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Abstract 
In this paper, we got the best linear unbiased predictor of any linear function 
of the elements of a finite population under coordinate-free models. The op-
timal predictor of these quantities was obtained in an earlier work considering 
models with a known diagonal covariance matrix. We extended this result as-
suming any known covariance matrix. It is shown that in the particular case of 
the coordinatized models, this general predictor coincides with the optimal 
predictor of the total population under a regression super population model 
with correlated observations. 
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1. Introduction 

A coordinate-free approach in finite populations was introduced by [1] as an 
alternative to the Gauss-Markov set up, used with the purpose of predicting li- 
near functions. The Gauss-Markov approach is characterized by a dependence 
on a particular basis matrix, but in the coordinate-free language, we need only to 
describe a parametric subspace of IR N , where N  is the size of the finite po- 
pulation. Coordinate-free models in the linear models context are discussed by 
[2] and [3]. 

In a finite population { }1,2, ,P N=  , where N  is the known population 
size, let ,  1, 2, ,iy i N=   be the value of a random variable y  associated to 
each population unit. Under the superpopulation approach, we will assume that 
Y  is a random vector such that Y Q∈ , where Q  is an N -dimensional real 
vector space with the usual inner product. 

The superpopulation model is expressed by 
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( )
( ) 2Var ,

E Y

Y V

µ

σ

= ∈Ω

=
                        (1.1) 

where Ω  is a p -dimensional subspace of Q , 2σ  is a unknown positive pa- 
rameter and V  is a known positive definite matrix. 

The considered model is coordinate free, in the sense that no basis is defined 
for Ω , the parametric space of µ . 

Our main objective is predicting Y′ , a linear combination of the elements of 
Y . With this purpose, a sample of n  observations is drawn of the population 
and the values of iy  in Y  become known for the sample elements. Let s  and 
r  be the sets of sample and non sample elements, respectively, such that 
P s r= ∪ . 

We will consider, without loss of generality that Y  and V  are reordered as  

and ,s srs

rs rr

V VY
Y V

V VY
  

= =   
   

 

with sY  containing the n  observed sample elements, rY  containing the 
unobserved elements, ( )Vars sV Y= , ( )Varr rV Y=  and ( )Cov ,sr s rV Y Y=  are 
the covariance matrix. 

Under a less general model, with ( ) 2Var Y Dσ= , D  a known diagonal 
matrix, [1] presented the optimal linear predictor of Y′ . In the next section, 
we extended the result, obtaining the best linear unbiased predictor of Y′  in 
the model (1.1) and this was the main contribution of the paper. In Section 3, we 
show that under the coordinatized model, this predictor coincides with that 
given by [4]. Finally, we conclude the paper with some examples in Section 4. 

2. Best Linear Unbiased Predictor of Linear Functions  

The linear function Yθ ′=   to be predicted may be written as  

( ) ,s sY I Y I I Yθ ′ ′ ′= = + −    

where ( )1 2diag , , ,s NI i i i=   is a diagonal matrix with its k -th diagonal 
element ki , where 1ki =  if k s∈  and 0ki =  if k r∈ , { }1,2, ,s n=  , 

{ }1, 2, ,r n n N= + +  . 
We note that with this notation, sI Y′

  corresponds to the linear combina- 
tion of the components of Y  in the sample and ( )sI I Y′ −  is the com- 
bination of the unobserved elements. 

Before stating the predicting results, it is necessary to introduce some de- 
finitions and preliminary results. 

Let  

{ },s s s sIµ µ µ µΩ = = ∈Ω  

( ){ }, ,r r r sI Iµ µ µ µΩ = = − ∈Ω  and 

( ), , 1 matrices.s s r sY I Y Y I I Y N= = − ×  

Since after the sample is observed, sI Y  will be known, we restrict our atten- 
tion to linear predictors of Y′  in the form  
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ˆ ,s sI Y b I Yθ ′ ′= +  

where b  is a N -dimensional vector. 
Definition. A linear predictor θ̂  of θ  is unbiased if and only if  

( )ˆ 0,Eµ θ θ− =  

for every µ ∈Ω . 
The class of all linear unbiased predictors of Y′  will be denoted by U



. 
Finally, next definition states the concept of optimality of the linear predictor 

of θ . 
Definition. The linear predictor 0̂θ  is the best linear unbiased predictor of 

θ  or the optimal linear predictor of θ  if 0̂ Uθ ∈


 and  

( ) ( )2 2

0̂
ˆ ,E Eµ µθ θ θ θ− ≤ −  

for every µ ∈Ω  and every ˆ Uθ ∈


. 
The value of ( )2

0̂Eµ θ θ−  corresponds to the mean-squared error of the 
predictor 0̂θ . 

