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Abstract

This paper deals with the modified function projective synchronization prob-
lem for general complex networks with multiple proportional delays. With the
existence of multiple proportional delays, an effective hybrid feedback control
is designed to attain modified function projective synchronization of net-
works. Numerical example is provided to show the effectiveness of our result.
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1. Introduction

In recent decades, synchronization as a popular research topic of complex
networks has been widespread concern around the world [1] [2] [3] [4]. With
the deepening of research on complex networks synchronization problems, the
concept and theory of synchronization have been greatly developed, and many
different types of synchronization concepts have been found and put forward.
such as complete synchronization [5], cluster synchronization [6], lag synchro-
nization [7], generalized synchronization [8], quasi-synchronization [9], phase
synchronization [10], anti-synchronization [11], projective synchronization [12],
function projective synchronization [13] [14].

Modified function projective synchronization(MFPS) has been proposed and
extensively investigated in the latest. MFPS means that the drive and response
systems could be synchronized up to a desired scaling function matrix [15]. It is

easy to see that the definition of MFPS encompasses projective synchronization
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and function projective synchronization. The AMFPS of general complex
networks can reveal that the nodes of complex networks could be synchronize
up to an equilibrium point or periodic orbit with a desired scaling function
matrix. Because the unpredictability of the scaling function in AMFPS can
additionally enhance the security of communication, MFPS has attracted the
interest of many researchers in various fields. On the basis of an adaptive fuzzy
nonsingular terminal sliding mode control scheme, a general method of MFPS
of two different chaotic systems with unknown functions was investigated in
[16]. The work in [17] gives MFPS of a class of chaotic systems. MFPS of a
classic chaotic systems with unknown disturbances was investigated by adaptive
integral sliding mode control [18]. Ref. [19] investigates the adaptive MFPS of a
class of complex four-dimensional chaotic system with one cubic cross-product
term in each equation. Ref. [20] investigates the MFPS of two different chaotic
systems with parameter perturbations.

A simple general scheme of MFPS in complex dynamical networks (CDNs) is
investigated in this paper, considering that external disturbances and unmodeled
dynamics are always unavoidably in the practical evolutionary processes of
synchronization, MFPS in CDNs with proportional delay and disturbances will
be investigated by the proposed scheme.The rest of this paper is organized as
follows. Some definitions and a basic lemma are given in Section 2. In Section 3,
the synchronization of the complex networks with proportional delays by the
pinning control method is discussed by the way of equivalent system. Finally,
computer simulation is performed to illustrate the validity of the proposed

method in Section 4.

2. Preliminaries

Consider a generally controlled complex dynamical networks consisting of N
identical linearly coupled nodes with multiple proportional delays by the
following equations:

)'(i(t)zf(xi(t))+§gijxj(qijt)+ui(t), =12 N 21 (1)

where 1=12,,N,t=1 X =(Xy %, %,) €R" denotes the state vector
of the ith node, f:R" - R" is a continuously differentiable vector function
determining the dynamic behavior of the nodes, u;(t)eR" is the control input.
G= (gij ) e R™" s the coupling configuration matrix representing the topolo-
gical structure of the network, where g; >0 if there is a connection between
node 7 and node j otherwise g; =g; =0, and the diagonal elements of matrix
G are defined by

giiz—igij, i=12,---,N, (2.2)

jL i
d;» i,j=12,---,n are proportional delay factors and satisfy

0<g; <Lq =L£?Egn{qij}. Furthermore, the complex network described in (2.1)
possess initial conditions of X (t)=Xgte[q,1], X,(i=123,N) are

constants.
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Definition 1. (MFPS) The network (2.1) with proportional delays is said to
achieve modified function projective synchronization if there exists a continu-

ously differentiable scaling function matrix M (t) such that

fim [, () =M () x(t)| =0, i=1,2,,N, (2.3)
where || stands for the Euclidean vector norm, M (t)=diag(e;(t)) is a

modified function matrix, and each modified function ¢ (t) is a continuously
differential function and is bounded as |0:i (t)| <5 <o, ot)#0, & is a
finite constant, and x(t) € R" can be an equilibrium point, or a periodic orbit,
or an orbit of a chaotic attractor, which satisfies X (t)= f (x(t)).

