

f t sC s
→ →∞

=            (3) 

( ) ( )
0

Final value theorem,  lim lim
t s

f t sC s
→∞ →

=            (4) 

If X  is the random variable with the probability density function f  and 
the cumulative distribution function F , this gives  

( ) ( ) ( )
0 0

0 d d 1st stC e F t e f t t
∞ ∞− −= = =∫ ∫              (5) 

2.4. Numerical Laplace Double Transformation Technique 

We define the following double transformation technique for the Laplace trans-
form of the inversion:  

( ) ( ){ }{ }1C s C s−=

                       (6) 

This definition will be used to estimate the accuracy of the Laplace transform 
inversion, when its closed form is unknown. 

After applying the Laplace transform, the problem is said to be in the Laplace 
domain and it is denoted as a function of s  not t . While calculations might be 
easier in the Laplace domain, leaving the solution in the Laplace domain is typi-
cally not useful. To transform the result back into the time-domain, inverse 
Laplace transforms are used. When the analytical answer is unknown, it is diffi-
cult to know whether or not the numerical inversion results are accurate. More-
over, it is hard to judge whether or not changes to the method improve or de-
grade the inversion estimate. 

The following steps are used:  
1) Begin with the Laplace domain function ( )C s .  
2) Compute the numerical inversion using some set of parameters. In this case, 

we will control the precision level and the number of terms in the approximation. 
Setting the precision level to 1N , we get  

( ) ( ){ }1 1

1ˆ
N Nf t C s−=                       (7) 

3) Take the Numerical Laplace Transform of ( )
1

ˆ
Nf t , resulting in  
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( ){ } ( )
1 1

ˆ
N Nf t C s=                       (8) 

4) Compare the functions ( )C s  and ( )
1NC s

 , and define the error-function 
as:  

( ) ( ) ( )
1 1N Ns C s C sε = −                     (9) 

5) Repeat the process with some other precision level 2N .  
6) Compare ( )

1N sε  and ( )
2N sε . The precision level that provides lower er-

rors is superior, and the difference between the error functions can provide a 
way of quantifying the accuracy improvement gained from increasing the preci-
sion level. 

3. Challenging Examples of Laplace Transform and  
Their Inverses  

This demonstration applies the Gaver-Stehfest algorithm [15] to determine the 
inverse Laplace transforms of the test functions to various degrees of numerical 
accuracy. The inverse functions and corresponding test functions are presented 
in Table 1. 

The inverse Laplace transform of ( )C s  is ( )f t , defined such that the fol-
lowing must hold:  

( ) ( )
0

dstC s e f t t
∞ −= ∫                     (10) 

Table 1 lists seven functions which have been used as tests of the numerical 
Laplace transform and inverse transform. Test 6 involves the Bessel function of 
order 0 [24],  

( ) ( )
( )

( )
2

0 02 20

1 1,  and  
2 ! 1

n n

nn
n

t
J t J s

n s

∞

=

−
= =

+
∑            (11) 

4. Gaver-Stehfest Algorithm of Inverse Laplace Transforms 

The Gaver-Stehfest method [15] uses the summation:  

( ) ( ) ( )
1

ln 2 ln 2
,

L

n
n

n
f t K F

t t=

 
≈  

 
∑                 (12) 

where ( )F ⋅  is the Laplace transform of ( )f t . The coefficients nK  depends 
only on the (necessarily even) number of expansion terms, L , given by:  

( )
( ) ( )

( ) ( ) ( ) ( )

2min , 2
2

1
2

2 !
1

2 ! ! 1 ! ! 2 !

Ln L
n L

n
nk

k k
K

L k k k n k k n
+

+ =  

= −
− − − −∑      (13) 

For each function an error E  is calculated as the measure for the accuracy of 
the numerical solution. Let ( )f t  be the analytical solution defined for 

1 2, , , mt t t t=  . We define by ( ) ( ){ }1f t C s−=   the numerical solution. Then 
E  gives the root-mean-square deviation between the analytical and numerical 
solutions for the t  values [19]:  
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( ) ( )( )
1 2

2

1
2 2 , 1, 2,

m

i
E f i f i m i m

=

 = − = 
 
∑ 

          (14) 

The sum (12) doesn’t provide convergence due to roundoff errors for the large 
number of terms L , usually if L  exceeds the number of decimal digits of pre-
cision N  (e.g. L  greater than 16 for standard double precision arithmetics). 
The software implementation of the numerical Laplace transform and the Lap-
lace transform inversion are given in the Appendix.  