The optimal linear predictor of θ  under the model  

( )
( ) 2Var ,

E Y

Y D

µ

σ

= ∈Ω

=
 

where D  is a known diagonal matrix and 2σ  is unknown was obtained by [1]. 
It was shown that if ( ) ( )dim dim sΩ = Ω , where ( )dim Ω  is the dimension of 
the linear space Ω , then the best linear unbiased predictor of Yθ ′=   is given 
by  

* *
ˆ ˆsI Yθ µ′ ′= +   

where *

0
ˆ

ˆr

µ
µ
 

=  
 

, 0 is a null vector of dimension n , *µ̂  is such that  

( ) ( )* *ˆ ˆs sI I P Yµ µΩ= − +                           (1.2) 

and PΩ  is the orthogonal projector onto Ω . 
Returning to the model (1.1), with a non diagonal covariance matrix V , let 

us consider the decomposition V P P′= ⋅ , with P  a lower triangular matrix. 
As shown by [5] (Theorem 7.2.1) there is a unique lower triangular matrix P  
such that V PP′= . In addition, P  is nonsingular. Then, we define the 
random vector 1Z P Y−=  and, as a consequence, by multivariate properties of 
covariance matrix of random vectors and matrix results,  

( ) 1 1 2 1 1 2 1 2 2Var .Z P VP P PP P P P Iσ σ σ σ′ ′− − − − −′ ′ ′= = = =  

Next theorem presents the best linear unbiased predictor of Y′  under 
model (1.1). 

Theorem 1. In the model (1.1)  

( )
( ) 2Var .

E Y

Y V

µ

σ

= ∈Ω

=
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V  a known positive definite matrix, the optimal linear predictor of any linear 
function of Y , h Y′ , is 

ˆs Yh I Y h µ′ ′+                           (2.1) 

where 
0

ˆ ˆY
rY

µ
 

=  
 

, 0 is the null vector of dimension n , r̂Y  is the solution in rY   

of the system of linear equations  

( ) ( )1 1 ,s sI I P Y I I P P Y− −
Ω− = −  

and PΩ  is the orthogonal projection matrix onto Ω . 

Proof. Let 1 s

r

Z
Z P Y

Z
−  

= =  
 

 with P  the lower triangular matrix such that  

V PP′= ,  

{ }* * * 1 , ,Pµ µ µ µ−Ω = = ∈Ω  

ˆ ,s Zh PI Z h Pµ′ ′Γ = +  

where 
0

ˆ ˆZ
rZ

µ
 

=  
 

, 0 is the null vector of dimension n  and ˆ
rZ  the solution in  

rZ  of the system of linear equations  

( ) ( )*ˆ ˆ .Z s s ZI I P I Zµ µ
Ω

= − +  

We note that Γ  does not depend on unknown quantities because, as it will 
be shown in the appendix, sh PI Z′  and ˆZh Pµ′  do not depend on unknown 
quantities. 

Since  

( ) ( )1 1 * *E Z P E Y P µ µ− −= = = ∈Ω  

and  

( ) 2Var ,Z Iσ=  

by [1] results, the optimal linear predictor of Z′  is  
ˆs ZI Z µ′ ′+   

with 
0

ˆ ˆZ
rZ

µ
 

=  
 

, where 0 is the null vector of dimension n  and ˆ
rZ  obtained  

by (1.2) is the solution of the system of linear equations  

( ) ( )*ˆ ˆ .Z s s ZI I P I Zµ µ
Ω

= − +  

Taking h P′ ′= , this predictor reduces to Γ  and 1Z h PP Y h Y−′ ′ ′= = . So, 
by (1.2), we have just proved that Γ  is the optimal linear predictor of h Y′ . 

To finish the proof, it is enough to show that ˆs Yh I Y h µ′ ′Γ = + . For this 
purpose we write some of matrices already defined in the partitioned form as  

1 1

3 4 1 2

1 2
*

1 2

0 0
, ,

0 00
, , ,

00 0
n

s s
N n

P C
P P

P P B B

H H I
P I I I

IA A

−

Ω
−

   
= =   

  
    

= = − =     
    
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where the submatrix are of dimension n n× , ( )n N n× − , ( )N n n− ×  and 
( ) ( )N n N n− × −  and 0 denotes the null matrix. 

