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Abstract 
In this paper, we introduce a class of holomorphic Banach spaces K  of 

functions on the unit ball   of n
 . We develop the necessary and suffi-

cient condition for ( )K   spaces to be non-trivial and we discuss the nest-

ing property of ( )K   spaces. Also, we obtain some characterizations of 

functions with Hadamard gaps in ( )K   spaces. As a consequence, we 

prove a necessary and sufficient condition for that ( )K   spaces coincides 

with the Beurling-type space. 
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1. Introduction 

Through this paper,   is the unit ball of the n-dimensional complex Euclidean 
space n ,   is the boundary of  . We denote the class of all holomorphic 
functions, with the compact-open topology on the unit ball   by ( ) . 

For any ( )1 2, , , nz z z z=  , ( )1 2, , , n
nw w w w= ∈  , the inner product is de-

fined by ( )1 1 2 2, , , , n nz w z w z w z w=  , and write ,z z w= . 
Let dv  be the Lebesgue volume measure on n , normalized so that 
( ) 1v ≡  and dσ  be the surface measure on  . Once again, we normalize 

σ  so that ( ) 1σ ≡ . For z∈  and 0r >  let { }:r z z r= ∈ ≤  . 
For ζ ∈  the measures v  and σ  are related by the following formula: 

( ) ( )
1

2 1

0

d 2 d d .nf v n r r f rζ σ ζ−=∫ ∫ ∫
 

                      (1) 

The identity 
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( ) ( )
2π

0

1d d e d ,
2π

if f θσ σ ζ ζ θ=∫ ∫ ∫
 

                  (2) 

is called integration by slices, for all 0 2πθ≤ ≤  (see [1]). 
For every point a∈  the Möbius transformation :aϕ →   is defined by 

( ) ( ) ( ) ,
1 ,

a a a
a

a P z S Q z
z

z a
ϕ

− −
=

−
                  (3) 

where ( )2
02

,
1 , , 0a a

a z a
S z P z P

a
= − = =  and ( )a aQ I P z= −  (see [1] or 

[2]). 
The map aϕ  has the following properties that ( )0a aϕ = , ( ) 0a aϕ = , 

1
a aϕ ϕ−=  and 

( ) ( )
( ) ( )
( ) ( )

21 1 ,
1 , ,

1 , 1 ,a a

a z w
z w

z a a w
ϕ ϕ

− −
− =

− −
 

where z and w are arbitrary points in  . In particular, 

( )
( ) ( )2 2

2

2

1 1
1 ,

1 ,
a

a z
z

z a
ϕ

− −
− =

−
                (4) 

For a∈  the Möbius invariant Green function in the unit ball   denoted 
by ( ) ( ), ( )aG z a g zϕ=  where ( )g z  is defined by: 

( ) ( )
1 12 1 21 1 d .

2
n n

z

ng z t t t
n

− −+
= −∫                  (5) 

For 1n > , we have 

( ) ( ) ( ) ( )2 1 2 12 21 1 1 ,
n nn n

n
n

r t C r t
C

− − − −− ≤ −              (6) 

where nC  is a constant depending on n only. 
Let ( )H ∞   denote the Banach space of bounded functions in ( )  with 

the norm ( )supzf f z∈∞
=  . 

For 0α > , the Beurling-type space (sometimes also called the Bers-type 
space) ( )Hα

∞   in the unit ball   consists of those functions ( )f ∈   for 
which 

( ) ( ) ( )2sup 1 .H
z

f f z z
α

α

∞
∈

= − < ∞


                (7) 

Let ( ) [ ): 0, 0,K ∞ → ∞  is a right-continuous, non-decreasing function and is 
not equal to zero identically. The ( )K   space consists of all functions 

( )f ∈   such that 

( ) ( )( ) ( )22 sup , d .K
z

f f z K G z a v z
∈

= < ∞∫
 

           (8) 

Clearly, if ( ) pK t t= , then ( ) ( )K p=   . For ( ) 1K t =  it gives the 
Bergman space ( )2  . If ( )K   consists of just the constant functions, we 
say that it is trivial. 
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We assume from now that all ( ) [ ): 0, 0,K ∞ → ∞  to appear in this paper are 
right-continuous and nondecreasing function, which is not equal to 0 identical-
ly. 

In [3], several basic properties of ( )K   are proved, in connection with the 
Beurling-type space ( )Hα

∞  . In particular, an embedding theorem for ( )K   
and ( )Hα

∞   is obtained, together with other useful properties. Hadamard gaps 
series and Hadamard product on K  spaces of holomorphic function in the 
case of the unit disk has been studied quite well in [4] and [5]. 