5. Accuracy of the Numerical Laplace Transform  
Inversion as a Function of the Number of  
Expansion Terms and Precision 

Numerical inversion of the Laplace transform is an unstable process, so all algo-
rithms are applied in arbitrary precision. In Table 2 and in Figures 2-8 numeri-
cal results related to the test functions presented in Table 1 are reported. The 
numerical solutions are given for different precisions: 16N =  (double preci-
sion), 32N = , 64N = , 128N =  and 256N = . First, as presented in Table 
2, assigned L N= , and the number of terms L  in the approximation equals to 
the digits of precision N . The measures (14) are used to calculate the errors E  
to the t  values 0.5, 1, 1.5, ..., 35 for the functions 1 - 6, and to the t  values 0.5, 
1, 1.5, ..., 140 for the function 7. The reason to use this presentation is because t  
values require a large amount of space to realize the correct accuracy results. 

Example 1. The first function explored is:  

( ) ( ) 21 ,   with   ,
2

tC s f t e
s

−= =
+

              (15) 

where ( ) 2 tf t e−=  is the exact solution of the inversion. The results correspond 
to finding numerical inverse Laplace transform are plotted in Figure 1. For this 
simple function standard double arithmetic algorithms work well. In Table 2 the 
 
Table 2. Calculation errors of the inverse Laplace transform in arbitrary precision, Values 
5.66e−6 65.66 10−≡ × . 

Function ( )C s  N = 16 N = 32 N = 64 N = 128 N = 256 

1 ( )1 2s +  5.66e−6 1.22e−9 6.52e−17 2.25e−32 7.02e−69 

2 ( )( ) 120.2 1s
−

+ +  3.44e−2 7.33e−3 2.46e−4 1.54e−10 5.38e−36 

3 ( ) 12 1s
−

+  6.13e−1 5.04e−1 1.68e−1 2.44e−5 1.01e−27 

4 ( )( ) 22 21 1s s
−

− +  1.43e+1 1.35e+1 6.34e0 1.33e−3 9.88e−26 

5 ( )1 1tan s− −  3.51e−2 2.09e−2 4.80e−3 3.66e−7 3.84e−30 

6 21 1 s+  1.12e−1 8.04e−2 2.26e−2 2.12e−6 2.78e−16 

7 1 3 2se s−  2.59e−1 6.16e−3 3.83e−13 2.14e−41 2.84e−88 
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Figure 1. Given ( ) 1
2

C s
s

=
+

. Compute ( ) ( ){ }1f t C s−=  . The determining function is ( ) 2tf t e−= . 

 
calculations in double precision are at the order of 610− . In the plot, the inver-  

sion ( ) 1 1
2

f t
s

−  =  + 
   and the exact solution ( ) 2 tf t e−=  visibly overlapp-  

ing even for 16N = . The precision from 32N =  to 256N =  gives the se-
quence of improvements. High accuracy is borne out by the errors at the order 

3210−  and 6910−  respectively to the precision 128N =  and 256N = . 
Example 2. The next test function inverted is  

( )
( )

( ) ( )0.2
2

1 ,    with   sin ,
0.2 1

tC s f t e t
s

−= =
+ +

        (16) 

and the results correspond to numerical inverse Laplace transform are shown 
graphically in Figure 2. The accuracy, at double precision, in comparison with 
the exact solution is very poor. As can be seen from Table 2 the calculations in 
double precision are at the order of 210− . The precision level 32N =  and 

64N =  show improvements in accuracy over double precision. In the plot, the 
inversion for 128N =  and the exact solution are visibly overlapping. High ac-
curacy is borne out in Table 2 by the errors at the order 1010−  and 3510−  re-
spectively to the precision level 128N =  and 256N = . 

Example 3. The Figure 3 provides the inverse results for the function  

( ) ( ) ( )2
1 ,   with   sin

1
C s f t t

s
= =

+
              (17) 

Steady improvement of the answer is observed through 128N = . By 
128N =  the inversion is indistinguishable from the exact solution on the inter- 

val shown, but will eventually diverge from the exact solution for some higher 
values of t . 
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Figure 2. Given ( )
( )2

1
0.2 1

C s
s

=
+ +

. Compute ( ) ( ){ }1f t C s−=  . The determining function is 

( ) ( )0.2 sintf t e t−= . 

 

 

Figure 3. Given ( ) 2

1
1

C s
s

=
+

. Compute ( ) ( ){ }1f t C s−=  . The determining function is ( ) ( )sinf t t= . 

 
Example 4. Figure 4 shows the inverse results to the function 

( )
( )

( ) ( )
2

22

1 ,   with   cos
1

sC s f t t t
s

−
= =

+
           (18) 

Similar to the previous two test functions, as N  increases, the interval on 
which the inversion is more accurate gets longer. Since the function is diverging 
and oscillating, the inaccuracies are more visible than in the previous two fig-
ures. 
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Figure 4. Given ( )
( )

2

22

1
1

sC s
s

−
=

+
. Compute ( ) ( ){ }1f t C s−=  . The determining function is ( ) ( )cosf t t t= . 