Since s

r

Z
Z

Z
 

=  
 

,  

( ) ( )*ˆ ˆZ s s ZI I P I Zµ µ
Ω

= − +  

implies that  

( ) 1
1 2 2 1

ˆ ˆ ˆand .r s r r sZ A Z A Z Z I A A Z−= + = −  

Further, 1
*P PP P−

Ω Ω
=  [6], then 1

*P P P P−
ΩΩ

=  and after some calculations  

we have  

( ) 1

1 2

0
s

s r

I I P Y
B Y B Y

−  
− =  + 

 

and  

( ) ( )

( ) ( )

1 1 1

1
*

1 2 1 2 2

0
.

s s

s
s r

I I P P Y I I P P PP Y

I I P P Y
A C A B Y A B Y

− − −
Ω Ω

−

Ω

− = −

 
= − =  + + 

 

Thus, if r̂Y  is the solution in rY  of  

( ) ( )1 1 ,s sI I P Y I I P P Y− −
Ω− = −  

it follows that  

( ) ( )1
2 2 2 1 2 1 1

ˆ .r sY B A B A C A B B Y−= − + −  

Now, with this notation,  

1

1 2

s

s r

CY
Z P Y

B Y B Y
−  

= =  + 
 

which implies that  

.s sZ CY=  

So,  

( ) ( )
( ) ( ){ }

( ) ( ) ( ){ }
( )

1
1 2 1 2 2 2 2 1 2 1 1

11
1 2 2 2 1 2 1 1

1 1
1 2 1 2 2 1

1
2 1

ˆ

ˆ .

s r s s

s

s

s r

B Y B Y B Y B B A B A C A B B Y

B B B I A A C A B B Y

B I A A C I A A I B Y

I A A CY Z

−

−−

− −

−

+ = + − + −

= + − + −

= + − + − −

= − =

 

Hence,  

1

3 4 1 2

1

3 4 1 4 2

0
ˆ ˆ0

0
ˆ

ˆ

s
s Z

r

s

s r

s

s s r

Z
h PI Z h P h P h P

Z

CYP
h

P P B Y B Y

PCY
h

P CY P B Y P B Y

µ
  ′ ′ ′ ′Γ = + = +   

   
  

′=    +   
 
′=  

+ + 
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and because  

11

3 4 1 4 2

0 0
,

0
n

N n

PC I
P P

P C P B P B I
−

−

   
⋅ = =   +   

 

then  

 
0

ˆ .ˆ ˆ0
s s

s Y
r r

Y Y
h h h h I Y h

Y Y
µ

    ′ ′ ′ ′ ′Γ = = + = +    
    

 

 

It is important to observe that PΩ  has 
( )1

2
N N +

 unknown elements and it  

may be difficult to calculate by the above definition. But it can be obtained as 

( ) 11 1P A A V A A V
−− −

Ω ′ ′= , when A  is a basis matrix for Ω . 
Some applications of the result in Theorem 1 will be presented in the 

examples. 

3. Best Linear Unbiased Predictor in the Coordinatized  
Model  

We now consider a coordinatized version of the model (1.1), given by 

( )
( ) 2

, IR

Var .

pE Y X

Y V

β β

σ

= ∈

=
                     (3.1) 

2 0σ > , with V  a known positive definite matrix and X  a basis matrix of 
Ω . 

Under this formulation, X  is a N p×  matrix of full rank p  and there 
exists a unique IR pβ ∈  such that Xµ β= . Regression models are included in 
the class of models defined in (3.1). 

[4] derived the best linear unbiased predictor of the population total 
1

N

i
i

T y
=

= ∑ .  

This predictor, adapted to the notation introduced here and to predict any linear 
combination of Y  is given by 

( ) ( )1

0
ˆ ,ˆ ˆs s

r rs s s s

T h Y h I I
X V V Y Xβ β−

 
′ ′  = + −

+ −  
           (3.2) 

where ( ) 11 1ˆ
s s s s s sX V X X V Yβ

−− −′ ′=  and s

r

X
X

X
 

=  
 

. 

Next theorem shows that in the coordinatized model (3.1), the optimal linear 
predictor obtained in Theorem 1 reduces to the Royall’s predictor defined in 
(3.2). 

Theorem 2. Under model (3.1), the optimal linear predictor ˆs Yh I Y h µ′ ′+  
given in (2.1) is equal to T̂ . 