Through this, paper, given two quantities fA  and fB  both depending on a 
function ( )f ∈  , we are going to write f fA B  if there exists a constant 

0C > , independent of f , such that f fA CB≤  for all f . When 

f f fA B A  , we write f fA B≈ . If the quantities fA  and fB  are equiva-
lent, then in particular we have fA < ∞  if and only if fB < ∞ . As usual, the 
letter C will denote a positive constant, possibly different on each occurrence. 

In this paper, we introduce ( )K   spaces, in terms of the right continuous 
and non-decreasing function ( ) [ ): 0, 0,K ∞ → ∞  on the unit ball  . We dis-
cuss the nesting property of ( )K  . We prove a sufficient condition for  

( ) ( )K Hα
∞=  , 1

2
nα +

=  (the Beurling-type space). Also we generalize  

the necessary condetion to ( )K   for a kind of lacunary series. As aplplica-
tion, we show that the sufficient condition is also a necessary to 

( ) ( )1
2

K nH ∞
+=  . 

2. 𝓝𝓝K Spaces in the Unit Ball 

In this section we prove some basic Banach space properties of ( )K   space. 
A sufficient and necessary condition for ( )K   to be non-trivial is given. We 
discuss the nesting property of ( )K   spaces and prove a sufficient condition 
for ( ) ( )1

2
K nH ∞

+=  . 
 
Lemma 2.1 

Let ( ) 1
k

kkf z a z∞

=
= ∑  be a non-constant function, where ( )1 2, , , nk k k k=   

is an n-tuple of non-negative integers and ( )1 2
1 2, , , nkk kk

nz z z z=  . 
Then, ( )k

Kz ∈   if 0ka ≠ . 
Proof: 
Let k be such that Let k be such that 0ka ≠  and let ( ) k

k kF z a z= . Suppose 
that 

( ) ( ) ( )1 2
1 2e , e , , e ,nii i

nU f z f z z z f U zθθ θ
θ θ= =   

where ( ) ( )1 2
1 2e , e , , e nii i

nU z z z z θθ θ
θ =  . Then, we have 

( )
( )

( )

( )
( ) ( )

1 1 1

1 1

2π 2π

1
0 0

2π 2π

0 0

1 e , , e e e d
2π

1 e e d .
2π

n n n

n n

i iki ik
k n nn

ikik
nn

F z f z z

U f z

θ θθ θ

θθ
θ

θ

θ

−−

−−

=

=

∫ ∫

∫ ∫

  

 

    (9) 
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By Jensen’s inequality on convexity, 

( )
( )

( )
2π 2π

2 2
12

0 0

1 d d .
2π

k nnF z U f zθ θ θ≤ ∫ ∫             (10) 

Consequently, 

( ) ( )( ) ( )

( )

2

2π 2π
2 2

12
0 0

, d

1 d d .
2π

k

nnK K

F z K G z a z

U f U fθ θ

λ

θ θ≤ ≤

∫

∫ ∫ 


            (11) 

Because ( ) ( )U z Autθ ∈   we have KKU f fθ = . Therefore, 

k
k k KK K

F f a z f= ≤  

and ( )k
Kz ∈  . The lemma is proved. 

 
Theorem 2.1 The Holomorphic function spaces ( )K  , contains all poly-

nomials if 

( )( )
1

2 1

0

d .nr K g r r− < ∞∫                      (12) 

Otherwise, ( )K   contains only constant functions. 
Proof: 
First assume that (12) holds. Let ( )f z  be a polynomial i.e. (there exists a 

0M >  such that ( ) 2
,f z M z≤ ∀ ∈ =    ). Then, 

( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( )

2

1 22 1

0
1

2 1

0

, d

2 d d

2 d .

n
a

n

f z K G z a v z

n r K g r r f r

nM r K g r r

φ ζ σ ζ−

−

=

≤

∫

∫ ∫

∫




             (13) 

Since a is arbitrary, it follows that 

( )( )
1

2 2 1

0

2 d .n
Kf nM r K g r r−≤ < ∞∫                (14) 

Thus, ( )Kf ∈   and the first half of the theorem is proved. 
Now, we assume that the integral in (12) is divergent. Let ( )1 2, , , nα α α α=   

is an n-tuple of non-negative integers 1 2 1nα α α α= + + + ≥ , ( )f z zα= . 