Considering the actual evolutionary processes of synchronization, external
disturbances and unmodeled dynamics are always unavoidable. MFPS in CDNs

with disturbances will be investigated further as follows:
N
% (t)=F(x (1) +D20;%; (a5t)+d; () +u (1), i=12N,t=1 (2.4)
j=1

where X, =(Xy, X, X, )| €R" denotes the state vector of the ith node,
f:R" > R" is a continuously differentiable vector function determining the
dynamic behavior of the nodes, u;(t)eR" is the control inputand d; (t)e R"
is the mismatched terms, which could exist in many perturbation, noise
disturbance. G = (gij)e R™™ is the coupling configuration matrix represent-
ing the topological structure of the network, and the diagonal elements of matrix
G are defined by Equation (2.2).
In the following, some necessary assumptions are given.

Assumption 1. The derivative of scaling function «;(t) is bounded, that is
| ()| <a” (2.5)
forall teR", where a" €R" isthe upper limit of the |0'zi (t)| i=12,--,N.

Assumption 2. The norm of the mismatched terms d; (t)(i=12,---,N) are
bounded, that is

ld; ()| < di <o (2.6)

where d € R is the upper limit of the norm of d, (t).
In this paper, M;,M, denote the upper limit of the norm of " M (t) f(y(t))

[M@®)y()

Amax (A) - denotes the maximum eigenvalue for symmetric matrix A.

>

, respectively. Q=G ® 1 , ® represent the Kroncecker product,

Lemma 1. [21] For any vector X,YyeR" and positive definite matrix

S € R™, the following matrix inequality holds:
2x"y<x"Sx+y'Sty (2.7)

3. MFPS in Complex Networks with Multiple
Proportional Delays

In this section, a hybrid feedback control method for realizing modified function
projective synchronization in complex dynamical networks with multiple

proportional delays is proposed.
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Let y;(t)=x (et), then a couple of networks (2.1) and (2.4) is equivalently
transformed into the following couple of complex networks with constant delay

and time varying coefficients

Vi (t)=e‘{f (v, (t))+JZN;gijyj (t—Tij)+Ui(t)}, i=12--N, (31

v, (t):e‘{f(yi (t))Jrigijyj (t-z;)+D, (t)+Ui(t)}, i=12,--,N, (3.2)

where t>0 , rij:—loge(qij)zo , Di(t):di(et),Ui(t):ui(et) , and
¥i(s)=%(s)eC([-7,0],R), in which X (s)=%,,5€[-7,0], r=max{z}.

I<i, j<n
Definition 2. The network (3.2) is said to achieve modified function projec-
tive synchronization if there exists a continuously differentiable scaling function
matrix M (t) such that

lim e (6)] = lim [y, () - M (1) y(1)| =0, i=1.2- N, (33)
where || stands for the Euclidean vector norm, M (t)=diag(e;(t)) is a

modified function matrix, and each modified function ¢;(t) is a continuously
differential function and is bounded as |0zi (t)| <5 <o, ot)#0, & is a
finite constant, and y(t) € R" can be an equilibrium point, or a periodic orbit,
or an orbit of a chaotic attractor, which satisfies y(t)=¢'f (y(t)) .

Theorem 1. Suppose Assumptions 1 and 2 hold. For a given synchronization

scaling function matrix M (t), if there exist positive constants ki, k? and

kP which satisty k'>d; +M,, k’>M, and k’>1_, (QQ j+5, CDN s

with disturbance (3.2) can realize modified function projective synchronization

via the control law :
Ui () ==F (v (1)) = (k" + ke )sgn(e; (1)) ke, (t), i=12,--,N, (3.4)

where sgn(-) denotes the sign function.
Proof. Define

e(t)=yi(t)-M(t)y(t), i=12,--,N, (3.5)

where M (t) is a modified function matrix. It follows from (3.2) and (2.2) that

0= { 11 0) Sae (t-7)+ 5,00, ()]
—M(t)s(t)-M(t)e' f(y( )) i=12,---,N

Construct the Lyapunov function

(3.6)