 
Example 5. Consider the inverse of the function  

( ) ( ) ( )1 sin1tan ,   with   
t

C s f t
s t

−  = = 
 

            (19) 

In Figure 5 the precision level 32N =  and 64N =  show improvements in 
accuracy over double precision, but higher N  do not result in a visibly better 
inversion. In the plot, the numerical inversion for 64N ≥  and the exact solu-
tion are visibly overlapping. 

Example 6. The inverse results to the function  

( ) ( ) ( )02

1 ,   with   
1

C s f t J t
s

= =
+

             (20) 

is plotted in Figure 6. Varying precision levels 32N = , 64N = , 64N =  and 
128N =  show successive improvements in accuracy over double precision. The 

numerical inversion for 128N ≥  and the exact solution are visibly overlapping. 
Naively it would seem that continuing to increase the number of terms L  

would improve the accuracy of the approximation, since more terms seem to 
produce results closer to the exact solution. Consider the Bessel example with 
the precision level 32N = , increasing the number of terms to 64L = . The re-
sult is slightly better, close to 22.26 10−× , that for 64N =  and 64L = . But 
using the precision level 32N =  and the number of terms in the approxima-
tion 128L =  (Figure 7), the error will be at the order of 3910  due to numeri-
cal error dominating the solutions that are obtained this way. The algorithm was 
unable to provide even an order of magnitude estimate. 

Example 7. Consider the inverse of the function  

( ) ( )
( )1

3 2

sin 2
,   with   

s teC s f t
s π

−

= =              (21) 
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Figure 5. Given ( ) 1 1tanC s
s

−  =  
 

. Compute ( ) ( ){ }1f t C s−=  . The determining function is ( ) ( )sin t
f t

t
= . 

 

 

Figure 6. Given ( )
2

1
1

C s
s

=
+

. Compute ( ) ( ){ }1f t C s−=  . The determining function is ( ) ( )0f t J t= , 

Bessel function of order 0. 
 

In Figure 8 steady improvement is observed through 64N =  with the error 
at the order of 1310−  (13 decimal places accuracy, Table 2). 

As can be seen from Table 2, all test functions have low level of accuracy for 
16N = , 32N =  and for 64N =  (except the last example). For all functions 

the algorithm gave reasonable answer (at least 3 decimal places of accuracy), in-
creasing the precision level up to 128. Finally all functions have high level of  
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Figure 7. Given ( )
2

1
1

C s
s

=
+

. The precision level is 32N =  and the number of expansion terms is 

128L = . Compute ( ) ( ){ }1f t C s−=  . The determining function is ( ) ( )0f t J t= . The algorithm was una-

ble to provide even an order of magnitude estimate. 
 

 

Figure 8. Given ( )
1

3 2

seC s
s

−

= . Compute ( ) ( ){ }1f t C s−=  . The determining function is ( )
( )sin 2 t

f t
π

= . 

 
accuracy (at least 16 decimal place accuracy) increasing the precision level up to 
256 digits.  

6. The Role of the Number of Expansion Terms  
and Precision in the Numerical Accuracy 

In Table 2 the numerical solutions are given for the number of expansion terms 
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equal to the precision, L N= . Now the accuracy of the numerical inversion is 
investigated, varying the number of expansion terms and precision. The Table 3 
and Figure 9 give the error estimates of the numerical inverse using the Gaver- 
Stehfest implementation for the function ( ) ( )0.2 sintf t e t−=  having the La- 
place transform ( ) ( )( ) 120.2 1C s s

−
= + + . The solutions are observed while in-

creasing the number of expansion terms L . However, there is a limitation to 
adding additional terms. 

Let 16N = . Increasing the number of terms in the computation to 64L ≥  it 
appears that the numerical inversion becomes unstable and functions are domi-
nated by numerical errors. If 32N =  and 64N = , the numerical inver- 
 

Table 3. Numerical errors of the inverse Laplace transform ( ) ( )( ){ }121 0.2 1f t s
−

−= + +   

as a function of the number of expansion terms L  and precision N , Values 3.44e−2 
23.44 10−≡ × . 