Then, we have ( )
22 2f r r α αξ ξ=  and 

( ) ( ) ( )
( )
22 21 ! !

d .
1 !

r n
r r Cr

n

α
α αα

ζ σ ζ
α

−
≥ ≥

− +∫


              (15) 

Thus, 

( )( )
1

2 1
2 1

1 2

d .
2

n
K

nCf r K g r rα
−

−
≥ ∫                     (16) 



M. A. Bakhit, A. E. Shammaky 
 

310 

There exists a∈  such that ( ) 0f a ≠ , by the subharmonicity of 

( )af rϕ ξ , 

( )
( )

( )( )
1 2 2 1

2

12
0

3 d .
2 1

n

nK

n rf f a K g r r
r

−

+≥
−

∫             (17) 

Combining (17) and (18), we see that (12) implies that Kf = ∞ . 
It is proved that ( )Kf ∉   and, since α  is arbitrary, any non-constant 

polynomial is not contained in ( )K  . Using Lemma 2.1, we conclude that 
( )K   contains only constant functions. The theorem is proved. 

 
Theorem 2.2 
Let 1K  and 2K  satisfy (12). If there exist a constant 0 0t >  such that 
( ) ( )2 1K t K t  for ( )00,t t∈ , then ( ) ( )

1 2K K⊆   . As a consequence,
( ) ( )

1 2K K=   . if ( ) ( )2 1K t K t≈  for ( )00,t t∈ . 

Proof: Let ( )
1Kf ∈  . We note that from the property of ( )g z , there 

exists a constant 0δ > , such that ( ) 0g z t<  if z δ> . Then, we have 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )
22

2 2, d da
z

f z K G z a v z f z K g z v z
δ δ

φ
≥

= +∫ ∫ ∫
 

     (18) 

where 

( )( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( )

2 2 2
2 2

2 2 1
2

0

d 1 d

2 d ,

n

a

n

f z K g z v z f z K g z v z

n f r K g r r

δ δ

δ

φ
−

∞

−
∞

≤ −

≤ < ∞

∫ ∫

∫

 
 

and 

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )
1

2

2

2 2
1

d

d .

a
z

a K
z

f z K g z v z

f z K g z v z f

δ

δ

φ

φ

≥

≥

≤ ≤ < ∞

∫

∫
 

This show that 
2Kf < ∞  and, consequently, ( )

2Kf ∈  . 

 
Theorem 2.3 

Let ( ) [ ): 0, 0,K ∞ → ∞  be nondecreasing function, then ( ) ( )1
2

K nH ∞
+⊂  . 

Proof: The theorem proved in [3]. 
 
Theorem 2.4 

( ) ( )1
2

K nH ∞
+=   if 

( )
( )( )

1 2 1

12
0

d .
1

n

n
r K g r r

r

−

+ < ∞
−

∫                     (19) 

Proof: Let ( )1
2

nf H ∞
+∈  . Then, 
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( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( )
( ) ( )

( )( )

1
2

1
2

2

2 2
12

1 2 1
2

12
0

, d

d
1

1

2 d .
1

n

n

n

n

n

H n

H

f z K G z a v z

v z
f z K g z

z

rn f K g r r
r

∞
+

∞
+

−

+

−

+

≤ −
−

≤
−

∫

∫

∫








               (20) 

Thus, Kf < ∞  and ( )Kf ∈  . This shows that ( ) ( )1
2

n KH ∞
+ ⊂  . By 

Theorem 2.3, we have ( ) ( )1
2

K nH ∞
+⊂  . The proof of theorem is complete. 

3. Hadamard Gaps in 𝓝𝓝K Spaces in the Unit Ball 

In this section we prove a necessary condition for a lacunary series defined by a 
normal sequence to belong to ( )K   space. As an implication of Theorem  

2.4, we prove that (19) is also necessary for ( ) ( )1
2

K nH ∞
+=  . 

Recall that an ( )f ∈   written in the form ( ) ( )0 knkf z P z∞

=
= ∑  where  

knP  is a homogeneous polynomial of degree kn , is said to have Hadamard gaps 
(also known as lacunary series) if there exists a constant 1c >  such that (see 
e.g. [6]) 

1 , 0.k

k

n c k
n
+ ≥ ∀ ≥                          (21) 

Let Λn ⊂   for 0 0, 1, .n n n= +   The sequence of homogeneous polyno-
mials 

( ) , ,
n

n
nP z z

ζ
ζ

∈Λ

= ∑                       (22) 

is called a normal sequence if it possesses the following property (see [7]): 

• ( ) n
nP z C z≤  for z∈ ; 

• 
1

, Λ ,
n

k
n n

Cξ ζ ξ ζ
+

∈
≥∑ . 