N

V=3¢ el O )+ 3] ST (e vd,  62)

i=1

The time derivative of 1{7) along the trajectories of system (3.6) is
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V() ==Fe S (e (1) +e S (Ve (0)+5 36T (Ve (-5 2eT (17, ) (1-7,)

i=1 i=1

<eSer (g (t)+%ief (t)e, (t)—%gef (t-7,)e (t-7,)

- 3870 100 St (-) D0V} MO - Ml0E (510
536 (08 ()52 (-, e (t-,)

=3l (O F(%(0)+ By (0+U, (=M () y() =M (1) T (y(1))]

35l (00 (t-7) +5 2l (0e (-5 2ol (t-7,)a (17

=36 (]2, (0)+ (K K Jsan(e (1)K () - MO yO-MO T (y0)]
35l (00 (t-7)+5 2l (0 (-5 2ol (t-7,)a (17

=26 (O[04 (K ke Jsan(e, () < N (0 ()M () (¥ (1)

20T (D0 (0+ 15T (D, -7+ 2l (D) 3el (-7 ) (t-5,)

<3 er (O [0 0+ (i —Ke )+ M O y (o [ 0 £ (v(0)]

20T (06 (0+ 15T (O, (17, + 5 2T (D0 ()5 2 (15 ) (1)

Because chaos systems and the scaling function are bounded, y(t) and
«; (t) are bounded. Furthermore, f is a continuously vector function, there
exists a positive constants M, satisfying "M (t) f( y(t))" <M, . Because
Assumption 1 holds, there exists a positive constant M, satisfying
"M (1) y(t)" <M, . Because Assumption 2 holds, there exists a positive constant
d satisfying "Di (t)” <d; (i=1,2,--,N):

V()< [lr (O d -k —kee + M, + Mo |- SkleT (t)e (1)
i-1

i=1

+iief (t)g;e, (t—rij)+%geiT (t)e; (t)—%geiT (t—z-ij)ei (t—rij)

i=1 j=1

N N (3.9)
= 2. "e,T (t)”l:(dl* + Ml—kil)+(|\/|2 _kiz)e—t}_gkf,ei‘r (t)ei (t)
O e
+§j§ei (t) g€, (t—rij)+5§ei (t)e; (t)—E%:ei (t—rij)ei (t—rij)
Tanking k' >d; +M, and k! >M,, i=12,--,N, we obtain
V() <-kYe (1)e (0+ XX (1)gye, (t-7,)
. 'Nl '1:l :‘:1 (3.10)
+Ei§er (t)e, (t)—EiZ:l:eiT (t—z'u)e, (t TU)
541
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where k°=min(k? k3, k3 ).
Let e(t):(elT (t),e; (t), e} (t))T € R™ . Then by Lemma 1, we have
V()< k%" (t)e(t)+e (1)Qe(t-17;)

+%eT (t)e(t)—%eT (t-z)e(t-7;)

< —k3eT (t)e(t)_{_%eT (t)QQTE(t)+%eT (t)E(t) (3.11)
—k3 Q_QT l T
{ k +/1max( > J+2}e (t)e(t)
Taking k’ Z/ImaXEQQT]+£,we obtain
2 2
V(t)<o. (3.12)

According to the Lyapunov stability theory, the error system (3.6) is
asymptotically stable. This completes the proof.
Corollary 1. Suppose Assumptions 1 hold. For a given synchronization

scaling function matrix M (t), if there exist positive constants ki, k', k',

.
which satisty k' >M,, k?>M, and k® Zlmax(Qg J+%, CDNs without

disturbance (3.1) can realize modified function projective synchronization via

the control law :
Ui (t)==F (v (1)) = (k" + ke )sgn(e; (1)) ke, (t),i=1,2,,N, (3.13)

where sgn(-) denotes the sign function.
By Theorem 1, it is easy to see that a similar proof holds for
D, (t) = O(i =12,---,N ) . Thus, the proof is omitted here.

