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Abstract 
It is hard to compute the competition number for a graph in general and cha-
racterizing a graph by its competition number has been one of important re-
search problems in the study of competition graphs. Sano pointed out that it 
would be interesting to compute the competition numbers of some triangula-
tions of a sphere as he got the exact value of the competition numbers of reg-
ular polyhedra. In this paper, we study the competition numbers of several 
kinds of triangulations of a sphere, and get the exact values of the competition 
numbers of a 24-hedron obtained from a hexahedron by adding a vertex in 
each face of the hexahedron and joining the vertex added in a face with the 
four vertices of the face, a class of dodecahedra constructed from a hexahe-
dron by adding a diagonal in each face of the hexahedron, and a triangulation 
of a sphere with ( )3 2n n ≥  vertices. 
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1. Introduction and Preliminary 

Let ( ),G V E=  be a graph in which V  is the vertex set and E  the edge set. 
We always use V  and E  to denote the vertex number and the edge number 
of G , respectively. The notion of competition graph was introduced by Cohen 
[1] in connection with a problem in ecology. Let ( ),D V A=  be a digraph in 
which V  is the vertex set and A  the set of directed arcs. The competition 
graph ( )C D  of D  is the undirected graph G  with the same vertex set as 
D  and with an edge ( )uv E G∈  if and only if there exists some vertex 

( )x V D∈  such that ( ) ( ) ( ), , ,u x v x A D∈ . We say that a graph G  is a com- 
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petition graph if there exists a digraph D  such that ( )C D G= . 
Roberts [2] observed that every graph together with sufficiently many isolated 

vertices is the competition graph of an acyclic digraph. The competition number 
( )k G  of a graph G  is defined to be the smallest number k  such that G  

together with k  isolated vertices added is the competition graph of an acyclic 
digraph. It is difficult to compute the competition number of a graph in general 
as Opsut [3] has shown that the computation of the competition number of a 
graph is an NP-hard problem. But it has been one of important research prob-
lems in the study of competition graphs to characterize a graph by its competi-
tion number. Recently, many papers related to graphs’ competition numbers 
have appeared. Kim, et al., [4] studied the competition numbers of connected 
graphs with exactly one or two triangles. Sano [5] studied the competition num-
bers of regular polyhedra. Kim, et al., [6] studied the competition numbers of 
Johnson graphs. Park and Sano [7] [8] studied the competition numbers of some 
kind of Hamming graphs. Kim, et al., [9] studied the competition numbers of the 
complement of a cycle. Furthermore, there are some papers (see [10] [11] [12] 
[13] [14]) focused on the competition numbers of the complete multipartite 
graphs, and some papers (see [15]-[23]) concentrated on the relationship be-
tween the competition number and the number of holes of a graph. A cycle of 
length at least 4 of a graph as an induced subgraph is called a hole of the graph. 
We use rI  to denote the graph consisting only of r  isolated vertices, and 

rG I∪  the disjoint union of G  and rI . The induced subgraph [ ]G S  of G  
is a subgraph of G  whose vertex set is S  and whose edge set is the set of 
those edges of G  that have both ends in S . 

All graphs considered in this paper are simple and connected. For a vertex v  
in a graph G , let the open neighborhood of v  be defined by  

( ) { } is adjacent to GN v u u v= . For any set U  of vertices in G , we define the 
neighborhood of U  in G  to be the set of all vertices adjacent to vertices in 
U , this set is denoted by ( )GN U . Let [ ] ( )G GN U N U U= ∪  and  

[ ] ( ){ } has an endpoint in GE U e E G e U= ∈ . We denote by the same symbol 
[ ]GN U  the subgraph of G  induced by [ ]GN U . Note that [ ]GE U  is con- 

tained in the edge set of the subgraph [ ]GN U . 
A subset U  of the vertex set of a graph G  is called a clique of G  if [ ]G U  

is a complete graph. For a clique U  of a graph G  and an edge e  of G , we 
say e  is covered by U  if both of the endpoints of e  are contained in U . 
An edge clique cover of a graph G  is a family of cliques such that each edge of 
G  is covered by some clique in the family. The edge clique cover number 
( )e Gθ  of a graph G  is the minimum size of an edge clique cover of G . A 

vertex clique cover of a graph G  is a family of cliques such that each vertex of 
G  is contained in some clique in the family. The vertex clique cover number 
( )v Gθ  of a graph G  is the minimum size of a vertex clique cover of G . 
Let G  be a graph and ( )F E G⊆  be a subset of the edge set of G . An edge 

clique cover of F  in G  is a family of cliques of G  such that each edge in F  
is covered by some clique in the family. The edge clique cover number 
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( );e F Gθ  of ( )F E G⊆  in G  is defined as the minimum size of an edge cli-
que cover of F  in G , i.e.,  