Proof. We must show that r̂Y  in (2.1) is equal to ( )1ˆ ˆ
r rs s s sX V V Y Xβ β−+ − . 

As proved in Theorem 1  

( ) ( )1
2 2 2 1 2 1 1r̂ sY B A B A C A B B Y−= − + −  
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which is equivalent to  

( ) 11
2 2 1 1

ˆ .r sY B I A A C B Y−−  = − −   

Applying (A.3), (A.1) and (A.2) of the appendix, it follows that  

( ) ( )( )

( ) ( )( )
( ) ( )( )

111 1
2 2 1 2 1

111 1 1
2 2 1 2 1

111 1 1 1
2 2 1 2

ˆ

.

r s r s s

s r s s s

rs s s s r s s s

Y B I A B X B X X V X X C C B Y

B I A B X B X X V X X V B Y

V V Y B I A B X B X X V X X V Y

−−− −

−−− − −

−−− − − −

 ′ ′ ′= − + −  
 ′ ′= − + −  

′ ′= + − +

 

Now, it is enough showing that  

( ) ( )( ) ( )1 111 1 1 1
2 2 1 2 .s r r rs s s s s sB I A B X B X X V X X V V X X V X

− −−− − − − ′ ′− + = −   

By (A.6),  

( ) ( )( )
( )( ) ( )

( )( )

111 1
2 2 1 2

11 1
2 1 2 1 2

11
1 2 

s r

s r s s s s r

s r

B I A B X B X X V X

B I B X B X X V X X B X B

B X B X X V X

−−− −

−− −

−−

′− +

 ′ ′ ′ ′ ′= + + +  

′× +

 

and employing (A.2), last expression reduces to  

( ) ( )

( ) ( ) ( )( )

( ) ( ){
( )}( )

11 1 1
2 1 2

1 11 1
1 2 1 2

11 1 1
1 2

11
1 2

  

  .

rs s s s s s s r

r s s s s r s r

rs s s r r rs s s s s s s r

s r

B V V X X V X X B X B

X X V X X B X B B X B X X V X

V V X X X V V X X V X X B X B

B X B X X V X

−− − −

− −− −

−− − −

−−

 ′ ′ ′ ′ ′− +
′ ′ ′ ′ ′ ′+ + +

  ′ ′ ′ ′ ′= − + + − + 

′× +

 

Finally, using (A.5), we get  

( ) ( )( )
( ) ( ) ( ) ( )

( )( )

111 1
2 2 1 2

1 11 1 1 1 1

11 1 .

s r

r rs s s s s s s s s

r rs s s s s s

B I A B X B X X V X

X V V X I X V X X V X X V X X V X

X V V X X V X

−−− −

− −− − − − −

−− −

′− +

 ′ ′ ′ ′= − + −  

′= −

 

4. Examples  

In this section, we present two examples to illustrate the optimal predictors that 
are obtained in the theorems. 

In the first one, we consider a coordinate free model and the predictor is 
derived applying Theorem 1. Second example shows an application of Theorem 
2 in a particular coordinatized model. 

Example 1. Our objective is to predict the population total 
1

N

i
i

T y
=

= ∑  in the  

model  

( )E Y µ=  and 
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( )

2 1

2
2

3
2

1

1
Var ,1

1

1

N

N

NY

ρ ρ ρ

ρ ρ
σ

ρ
ρ

−

−

−

 
 
 
 =  −  
 
  









 

with ρ  a known parameter and 2 0σ > . 
Because of the great quantity of calculations, without loss of generality, we 

restrict the attention to the situation where 4N = , 3n = , such that  

[ ]

1
1

2
2 4

3
3

4

2 3

2

2 2

3 2

, ,    and

1

11 , 1, known.
1 1

1

s r

y
y

y
Y Y y Y y

y
y

y

V

ρ ρ ρ

ρ ρ ρ
ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

 
  
  = = =  
  
   

 
 
 

= ≠ −  
 
 

 

In this case,  

2
1

2

1 0 0
1 0

0 1
0 0 1

V

ρ
ρ ρ ρ

ρ ρ ρ
ρ

−

− − 
 − + − =
 − + −
 

− 

 and 

2

1

1 0 0 0
1 0 0 .