( ) ( )( ) 120.2 1C s s
−

= + +  N = 16 N = 32 N = 64 N = 128 N = 256 

L = 16 3.44e−2 3.44e−2 3.44e−2 3.44e−2 3.44e−2 

L = 32 7.33e−3 7.33e−3 7.33e−3 7.33e−3 7.33e−3 

L = 64 4.66e+10 2.66e−4 2.46e−4 2.46e−4 2.46e−4 

L = 128 2.78e+53 6.86e+38 1.01e+10 1.54e−10 1.54e−10 

L = 256 2.99e+139 5.47e+124 9.72e+95 4.57e+23 5.38e-36 

 

 
Figure 9. Numerical errors E  of the Laplace transform inversion  

( ) ( )( ){ }121 0.2 1f t s
−

−= + +   as a function of the number of expansion terms L  and 

precision N . Estimated data presented in terms of ( )10MAX Log ,0E− , here 0 denotes 

the algorithm has failed. 
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sion becomes unstable for 128L ≥ . If 128N = , the numerical inversion be-
comes unstable for 256L ≥ . On the other hand there is only slight improve-
ment if the precision exceeds the number of terms, N L> . 

Table 3 clearly shows that there is no point in increasing the precision beyond 
a point warranted by the accuracy of the number of terms in Gaver-Stehfest al-
gorithm. On the other hand, using a large number of terms will not be of benefit 
if the precision with which each term is calculated, is insufficient. For example, 

256L = , 128N =  is a useless result while 256N =  gives high accuracy. The 
example, 16N = , 16L =  gives the same accuracy as 256N = , 16L = . 

Similar conclusions may be drawn from the results reported in Table 4 and in 
Figure 10. 
 

 
Figure 10. Numerical errors E  of the Laplace transform inversion  

( ) ({ }1 1 3 2sf t e s− −=   as a function of the number of expansion terms L  and precision 

N  Estimated data presented in terms of ( )10MAX Log ,0E− , here 0 denotes the algo-

rithm has failed. 
 
Table 4. Numerical errors of the inverse Laplace transform ( ) { }1 1 3 2sf t e s− −=  . 

( ) 1 3 2sC s e s−=  N = 16 N = 32 N = 64 N = 128 N = 256 

L = 16 2.59e−1 2.59e−1 2.59e−1 2.59e−1 2.59e−1 

L = 32 6.16e−3 6.16e-3 6.16e−3 6.16e−3 6.16e−3 

L = 64 3.33e+13 1.19e−1 3.83e−13 3.83e−13 3.83e−13 

L = 128 4.64e+56 2.00e+42 3.08e+13 2.14e−41 2.14e−41 

L = 256 1.60e+143 6.17e+128 1.14e+100 7.94e+27 2.84e−88 
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The error estimates are given for the example  

( )
( )

( )
1

3 2

sin 2
,    with   

st ef t C s
sπ

−

= =            (22) 

Let 16N = . Increasing the number of terms in the computation to 64L ≥  
we can see that the numerical inversion becomes unstable. If 32N =  and 

64N = , the numerical inversion failed for 128L ≥ . In case of 128N = , the 
numerical inversion becomes unstable for 256L ≥ . There is only a slight im-
provement if the precision exceeds the number of terms N L> . Again as can 
be seen from Table 3, the number of terms and precision must be in a harmo-
nious balance for good results to be obtained. 

Evidently the two plots in Figure 9 and Figure 10, are very much alike. They 
show similar tracking boundary movements and illustrate whether the algorithm 
has succeeded in obtaining high-order accuracy or fails due to numerical insta-
bility. 

7. Numerical Computation of the Direct Laplace Transform 

The Laplace transform of a function ( )f t  is defined by (1) on the interval 
[ ]0,∞ . The problem of an infinite upper limit of integration may be removed by 
the substitution ( ) 1ln ,  d dt u t u u−= − =  which replaces infinite by finite limits. 

When 0t = , 1u =  and when t →∞ , 0u → . Then  

( ) ( ) ( )( ) ( )( )1ln 1 1
0 0 0

d ln d ln d
sust se f t t e f u u u u f u u

∞ ∞− − −= − = −∫ ∫ ∫    (23) 

The behaviour of the function to be transformed must be considered at the 
new limits, and the exponential function inside the integral requires special ex-
amination in terms of high accuracy. 

Compute the Direct Laplace Transform by  
Composite Simpson’s Rule 

For integration over the interval [ ],a b , an even n  is chosen such that the 
function is adequately smooth over each subinterval 1,j jx x +    where  

jx a jh= +  for all { }0,1, 2, ,j n∈   with b ah
n
−

= . In particular, 0x a=  and 

nx b= . Then, the composite Simpson’s Rule is given by [25]:  

( ) ( ) ( ) ( ) ( )
2 1 2

0 2 2 1
1 1

d 2 4
3

n nb
j j na

j j

hf x x f x f x f x f x
−

−
= =

 
≈ + + + 

 
∑ ∑∫     (24) 

Applying this to the transformed integrand from the Equation (23) we get 

ju jh=  for all { }0,1, 2, ,j n∈   with 1h
n

= . Therefore,  

( ) ( )( ) ( )( )

( )( ) ( )( )

2 1
1 1

2 2
1

2
1 1

2 1 2 1
1

1 0 ln 0 2 ln
3

         4 ln 1 ln 1

n
s s

j j
j

n
s s

j j
j

C s f u f u
n

u f u f

−
− −

=

− −
− −

=


≈ − + −




+ − + − 


∑

∑
      (25) 
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The basic Simpson’s rule formula divides the interval [ ],a b  of integration 
into two pieces. To apply the composite Simpson’s rule, the interval [ ],a b  must  

be divided into an even number of subintervals 2n m= . Then 
2

b a b ah
n m
− −

= = . 