( ) { }; min  is an edge clique cover of  in .e F G U U F Gθ =  Note that the edge 
clique cover number ( )( );e E G Gθ  of ( )E G  in a graph G  is equal to the edge 
clique cover number ( )e Gθ  of the graph G . 

Opsut [3] gave the following two lower bounds for the competition number of 
a graph. 

Theorem 1 (Opsut [3]). For any graph G , ( ) ( ) ( ) 2ek G G V Gθ≥ − + . 
Theorem 2 (Opsut [3]). For any graph G , ( ) ( )( ) ( ){ }min v Gk G N v v V Gθ≥ ∈ .  
Recently, Sano [24] gave a generalization of the above two lower bounds as 

follows: 
Theorem 3 (Sano [24]). Let ( ),G V E=  be a graph. Let m  be an integer 

such that 1 m V≤ ≤ . Then  

( ) [ ] [ ]( )min ; 1,e G GV
U

m

k G E U N U mθ
 

∈ 
 

≥ − +  

where 
V
m
 
 
 

 denotes the set of all m -subsets of V . 

The following results from [25] will be used in this paper. 
Theorem 4 (Harary et al. [25]). Let ( ),D V A=  be a digraph. Then D  is 

acyclic if and only if there exists an ordering of vertices, [ ]1 2, , , nv v vσ =  , such 
that one of the following two conditions holds:  

1) For all { }, 1, 2, ,i j n∈  , ( ),i jv v A∈  implies that i j< ; 
2) For all { }, 1, 2, ,i j n∈  , ( ),i jv v A∈  implies that i j> . 
Sano [5] pointed out that it would be interesting to compute the competition 

numbers of some triangulations of a sphere as he obtained the exact value of the 
competition numbers of regular polyhedra. In this paper we try to study the 
competition numbers of several kinds of triangulations of a sphere. In Section 2, 
we study the competition number of a 24-hedron constructed from a hexahedron 
by adding a vertex in each face of the hexahedron and joining the vertex added 
in a face with the four vertices of the face. In Section 3, we study the competition 
numbers of a class of dodecahedra obtained from a hexahedron by adding a di-
agonal in each face of the hexahedron. In Section 4, we study the competition 
number of a triangulation of a sphere with ( )3 2n n ≥  vertices. 

In the following, “ S v→ ” means that we make an arc from each vertex in S  
to the vertex v . 

2. A 24-Hedron 

In this section we study the competition number of a 24-hedron obtained from a 
hexahedron by adding a vertex in each face of the hexahedron and joining the 
vertex added in a face with the four vertices of the face. See Figure 1. 

Theorem 5. Let   be the 24-hedron shown in Figure 1(b). Then ( ) 3k = .  
Proof. Let ( ) { }1 2 14, , ,V v v v=   and suppose that the adjacencies between 

two vertices are given as Figure 2. Let  
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Figure 1. Planar embeddings of a hexahedron and a 24-hedron. 

 

 
Figure 2. An edge clique cover of the 24-hedron  . 

 

{ } { } { } { }
{ } { } { } { }
{ } { } { } { }

1 2 7 9 2 1 2 13 3 1 4 14 4 2 3 4

5 3 6 7 6 4 5 6 7 5 10 14 8 6 8 10

9 7 8 11 10 9 11 13 11 10 11 12 12 12 13 14

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , .

S v v v S v v v S v v v S v v v

S v v v S v v v S v v v S v v v

S v v v S v v v S v v v S v v v

= = = =

= = = =

= = = =

 

Then the family { }1 2 12, , ,S S S  is an edge clique cover of  . 
Now, we define a digraph D  as follows. Let  

( ) ( ) { }, , ,V D V a b c= ∪  

1 2 3 4 1 5 2 6 3

7 4 8 5 9 6 10 7 11 8 12 9

,    ,   ,    ,   ,   ,
,  ,  ,  ,  ,  ,

S a S b S c S v S v S v
S v S v S v S v S v S v
→ → → → → →

→ → → → → →
 

where ,a b  and c  are new added vertices. Then by Theorem 4 the digraph 
D  is acyclic and ( ) { }, ,C D a b c= ∪ . Hence we have  

( ) 3.k ≤                            (1) 

On the other hand, by Theorem 3 with 2m = , we have  

( ) [ ] [ ]( )
2

min ; 1.eV
U

k E U N Uθ
 

∈ 
 

≥ −   

There are 7 different cases for the set [ ]E U  of edges in the subgraph  
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[ ]N U , where 
2
V

U  
∈ 
 

 (see Figure 3):  

1) If [ ] 2U P= , then [ ] [ ]( ); 5;e E U N Uθ =   
2) If [ ] 2U I= , then [ ] [ ]( ); 6;e E U N Uθ =   
3) If [ ] 2U I= , then [ ] [ ]( ); 6;e E U N Uθ =   
4) If [ ] 2U I= , then [ ] [ ]( ); 4;e E U N Uθ =   
5) If [ ] 2U I= , then [ ] [ ]( ); 4;e E U N Uθ =   
6) If [ ] 2U P= , then [ ] [ ]( ); 4;e E U N Uθ =   
7) If [ ] 2U I= , then [ ] [ ]( ); 5.e E U N Uθ =   
Thus it holds that  

[ ] [ ]( )
2

min ; 4.eV
U

E U N Uθ
 

∈ 
 

=   

Hence we have  

( ) 3.k ≥                            (2) 

Combining inequalities (1) and (2) we have ( ) 3k = . 

3. A Class of Dodecahedra 

In this section we study the competition numbers of a class of dodecahedra con-
structed from a hexahedron by adding a diagonal in each face of the hexahedron. 
It is not difficult to see that there are 6 nonisomorphic such dodecahedra. De-
note the 6 different dodecahedra by 1 , 2 , 3 , 4 , 5  and 6 , respec-
tively. See Figure 4. 
 

 
Figure 3. The set [ ]E U  of edges in the subgraph [ ]N U . 

 

 
Figure 4. 6 nonisomorphic dodecahedra obtained from a hexahedron. 
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Theorem 6. ( ) 2, 1,3;
1, 2, 4,5,6.i

i
k

i
=

=  =
  

Proof. Let ( ) { }1 2 8, , ,iV v v v=   and suppose that the adjacencies between 
two vertices are given as Figure 5, where 1, 2, , 6i =  . Now we define digraphs 

1 2 6, , ,D D D , respectively. 
1) 1D . 
Let ( ) ( ) { }1 1 1 1,V D V a b= ∪ , and ( )1A D  be defined as follows:  

{ } { } { }
{ } { } { }
{ }

1 1 2 6 1 2 1 3 5 1 3 2 3 8 1

4 3 4 5 2 5 4 7 8 3 6 5 6 7 4

7 6 8 5

, , ,    , , ,   , , ,

, , ,  , , ,  , , ,

, ,

S v v v a S v v v b S v v v v

S v v v v S v v v v S v v v v

S v v v

= → = → = →

= → = → = →

= →

 

where 1a  and 1b  are new added vertices. Note that the family { }1 2 7, , ,S S S  
is an edge clique cover of 1 . 

2) 2D . 
Let ( ) ( ) { }2 2 2V D V a= ∪ , and ( )2A D  be defined as follows:  

{ } { } { }
{ } { } { }

1 1 2 3 5 2 2 2 6 8 1 3 3 4 6 2

4 4 5 7 3 5 5 7 8 4 6 6 7 5

, , , ,  , , ,  , , ,

, , ,      , , ,  , ,

S v v v v a S v v v v S v v v v

S v v v v S v v v v S v v v

= → = → = →

= → = → = →
 

where 2a  is a new added vertex. Note that the family { }1 2 6, , ,S S S  is an 
edge clique cover of 2 . 