Though the proposed error feedback control method is very simple, Choosing
the appropriate feedback gains k', k’ and k’ is still difficult. Thus, finding
appropriate gains k', k’ and k® to achieve synchronization is still a
challenging problem. In the following, an adaptive scheme is established in order
to select the appropriate gains k', k? and k® to realize MFPSin CDNs with
or without disturbances.

Theorem 2. Suppose Assumptions 1 and 2 hold. For a given synchronization
scaling function matrix M (t) , CDNs with disturbance (3.2) can realize
modified function projective synchronization via the control law :

Ui (t) ==F (y; (1)) + (K (t) =k (t)e™ )san(e; (1)) -k’ (t)e; (1), i=1,2,--,N, (3.14)

ki (t)=1e  (t)sgn(e;(t)),i=1,2,---,N, (3.15)
k? (t)=17e"el (t)sgn(e (1)),i=1,2,---,N, (3.16)
k®(t)=1%(t)e (t),i=1,2,--,N, (3.17)

where sgn(-) denotes the sign function. I} >0,1?>0 and I’ >0 are arbi-

trary positive constants. Proof. Construct the Lyapunov function

K2
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V(=3¢ 26 a0+ 5], el (e (v 335 (K ()R
101 IV , (3.18)
+E§F(k2(t)—ki2) +§§|—3(kf(t)—k3) :
The time derivative of V(#)along the trajectories of (3.6) is
V() =-Ze D6l (e (O+e ST (0% (0+3 3 el (00 (1) -3 D¢ (-5, ) (1-7,)
SR O-RIR O+ XK O-F)R 0+ S5 (0-R)R©
<e S el (e +5 36T e ()-5 el (17, )e (17,
SR ORI O+ T3 0-F)R 0+ T 0-R) 0
“e Sl )¢ {1 20) Bae (-7)+ 0,000} -0 -1 08 1 (3(0)
el (e ()5 e (- Ja (15, « (K R
R KRR 2 R |
=3 (O] £ (2(0))+ D1 (1) U, ()-¢ W () y()-M () F(y(1)]
23l (a5 +5 26 a5 2e (1-5)a(t-5)
B KRR SRR S (6 R -
=3l (1] D (0)+ (K —kie™ Jsan(e (1)) -Ke, (- "N () Y()-M (1) F(y(1)]
25 a8 (5 5 2ol (e (-5 2el (15 (t-7,)
DK R SRR S (6 R
=2 (O[D ()= MO y)-MO) ()]« 23l (D (t-7)+ 53 (4, (0)
3l (1) (t7,)- (R ke )T ()san(e, (1)) 2R (1) (1)
<3l @10, 0+ 9 0y (0 £ O+ £ Qe (-7,
P23 (0603 3060 (-5, e (t-5, ) - (7 + ke el (0] R (e, (0)
= et [ (o O+ @) £ (yO)] -+ ) yo)| -2}
35l (00, (t-5)+ 32 (0 (0520 (t-5)e (t-7) - 2Rl (e ()
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Because chaos systems and the scaling function are bounded, y(t) and
«; (t) are bounded. Furthermore, f is a continuously vector function, there
exists a positive constants M, satisfying "M (t) f (y(t))"S M, . Because As-
sumption 1 holds, there exists a positive constant M, satisfying " M (t) y(t)" <M,.
Because Assumption 2 holds, there exists a positive constant d, satisfying
Dt <di (i=12N):

SO +m) e o 6)
+g%ef (t) ge; (t—rij)+%izi:ef (t)e (t) (3.20)

5l (15 e (1-5)- 2R (e, (1)

Tanking k'>d +M, and k’>M,, i=1,2,---,N, we obtain

V() E3 e (0058, (1-7) + 530 (0, ()
- 1”1N "_ . (3.21)
_Egl‘,er (t_Tu)eu (t_rij)_kséenT (t)e, (t)
where Egzmin(‘i@,---,iﬁ).