Let f  be a function with four continuous derivatives. Then, the composite 
Simpson’s rule converges to the true value of the integral with rapidity 4n−  at 
worst. The error committed by the composite Simpson’s rule is bounded in ab-
solute value by [25].  

( ) ( )
5

4
4 max ,      

180n
b a

E f a b
n

ξ ξ
−

= − < <              (26) 

For numerical Laplace transform in the obtaining approximate integral by this 
rule, some modifications must be made. First, the term ( )( )10 ln 0s f− −  in (25) 
must be addressed. This term addresses the behaviour of the function at infinity. 
If the Laplace transform exists, the ( )lim 0st

t e f t−
→∞ → , meaning that the ex-

ponential dampening term outweighs the value of ( )f t  at infinity. Therefore, 
( )limt f t→∞  must either exist or oscillate between some finite bounds. As such, 

it may be concluded that the term ( )( )10 ln 0s f− −  vanishes and may be 
dropped from the formulation. 

Next, we need to examine the last term, ( )( ) ( )11 ln 1 0s f f− ⋅ − = . Evaluating 
this term should require that the function be defined at 0t = . This can however 
prove problematic since many applications of the Laplace transform result in t
-domain functions that have singularities at 0t = . As such, we change the do-
main of integration to be ( )0,1−   as opposed to ( )0,1 , where   is the ma-
chine epsilon depending on the precision level used. For example, in double pre-
cision ( )16N = , 162.22 10−≈ × . 

Therefore we have:  

( ) ( )( ) ( )( ) ( )( )
2 1 2

1 1 1
2 2 2 1 2 1

1 1

1 2 ln 4 ln ln ,
3

n n
s s s

j j j j n n
j j

C s u f u u f u u f u
n

−
− − −

− −
= =

 
≈ − + − + − 

 
∑ ∑  (27) 

where n  is the number of subintervals, 1h
n
−

=
 , and   is the machine epsi-

lon at the precision level. 
Our C++ software implementation of the numerical Laplace transform is 

based on Equation (27). The following improvements were made to speed up the 
calculations. Notice that only the powers of u  depend on s  in the Equation 
(27). As such, the function evaluations, ( )( )ln jf u− , need not be evaluated 
every time a new s  value is calculated. This is especially useful in the double 
transformation calculations because each evaluation of the function ( )f̂ t  is 
the numerical inversion of ( )C s  at some point t . Depending on the precision 
level, this can be an extremely time consuming step. The implementation of the 
method is shown in Appendix. 

Example 8. The numerical Laplace transform for the Bessel function ( )0J t  
is plotted in Figure 11. We used a composite Simpson’s Rule calculation with up 
to 25,000 subintervals to ensure high accuracy. Comparing Laplace transform  
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Figure 11. Given ( ) ( )
( )

2

0 2

1

2 !

n n

nn n

t
f t

n
∞

=

−
=∑ . Compute ( ) ( ){ }C s f t=  . The determining function is 

( )
2

1
1

C s
s

=
+

. 

 

( ) ( ){ }0C s J t=   and the exact solution ( )
2

1
1

C s
s

=
+

 for Bessel function 

( )0J t  is shown in Table 5. 

Example 9. Consider the following Laplace transform example  

( )
( )

( )
1

3 2

sin 2
,    and   

st ef t C s
sπ

−

= =             (28) 

Numerical Laplace transform results are shown in Figure 12 and Table 6. 

8. Validation of the Numerical Inversion Using  
Double Transformation Technique  

Example 10. The first computation presented in this section is the theoretical 
error for Numerical Laplace transform of the function  

( ) ( )2 1,    with   ,
2

tf t e C s
s

−= =
+

              (29) 

where ( )C s  is the exact Laplace transform solution. Let the number of subin-
tervals 2 256n m= = . From the Equation (26) we have  

( ) ( )4
4

1 max
180 256nE f u≤

×
                 (30) 

The integral ( )( )1 1
0

ln dsu f u u− −∫  is used, where tu e−= . Now ( ) 2f u u= . 