3) 3D . 
Let ( ) ( ) { }3 3 3 3,V D V a b= ∪ , and ( )3A D  be defined as follows:  
 

 
Figure 5. Edge clique covers for 1 , 2 , 3 , 4 , 5  and 6 . 
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{ } { } { }
{ } { } { }

1 1 4 8 3 2 1 2 7 3 3 2 3 4 1

4 3 5 7 2 5 4 5 6 3 6 6 7 8 4

, , ,    , , ,    , , ,

, , ,   , , ,    , , ,

S v v v a S v v v b S v v v v

S v v v v S v v v v S v v v v

= → = → = →

= → = → = →
 

where 3a  and 3b  are new added vertices. Note that the family { }1 2 6, , ,S S S  
is an edge clique cover of 3 . 

4) 4D . 
Let ( ) ( ) { }4 4 4V D V a= ∪ , and ( )4A D  be defined as follows:  

{ } { } { }
{ } { }

1 1 3 4 8 4 2 2 4 6 8 1 3 3 5 7 2

4 4 5 6 3 5 6 7 8 4

, , , ,   , , , ,   , , ,
, , ,       , , .

S v v v v a S v v v v v S v v v v
S v v v v S v v v v
= → = → = →

= → = →
 

where 4a  is a new added vertex. Note that the family { }1 2 5, , ,S S S  is an 
edge clique cover of 4 . 

5) 5D . 
Let ( ) ( ) { }5 5 5V D V a= ∪ , and ( )5A D  be defined as follows:  

{ } { } { }
{ } { }

1 1 3 4 5 5 2 2 6 7 8 1 3 3 6 7 2

4 4 6 8 3 5 5 7 8 4

, , , ,    , , , ,    , , ,

, , ,        , , ,

S v v v v a S v v v v v S v v v v

S v v v v S v v v v

= → = → = →

= → = →
 

where 5a  is a new added vertex. Note that the family { }1 2 5, , ,S S S  is an 
edge clique cover of 5 . 

6) 6D . 
Let ( ) ( ) { }6 6 6V D V a= ∪ , and ( )6A D  be defined as follows:  

{ } { } { }
{ }

1 1 5 6 7 2 2 5 7 8 1 3 3 5 6 8 2

4 4 6 7 8 3

, , , ,  , , , ,  , , , ,

, , , ,

S v v v v a S v v v v v S v v v v v

S v v v v v

= → = → = →

= →
 

where 6a  is a new added vertex. Note that the family { }1 2 3 4, , ,S S S S  is an 
edge clique cover of 6 . 

By Theorem 4, each iD  is acyclic and  

( ) { }
{ }

, , 1,3;
, 2, 4,5,6.

i i i
i

i i

a b i
C D

a i
 ∪ ==  ∪ =




 

Hence we have  

( ) 2, 1,3;
1, 2, 4,5,6.i

i
k

i
≤ =
≤ =

                     (3) 

On the other hand, we note that  
• ( ) ( )1 3 4δ δ= =   and there is no clique with more than 3 vertices in 1  

and 3 , respectively;  
• ( ) { }

2 1 2 3 5, ,N v v v v=  is covered by the clique { }1 1 2 3 5, , ,S v v v v=  in 2 ;  
• ( ) { }

4 1 3 4 8, ,N v v v v=  is covered by the clique { }1 1 3 4 8, , ,S v v v v=  in 4 ;  
• ( ) { }

5 1 3 4 5, ,N v v v v=  is covered by the clique { }1 1 3 4 5, , ,S v v v v=  in 5 ;  
• ( ) { }

6 1 5 6 7, ,N v v v v=  is covered by the clique { }1 1 5 6 7, , ,S v v v v=  in 6 .  
Then we have  

( )( ) ( )2, ,    where   1,3,
iv iN v v V iθ ≥ ∈ =   

and  

( )( )1 1,    where   2, 4,5,6.
iv N v iθ = =  
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By Theorem 2  

( ) ( )( ) ( ){ } 2, 1,3;
min

1, 2, 4,5,6.ii v i

i
k N v v V

i
θ

=
≥ ∈ ≥  =

          (4) 

Combining inequalities (3) and (4) we have  

( ) 2, 1,3;
1, 2, 4,5,6.i

i
k

i
=

=  =
  

4. Triangulation ( )G n  of a Sphere 

In this section we study a graph ( ) ( ),G n V E=  with ( )3 2n n ≥  vertices, where  