Let e(t):(elT (t),62T (t),..-,eL (t))T € R™ . Then by Lemma 1, we have
V(t)<e (t)Qe(t—rij)+%eT ()e(t)

LT Je(1-5) - (=)

<Ler((QQ)e(n)+Ler e R Wel)
< e[ O3 | et
R -
V()¢ (). 629)

According to the Lyapunov stability theory, the error system (3.6) is
asymptotically stable. This completes the proof.

Corollary 2. Suppose Assumptions 1 hold. For a given synchronization
scaling function matrix M (t) , CDNs without disturbance (3.1) can realize
modified function projective synchronization via the control law (3.14)-(3.17).

By Theorem 2, it is easy to see that a similar proof holds for
D, (t) = O(i =12,---,N ) . Thus, the proof is omitted here.

4. Computer Simulation

In this section, the chaotic Lorenz system is taken as nodes of CDNs to verify the

effectiveness of the proposed scheme in Corollary 2.
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Consider the following single Lorenz system:

Yo=a(x—x)
% =(b—% )% — X%,
Xy = X X, —CXg

(4.1)

8
where a=10,b=28,c =3 Figure 1 and Figure 2 depict the chaotic attractor

and components of the Lorenz system respectively. The coupling configuration

matrix G = (gij ) is chosen to be

50 -,

40

30 .

20 .

50 T T T T Y T T T T
| | X,
a0 et | x, ||
\ ! | A |
1l | \ ‘
[ o b ‘ |' {\ I ol | X
300 0] fl |I' i ‘\ (| { | || [ [ [ i
|‘ N | (1] (| L | ‘I L | [l | | \‘ | UL R L 1 [ | i‘
ATRVATAVRYARARR [ [} ] | | ANARARITE
IRTRTRIRTRIRY I L 1 RIRIRTRIRIAN
20 H v BISNAIR ‘

10 b i \ , %

i=1,2,3

i

0 2 4 6 8 10 12 14 16 18 20

t/sec

Figure 2. Components of the Lorenz system.
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-1 0 1
G=/1 -1 0
0 1 -1

Complex networks with proportional delays can be described as follows:
W) | 1000 (0)x, (t)) 3
%o (1) | =] (28— x5 (1)) X, () — X, +§hu,(%)+u()J=LZ3(4ﬁ
%3 (t) 8
W 0m -2 ()

where the controllers U, (t) satisfied: U, (t)=u, (et), U, (t) can be designed

by using Theorem 2 as follows:

10(Yi2 (1)~ Ya (t)) Sgn(eu (t)) e, (t)
Ui (t)=- (28_yi3(t))yil(t)_yi2(t) +(_kil(t)_kiz(t)et) sgn(eiz(t)) _kig(t) e, (t)
Yir (1) Vi (t)_gyia(t) Sgn(ew(t)) (1)

with

where vy, (t)=x(e'), & (t)=y,(t)-M(t)y(t), i=123.
In this numerical simulation, we take the initial states as x, (0)=[3 4 —4],
x,(0)=[4 1 -4]", x(0)=[-2 0 5], x(0)=[5 ~3 5]'. We take k!(0)=1,
k;(0)=2, k;(0)=3, k’(0)=4, k7(0)=5, ki(0)=6, k’(0)=12,
k; (0)=15, k;(0)=16, k;(0)=16 and
M (t) diag [4+sm2— 4-|-COSﬂ 4+Sin@j The numerical results are
10 10 10
presented in Figure 3 and Figure 4. Figure 3 displays the state phases of the
Lorenz system. The time evolution of the synchronization errors is depicted in
Figure 4, which displays e(t)—>0 with t—>o . These results show that
function projective synchronization takes place with the desired scaling function

in complex networks (4.2).

5. Concluding Remarks

In this paper, function projective synchronization schemes for complex net-
works with proportional delays are given by a error feedback control method.

Numerical simulation is provided to show the effectiveness of our result.
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150 - ¥
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Lol ]
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I |
-50 \ | , | , \ W
' |
V|
-100 1 L 1 L ' A L 1 L
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Figure 3. State phases of the Lorenz system.
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Figure 4. The time evolution of the synchronization errors e.
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