This yields  

( )( )1 1 11 1 2 1
0 0 0

ln d d ds s su f u u u u u u u− − +− = =∫ ∫ ∫             (31) 

The integrand ( ) 1sf u u +=  has four continuous derivatives and  
( ) ( ) ( ) ( ) ( )4 31 1 2 sf u s s s s u −= − + − . 
Because 0 1u≤ ≤ , then for example if 0.7s = ,  

( ) ( )4 13
4 4

1 1max 0.464 6 10
180 256 180 256nE f u −≤ = × ≈ ×

× ×
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Table 5. Comparison of the Laplace transform ( ) ( ){ }0C s J t=   with the exact solution 

( )
2

1
1

C s
s

=
+

 for Bessel function ( )0J t . Values 5.26e−2 25.26 10−≡ × . 

s  ( ){ }0J t  
2

1
1 s+

 Error 

0.1 0.942376 0.995037 5.266103e−2 
0.2 0.964656 0.980581 1.592439e−2 
0.3 0.953056 0.957826 4.770068e−3 
1 0.707105 0.707107 1.438876e−06 
2 0.447214 0.447214 3.906561e−11 
3 0.316228 0.316228 1.001639e−13 
4 0.242536 0.242536 9.999995e−14 
5 0.196116 0.196116 9.999975e−14 

 

Table 6. Comparison of the Laplace transform ( )
( )sin 2 t

C s
π

 
 =
 
 

   with the exact so-

lution ( )
1

3 2

seC s
s

−

= . Values 5.62E−6 65.62 10−≡ × . 

s  
( )sin 2 t

π

 
 
 
 

  
1

3 2

se
s

−

 Error 

1 3.678744e−1 3.678794e−1 5.625486e−06 

2 2.144409e−1 2.144410e−1 2.318805e−08 

10 2.861345e−2 2.861347e−2 2.317171e−08 

30 5.886267e−3 5.886290e−3 2.317492e−08 

50 2.772397e−3 2.772421e−3 2.317815e−08 
100 1.719596e−3 1.719619e−3 2.318121e−08 
120 7.543895e−4 7.544127e−4 2.318945e−08 
140 5.993618e−4 5.993850e−4 2.319269e−08 

 

 

Figure 12. Given ( )
( )sin 2 t

f t
π

= . Compute ( )
( )sin 2 t

C s
π

 
 =
 
 

  . The determining function is 

( )
1

3 2

seC s
s

−

= . 
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Next we compare this theoretical error bound result with the numerical error 
obtaining by two step double transformation technique, on  

( ) 1 1
2

C s
s

−  =   +  


                       (32) 

Figure 13 displays the numerical error ( )N sε  in varying precision levels for 
some range of s  beginning at very low values. From Figure 13 it is clear that 
increasing the decimal precision greatly increases the accuracy of the estimates 
for low values of t . Each time N  is doubled, ( )1Nε  and ( )2Nε  are nearly 
halved. Examining lower values of s  reveals that the difference between the 
various ( )N sε  is not as pronounced as for 1s =  or 2s = . This suggests that 
increasing N  does not have a very significant impact on the double transfor- 
mation accuracy for higher values of t . As such, depending on the needs of the 
application, one might stop increasing precision past 64N =  since the double 
transformation errors are not showing a worthwhile improvement for the large 
increase in computational cost. 

The error at ( )20.7 0.5logs s≈ = −  for 250N =  subintervals. For the preci-
sion level 64 the error is at the order of 1710− , and for the precision level 128 the 
accuracy is much better, at the order 3010− . 

For the precision levels 16 and 32 the accuracy are at the order 710−  and 
1210−  respectively. For the precision levels 16 and 32, the accuracy of the answer 

has deteriorated due to roundoff error. Note that this error of the inverse Lap-
lace transform is ignored in the first step of the calculation as it is much smaller 
than suggested by the composite Simpson’s rule in the second step of the double 
transformation algorithm. 
 

 

Figure 13. Numerical error ( ) ( ) ( )N Ns C s C sε = −   for double transformation 

( ) 1 1
2NC s

s
−  =   +  



    in varying precision levels. 
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Example 11. This example illustrates two steps of the numerical double 
transformation calculation  

( )
1

1
3 2

seC s
s

−
−   =   

   



                      (33) 

Figure 14 depicts ( )N sε  in varying precision levels for some range of s  
from the very low values. 

Example 12. Numerical double transformation for Bessel function of order 0 
is given in Figure 15 and Table 7. The plots in Figure 11 and Figure 15 are in-
distinguishable. High accuracy is borne out by comparison of the approximation 
with the exact solution. 
 

 

Figure 14. Numerical error ( ) ( ) ( )N Ns C s C sε = −   for double transformation 

( )
1

1
3 2

s

N
eC s
s

−
−   =   

   



    in varying precision levels. 