In what following, we will consider all lacunary series defined by normal se-
quences of homogeneous polynomials. To formulate our main result, we denote 

( ) ( )
2
d .

jj nL P ζ σ ζ= ∫


                       (23) 

 
Theorem 3.1 
Let ( )nP z  be a normal sequence and let { }1: 2 2k k

KI n n += ∈ ≤ ≤ . Then a  

lacunary series ( ) ( )0 knkf z P z∞

=
= ∑  , belongs to ( )K   if 

( )
0

.
2 j k

m
mk

k jk
k n I

n K n L
∞

−

= ∈

< ∞∑ ∑                      (24) 

Proof: Let ( )Kf ∈  . Then, we have 
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( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( )

2
2

0

1
2 1

0 0

, d d

d ,
2

k

j k

n
k

mk
jk

k n I

f z K G z a v z P z K g z v z

n L r K g r r

∞

=

∞
−

= ∈

≥

≥

∑∫ ∫

∑ ∑ ∫

      (25) 

where 

( ) ( )
2

2

0 0

1 .
2k k

j k
n nk

k k n I
P z P ζ

∞ ∞

= = ∈

=∑ ∑ ∑                  (26) 

By (6) for 1 1
2

r≤ ≤ , we have 

( )( ) ( )( )1 1 .mK g r K c r−≥ −                   (27) 

Consequently, 

( )( ) ( )( ) ( )

( ) ( )

1
2

1 11

log 21 1
2 1 2 1 1 2 1

1
0 0

log 2log 2
2 1 2

d 1 d e d

e d e d .
k

k

mm m mt m

n
m mt m m t

k k k
cc n

r K g r r r K c r r K c t t

K n t n K n t
−

− − − − −

− − − − −

≥ − ≥

≥ ≥

∫ ∫ ∫

∫ ∫
   (28) 

Let k ′  be sufficiently large such that 1log 2 1kn c′ ≥ + . Then, for k k ′≥ , 

( )( ) ( )
1

2 1 1

0

d .m m m
k kr K g r r n K n− − −≥∫             (29) 

And 

( ) ( )( ) ( ) ( )2
, d .

2 j k

m
mk

k jk
k k n I

nf z K G z a v z C K n L
∞

−

′= ∈

≥ ∑ ∑∫


       (30) 

This shows (24) and the theorem is proved. 
 
Theorem 3.2 

( ) ( )1
2

K nH ∞
+=   if and only if (18) holds. 

 
Proof: The sufficient condition was proved by Theorem 2.4. Now we prove 

the necessary condition, assume that ( ) ( )1
2

K nH ∞
+=  . Among lacunary se-

ries defined by normal sequences, we consider 

( ) ( )
0

2
,k

k k
f z P z

∞

=

= ∑                         (31) 

where 2

2
,

k

k
n

P zζ ζ
∈Λ

= ∑  and 2

2

k

kP C z=  for 0
0 0, 2kk k n≥ ≥  and z∈ . 

Thus 

( ) ( ) ( ) ( )
0

1 12 2

2
1

1 1 .k

n n n

k k n
f z z z P z C z C

∞ ∞+ +

= =

− ≤ − ≤ ≤∑ ∑       (32) 

This shows that ( )1
2

nf H ∞
+∈   and, consequently, ( )Kf ∈  . By Theorem  

3.1, we have 
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( ) ( )1

1
2 2 .k m mk

k
K

∞
− −

=

< ∞∑                       (33) 

By (6), we have 

( )
( )( ) ( )

11 2 1 log 2 1
1 02

1 2

d d .
1

mm c m m
m

r K g r r t K t t
r

−
− −

+ ≤
−

∫ ∫             (34) 

On the other hand, 

( ) ( )
( ) ( )

1

1 2 21 1
0 2

1

1 1

1

d d

2 2 2 ,

k

k
m m m m

k

k m mk

k

t K t t t K t t

K

−

− −

∞
− − − −

=

∞
− + − − −

=

=

=

∑∫ ∫

∑
            (35) 

since K is non-decreasing. Thus, 

( )
( )( )

1 2 1

12
1 2

d .
1

m

m
r K g r r

r

−

+ < ∞
−

∫                   (36) 

Combining this, we obtain (18). The theorem is proved. 

4. Conclusion 

Our aim of the present paper is to characterize the holomorphic functions with 
Hadamard gaps in K -type spaces on the unit ball, where K is the right conti-
nuous and non-decreasing function. Our main results will be of important uses 
in the study of operator theory of holomorphic function spaces. 
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