0 1 0
0 0 1

P

ρ
ρ

ρ
ρ

−

 −
 

− =  − 
 − 

 

Since  

( ){ }4IR , , , , IR ,v v µ µ µ µ µ′Ω = ∈ = ∈  

a base for Ω  is given by [ ]1 1 1 1A ′= . 
Then, it is easy to see that  

( ) 11 1

2 2

2 2

2 2 2

2 2

1 1 2 1 2 1

1 1 2 1 2 11 .
4 6 2 1 1 2 1 2 1

1 1 2 1 2 1

P A A V A A V

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

−− −
Ω ′ ′=

 − + − + − −
 
− + − + − − 

=  − + − + − + − − 
 − + − + − − 

 

Also  

( ) 1

3 4

0
0
0sI I P Y

y yρ

−

 
 
 − =
 
 
− + 

 

and  
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( )

( )( ) ( )( )

1
2

2 2 3
1 4 2 3

0
01 .04 6 2

1 2 1 3 3

sI I P P Y

y y y y
ρ ρ

ρ ρ ρ ρ ρ

−
Ω

 
 
 − =  − +  

− + + + − + − +  

 

By Theorem 1, the optimal linear predictor of T  is 
3

4
1

ˆ ˆi
i

T y y
=

= +∑ , where 4ŷ   

is the solution in 4y  of the equation  

( ) ( )1 1 .s sI I P Y I I P P Y− −
Ω− = −  

After calculations, we get  

( ) ( ) ( )2 2 3 2 3
1 2 3

4 2

1 2 1 3 3 1 3
ˆ

3 4

y y y
y

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

− + + − + − + + − +
=

− +
 

and  

1 1 2 2 3 3
ˆ ,T a y a y a y= + +  

where 
2

1 2

4 6 2
3 4

a ρ ρ
ρ ρ

− +
=

− +
, 

2 3

2 2

4 7 4
3 4

a ρ ρ ρ
ρ ρ

− + −
=

− +
 and 

2 3

3 2

4 3 2
3 4

a ρ ρ ρ
ρ ρ

− − +
=

− +
. 

It is interesting to note that, if 0ρ = , such that V I=  and iy  and jy  are 
uncorrelated, i j≠ , then ˆ 4 sT y= , where sy  is the sample mean. In this case, 
T̂  is the expansion predictor which was found by [1] under the model 
( )E Y µ=  and ( ) 2Var Y Iσ= . 
Example 2. Let us consider the superpopulation model  

, 1, 2, , ,i i iy x i Nβ= + =   

with ( ) 0iE = , ( )Var 1i = , ( )Cov ,i j ρ=   for i j≠ , , 1, 2, ,i j N=  , and 
ρ  a known parameter, 1ρ ≠ . 

Our objective is to calculate the best linear unbiased predictor of the popula-  

tion total 
1

N

i
i

T y
=

= ∑ . 

In this situation, the model is coordinatized, and by Theorem 2, it is enough 
to obtain the value  

( )1ˆ ˆˆ .r r rs s s sY X V V Y Xβ β−= + −  

Let sV  and rsV  be written as  

( )
,

1
,

s n n

rs N n n

V I J
V J

ρ ρ
ρ −

= − +

=
 

where nJ  and ,N n nJ −  are respectively the n n×  and ( )N n n− ×  matrix of 
ones. 

Thus, it is easy to see that  

( )

( )

1 1 1
2

2

1 1

1 1ˆ

1 1

n n n

i i i i
i i i

n n

i i
i i

x y x y
n

x x
n

ρ
ρ

β
ρ

ρ

= = =

= =

−
+ −

=
 −  + −  

∑ ∑ ∑

∑ ∑
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and  

1

2

ˆ

ˆˆ ,

ˆ

n

n
r

N

a b

a bY

a b

β

β

β

+

+

 +
 

+ =  
 
 + 



 

where  

( ) 1

ˆ, 1, 2, , ,
1 1

n

n j n j i
i

a x x j N n
n
ρ β

ρ+ +
=

 
= − = −  + − 

∑   

and  

( )
1 .

1 1

n

i
i

y
b

n

ρ

ρ
==

+ −

∑
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Appendix  

First, we show that ˆs Zh PI Z h Pµ′ ′Γ = +  defined in the proof of Theorem 1 does 
not depend on unknown quantities. 