 

Table 7. Comparison of ( ) ( ){ }{ }1C s C s−=

    for Bessel function in Table 1 with the 

exact solution ( )
2

1
1

C s
s

=
+

. Values 7.3e−3 37.3 10−≡ × . 

s  1

2

1
1 s

−
   
  

+   
   

2

1
1 s+

 Error 

0.1 0.987647 0.995037 7.390034e−3 
0.2 0.979209 0.980581 1.371815e−3 
0.3 0.957524 0.957826 3.018401e−4 
1 0.707107 0.707107 3.477729e−07 
2 0.447214 0.447214 5.855865e−07 
3 0.316228 0.316228 1.241552e−07 
4 0.242536 0.242536 4.256322e−08 
5 0.196116 0.196116 1.135660e−08 
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Figure 15. Given ( )
2

1
1

C s
s

=
+

. Compute ( ){ }{ }1C C s−=   . 

 
Example 13. Numerical double transformation results for the function 

( )
1

3 2

seC s
s

−

=  are given in Figure 16 and in Table 8. The plots in Figure 12 and  

Figure 16 are nearly identical. As can be seen from Table 6 and Table 8, the 
accuracy is very high. 

Consider again double transformation results for the function ( )
1

3 2

seC s
s

−

= .  

Let ( )22 1logs s= =  and the precision level N = 32. The results illustrated in the 
four plots (Figure 17) correspond to different number of subintervals n  in 
composite Simpson’s rule to approximate the Laplace transform. The error esti-
mations are at the order 5 6 710 ,10 ,10− − −  and 810−  respectively with n = 32, 64, 
128 and 512 subintervals. 

9. Comparison of Running Time in Arbitrary  
Precision Calculations 

The execution time for the test functions is shown in Table 1. The direct Laplace 
transform and inverse Laplace transform are computed using different precision 
levels N . The number of subintervals used in the direct Laplace transform cal-
culations is 512L = . Table 9 gives the relative CPU time of the numerical solu-
tions. All times are relative runs performing in double precision (16 digits). 
Computer configuration used: AMD 8350 8-Core processor 4 GHz, 8 GB RAM, 
240 GB SDD, Windows 10 Pro. 

Let N  be the precision level. We approximate the relative CPU time ( )t N  
for inverse and direct Laplace transform algorithms by the polynomial ( )p N  
of degree 6. There are seven coefficients and the polynomial is:  

( ) )6 5 4 3 2
1 2 3 4 5 6 7p N p x p x p x p x p x p x p= ∗ + ∗ + ∗ + ∗ + ∗ + ∗ +     (34) 

For inverse Laplace transform algorithm, the coefficients in the polynomial 
( )p N  of degree 6 are:  
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Figure 16. Given ( )
1

3 2

seC s
s

−

= . Compute ( ){ }{ }1C C s−=   . 

 

 

Figure 17. Given ( )
1

3 2

seC s
s

−

= . The precision level 32N = . Compute the error estima-

tions for different number of subintervals with n = 32, 64, 128 and 512 in composite 
Simpson’s rule to approximate the Laplace transform. 
 

Table 8. Comparison of ( )C s =  with original Laplace transform ( )
1

3 2

seC s
s

−

= . Values 

4.3e−07 74.3 10−≡ × . 

s  
1

1
3 2

se
s

−
−   

  
   
   

1

3 2

se
s

−

 Error 

1 3.678790e−1 3.678794e−1 4.315168e−07 
2 2.144410e−1 2.144410e−1 8.855806e−11 
10 2.861347e−2 2.861347e−2 9.927583e−11 
30 5.886290e−3 5.886290e−3 1.452239e−10 
50 2.772420e−3 2.772420e−3 1.461473e−10 
100 9.900497e−4 9.900498e−4 1.436632e−10 
120 7.544126e−4 7.544127e−4 1.431769e−10 
140 5.993848e−4 5.993850e−4 1.4283671e−10 
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Table 9. Relative CPU time for inverse and direct Laplace transform algorithms as a 
function of the precision level. All times are relative to run in double precision (16 digits). 

Precision Level (N) 16 32 64 128 256 512 750 1000 

Inverse Laplace Transform 1 3 25 200 1.80e3 1.91e4 7.95e4 2.17e5 

Direct Laplace Transform 1 1.65 2.04 4.52 10.25 22.07 37.33 70.51 

 

( ) ( )
(

)

1 2 3 4 5 6 76 , , , , , ,

4.673630 13,9.235484 10, 4.371448 07,

   2.108954 04, 1.350226 02,5.725313 01, 6.348896 00 .

p p p p p p p p

e e e

e e e e

=

= − − − − −

− − − − − +

 

For the direct Laplace transform, the coefficients in the approximation poly-
nomial ( )p N  of degree 6 are:  

( ) ( )
(

)

1 2 3 4 5 6 76 , , , , , ,

6.42651 17, 2.43029 14,3.199151 10,

   4.079160 07,1.878244 04,9.7309 03,9.178160 01 .

p p p p p p p p

e e e

e e e e

=

= − − − −

− − − − −

 

In Figure 18 we plotted relative CPU time for inverse Laplace transform and 
for direct Laplace transform as a function of the precision level N . 