{ }
1

, ,
n

i i i
i

V x y z
=

=


 

and  

{ } { }
1

1 1 1 1 1 1
1 1

, , , , , , , .
n n

i i i i i i i i i i i i i i i i i i
i i

E x y y z x z x x x z y y y z z x z y
−

+ + + + + +
= =

= ∪
 

 

An example ( )3G  is shown in Figure 6(a). In fact, we can draw ( )G n  in 
the plane by the following way. First we draw the triangles ( )1, 2, ,i i ix y z i n∆ =   
such that 1 1 1i i ix y z+ + +∆  includes i i ix y z∆ , and , ,i i ix y z  are in clockwise order if 
i  is even, or in counter-clockwise order if i  is odd, respectively. Then we draw 
the other edges. It is easy to see that each face of ( )G n  is a triangle. So for each 

2n ≥ , ( )G n  is a triangulation of a sphere. 
Theorem 7. For each 2n ≥ , ( )( ) 2k G n = . 
Proof. Let σ  be a vertex ordering of ( )G n  such that ( ) 3 2i ix vσ −= ,  
( ) 3 1i iy vσ −=  and ( ) 3i iz vσ = , where 1, 2, ,i n=  . Let  

{ }
{ }

{ }
{ }

1 1 2 3

3 1 3 2 3 1 3 3

3 3 1 3 2 3 3

3 1 3 3 1 3 2

, , ,

, , ,

, ,   and

, , ,   where  1, , 1.

i i i i

i i i i

i i i i

S v v v

S v v v

S v v v

S v v v i n

− − + +

− + +

+ + +

=

=

=

= = −

 

 

 
Figure 6. ( )3G  and an edge clique cover of ( )3G . 
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Then the family { }1 2 3 2, , , nS S S −  is an edge clique cover of ( )G n . An edge 
clique cover of ( )3G  is shown in Figure 6(b). 

Now, we define a digraph D  by the following:  

( ) ( )( ) { }
{ }
{ }

{ }
{ }

1 1 2 3 4

3 1 3 2 3 1 3 3 3 4

3 3 1 3 2 3 3 3 5

3 1 3 3 1 3 2 3 3

, ,

, , ,

, , ,

, , ,   and

, , ,   where  1, , 1.

i i i i i

i i i i i

i i i i i

V D V G n a b

S v v v v

S v v v v

S v v v v

S v v v v i n

− − + + +

− + + +

+ + + +

= ∪

= →

= →

= →

= → = −

 

Note that 3 1 3 2,n nv a v b+ += =  are new vertices. Then by Theorem 4 the digraph 
D  is acyclic and ( ) ( ) { },C D G n a b= ∪ . Hence we have  

( )( ) 2.k G n ≤                          (5) 

On the other hand, since ( )( ) 4G nδ =  and there is no clique with more than 
3 vertices in ( )G n , then by Theorem 2  

( )( ) ( ) ( )( ) ( )( ){ }min 2.v G nk G n N v v V G nθ≥ ∈ ≥            (6) 

Combining inequalities (5) and (6) we have ( )( ) 2k G n = . 

5. Closing Remarks 

In this paper, we provide the exact values of the competition numbers of a 
24-hedron, a class of dodecahedra and a triangulation of a sphere with  

( )3 2n n ≥  vertices. It would be interesting to compute the competition numbers 
of some other triangulations of a sphere. 

For a digraph ( ),D V A= , if we partition V  into k  types, then we may 
construct a undirected graph ( ) ( ),kC D V E=  of D  as follows:  

1) uv E∈  if and only if there exists some vertex x V∈  such that  
( ) ( ), , ,u x v x A∈  and ,u v  are of the same type, or  

2) uv E∈  if and only if there exists some vertex x V∈  such that  
( ) ( ), , ,u x v x A∈  and ,u v  are of different types. 

It is easy to see that ( ) ( )1C D C D=  for a given digraph D , and we note 
that multitype graphs can be used to study the multi-species in ecology and have 
been deeply studied (see [26] [27]). So these generalizations of competition 
graphs may be more realistic and more interesting. 
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