Since P  is a lower triangular matrix, 1P−  is lower triangular also, then  

11 1

21 1 22 2
11

21 221
1 1 2 2

11 1 12 2 1 1 1
1 2

1 1 2 2

0 0
0

n n nn n

n n n n n
N N NN

N N NN N

y
y y

P Y Y y y y
y y y

y y y

δ
δ δ

δ
δ δ

δ δ δ
δ δ δ

δ δ δ

δ δ δ

−

+ + + + +

 
 +        = = + + +    + + +    
 
 + + + 



















 

and  

11 1

21 1 22 2

1
1 1 2 2

0
.

0 0
0

0

n
s n n nn n

y
y y y

I
I Z P Y y y y

δ
δ

δ δ δ−

 
 + 
 

   = = + + +   
   

 
 
  







 

So, it is shown that sh PI Z′  does not depend on unknown quantities. By the 
proof of Theorem 1, we can see that ( ) 1

2 1
ˆ

r sZ I A A CY−= −  and thus, ˆZh Pµ′  
also does not depend on unknown quantities. Then Γ  is a predictor of h Y′ . 

Now we derive the results (A.1) through (A.6) which are necessary to prove 
Theorem 2. 

Let 1P−  partitioned as in the proof of Theorem 1, 1

1 2

0C
P

B B
−  
=  
 

 which  

implies that  
1

1 1 1
2 1 2

0
.

C
P

B B C B

−

− − −

 
=  

− 
 

Then using the equality V PP′=  and after some algebraic manipulations, it 
follows that  

1 1 ,sC C V′− − =  

and so, 
1.sC C V −′ =                          (A.1) 

Furthermore,  
1 1 1 1

1 2 1 2s srC C B B V B B V′ ′− − − −′ ′− = − =  

and hence 
1 1

2 1 .rs sB B V V− −− =                      (A.2) 

In the coordinatized model with Xµ β=  and covariance matrix V , it is 
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well known [6], that  

( ) 11 1P X X V X X V
−− −

Ω ′ ′=  

and thus  

( ) 11 1 1 1
* .P P P P P X X V X X P

− ′− − − −
ΩΩ

′ ′= =  

In the partitioned form, this matrix can be written as  

( ) [ ]

( )
( )( )

[ ]

( ) ( ) ( )

( )( ) ( )

11 2 11
*

1 2 1 2 2

11

1 211
1 2

1 11 1
1 2

11
1 2 1 2

0
0

s
s r

r

s

s s r

s r

s s s s r

s r s s r

H H C X C B
P X V X X X

A A B B X B

CX X V X
X C X B X B

B X B X X V X

CX X V X X C CX X V X X B X B

B X B X X V X X C B X B X

−−

Ω

−−

−−

− −− −

−−

′ ′       ′ ′ ′= =       ′       
 ′
  ′ ′ ′ ′ ′ ′= + 

′+  

′ ′ ′ ′ ′ ′ ′ ′+
=

′ ′ ′ ′+ + ( ) ( )
11

1 2

,
s rX V X X B X B

−−

 
 
 

′ ′ ′ ′+  

 

then 

( )( ) 11
1 1 2 ,s r sA B X B X X V X X C

−−′ ′ ′= +              (A.3) 

and 

( )( ) ( )
11

2 1 2 1 2 .s r s rA B X B X X V X X B X B
−−′ ′ ′ ′ ′= + +           (A.4) 

Using the fact that 1 1 1V P P′− − −= , it follows that  

1 1 1 1 21

2 1 2 2 1 2 2

0
0
C B C C C B B B B

V
B B B B B B B

− ′ ′ ′ ′ ′+     
= =     ′ ′ ′     

 

and  
1

1 1 2 1 1 2 2 2 .s s s s r s s r r rX V X X C CX X B B X X B B X X B B X X B B X−′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + +  

Applying (A.1), 
1 1

1 1 2 1 1 2 2 2 .s s s s s r s s r r rX V X X V X X B B X X B B X X B B X X B B X− −′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + +   (A.5) 

Application of a result of inverse matrix in conjunction with (A.4) and (A.5) 
yields 

( ) ( )( ) ( )

( ) ( )(

) ( )

( )( ) ( )

111 1
2 1 2 1 2

1 2 2 1 1

11
2 1 2

11
1 2 1 2

 

.

s r s r

s r r s s

r s r

s r s s s s r

I A I B X B X X V X X B X B

I B X B X X B X B B X

B X X V X X B X B

I B X B X X V X X B X B

−−− −

−−

−−

 ′ ′ ′ ′ ′− = − + +  
′ ′ ′= − + +

′ ′ ′ ′ ′+ − +

′ ′ ′ ′ ′= + + +

    (A.6) 
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