10. Conclusion  

Laplace Transform applications often require high accuracy beyond IEEE double 
precision. Common situations involve calculations that are numerically unstable, 
and even double-double precision is not sufficient to reach the necessary accu-
racy. Roundoff and underflow/overflow errors that occur during the computa-
tions can cause severe stability problems. There are several numerical inverse 
Laplace transform methods, each successful in some fields. The problem is to 
find methods successful in stability, accuracy and computational efficiency. 
Overall, the presented double transformation approach provides an effective way 
to compare the effectiveness of numerical inversion methods. In order to vali-
date and improve the inversion solution, the numerical direct Laplace transform 
are used for this inversion, and compared it with the original Laplace transform. 
We implemented the composite Simpson’s Rule for direct Laplace transform, 
and investigate the role that extended precision can play obtaining accurate 
transform inversions. The high precision approach seems to be an effective way 
to handle the challenging problems dealing with periodic functions. We demon-
strated that the level of precision chosen must match algorithms properly. In the 
Gaver-Stehfest algorithm the balance is between the truncation error and roun-
doff error. High precision in an inaccurate algorithm yield little benefit, while a 
potentially highly accurate algorithm may be defeated by roundoff error if in-
adequate accuracy is used.  
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Figure 18. Relative CPU time for inverse Laplace transform (left) and for direct Laplace 
transform (right) as a function of the precision level N . All times are relative to run in 
double precision (16 digits). 
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Appendix: C++ Software Implementation of Numerical  
Laplace and Inverse Laplace Transform in Arbitrary  
Precision  

The Gaver-Stehfest algorithm of inverse Laplace transform was implemented in 
multiple precision as described in Section 4. Numerical direct Laplace transform 
was implemented in multiple precision by the composite Simpson’s Rule, as 
covered in details in Section 7. The calculations can be performed in C++ up to 
1000 places of decimals/1000 significant digits. 

The C++ code of the inverse Laplace transform and direct Laplace transform 
are given below.  

1. C++ implementation of the Gaver-Stehfest algorithm for inverse Lap-
lace transform  
 

 
 

2. C++ implementation of the composite Simpson’s Rule for direct Lap-
lace transform 
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3. Demonstration the accuracy of Laplace transform inversions  
This demonstration shows the role that extended precision can play in accu-

racy of Laplace transform inversions by six screenshots (Figures 19-21)  

corresponding to the following periodic function. Given ( )
( )

2

22

1

1

sC s
s

−
=

+
. 

Compute ( ) ( ){ }1f t C s−=  . The determining function is ( ) ( )cosf t t t= .  

 

 
 

 

Figure 19. Given ( )
( )

2

22

1
1

sC s
s

−
=

+
. Compute ( ) ( ){ }1f t C s−=  . The determining function 

is ( ) ( )cosf t t t= . Two screenshots are given for 512 number of terms and the precision 

level 128 and 256. We failed to get the solution. 
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Figure 20. Given ( )
( )

2

22

1
1

sC s
s

−
=

+
. Compute ( ) ( ){ }1f t C s−=  . The determining func-

tion is ( ) ( )cosf t t t= . Two screenshots are given for 16 and 256 precision levels. 

 

 

 

Figure 21. Given ( )
( )

2

22

1
1

sC s
s

−
=

+
. Compute ( ) ( ){ }1f t C s−=  . The determining func-

tion is ( ) ( )cosf t t t= . Two screenshots are given for 512 and 1000 precision levels. 
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Previously Figure 4 illustrated a good approximation for t  values, up to 35, if 
the precision level 128N = . 

Let increase t  up to 100. The results in Figure 19 leads to unstable solutions, 
for the number of expansion terms 512L = , if the precision level much smaller 
than L , as illustrated for 128N =  and 256. In this case, using too many terms 
causes rounding error to overtake the numerical solution, and we essentially ob-
tain noise. 

Next (Figure 20 and Figure 21) illustrate the solutions correspond to the pre-
cision level N  equals 16, 256, 512 and 1000. The same number of expansion 
terms L  used as the precision level N . The accuracy is very poor for N  is 16 
and 256, at order at most roughly 210− . We see significant improvements in ac-
curacy as precision level increased to 512 and 1000. They are at order at least 
roughly 2510−  and 13910−  accordingly. 
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