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Abstract 
The robust stability analysis for discrete large-scale uncertain systems with 
multiple time delays is addressed in this paper. We establish a method for se-
lecting properly a positive definite matrix Q to derive a very simple upper so-
lution bound of the discrete algebraic Lyapunov equation (DALE). Then, us-
ing the Lyapunov equation approach method with this upper bound, several 
sufficient conditions are presented to guarantee the robust stability of the 
overall systems. Comparisons between the proposed results with a previous 
one are also given. 
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1. Introduction 

It is known that the system is called an interval system and can be considered as 
a system with parametric perturbations when matrices of a state equation are 
interval matrix. In practice, time delay(s) exist(s) in real-life systems and should 
be integrated into system model. During the past decades, the research of sys-
tems with time delay(s) has also become an attractive topic. However, surveying 
the existing ones, only few works have been devoted to stability analysis and/or 
stabilization controller design of interval time-delay systems [1] [2] [3] [4] [5]. 
Besides, compare to single systems, dimensionality of system equations of large- 
scale systems is higher and hence the control problems of large-scale systems are 
more complicated. In literature, many contributions have been devoted to the 
research for these kinds of systems during the past decades [6] [7] [8] [9] [10]. 
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For large-scale interval time-delay system, it is seen that a sufficient criterion has 
been developed in [5] for the robust stabilization for discrete nonlinear large- 
scale interval systems with non-integral delays. Of those present works, control 
problems for systems with both time delays and uncertainties only have been 
discussed in few works [4] [7] [8]. In this paper, the robust stability testing 
problem for discrete large-scale interval time-delay systems is discussed. By us-
ing the Lyapunov equation approach associated with a very simple upper bound 
of the solution of the discrete Lyapunov equation, several delay-independent 
stability criteria are derived for the aforementioned systems. An interesting con-
sequence is that these obtained criteria do not involve any Lyapunov equation. 
Comparison between the present results and a previous result is also made. It 
will be shown that the obtained results are better. It is believed that the present 
schemes are helpful for the controller design of large-scale interval time-delay 
systems. 

2. Main Results 

Consider the discrete composite interval time-delay system S which is described 
as an interconnection of N subsystems 1 2, , , NS S S�  which are represented by 

( ) ( ) ( )
1

: 1
N

i i iI i ijI j ij
j

S x k A x k A x k d
=

+ = + −∑ , 1,2, ,i N= �         (1) 

where ( ) nx ⋅ ∈�  represents the state vector, integer dij > 0 denotes the delay, Ai-

jI = AiI for i = j, and AiI and AijI are interval matrices with appropriate dimensions 
and have the properties: 

{ }, , , 1, 2, , , 1, 2, ,iI i i ipq ipq ipq ipqn n
A A A a u a v p q n i N

×
 = = ≤ ≤ = =  � � ,  (2) 

{ }, , , 1, 2, , , 1, 2, ,ijI ij ij ijpq ijpq ipq ijpqA A A a e a f p q n i N = = ≤ ≤ = =  � � .   (3) 

Define matrices Ui, Vi, Eij, and Fij, respectively, as 

, , ,i ipq i ipq ij ijpqU u V v E e     = = =       and ij ijpqF f =   , , 1, 2, ,p q n= �   (4) 

In fact, system (1) can also be represented as follows. 

( ) ( ) ( ) ( ) ( )
1

: 1
N

i i i i i ij ij j ij
j

S x k A A x k A A x k d
=

+ = + ∆ + + ∆ −∑ , 1,2, ,i N= �   (5) 

( ) ( ) ( ) ( )
1

: 1
N

i i iI i ij ij j ij
j

S x k A x k A A x k d
=

+ = + + ∆ −∑ , 1,2, ,i N= �         (6) 

( ) ( ) ( ) ( )
1

: 1
N

i i i i i ijI j ij
j

S x k A A x k A x k d
=

+ = + ∆ + −∑ , 1,2, ,i N= �         (7) 

where Ai and Aij, respectively, is defined by 

( ) 2i i iA U V= +  and ( ) 2ij ij ijA E F= + .              (8) 

Here, ΔAi and ΔAij denote the parametric uncertainties with the following 
properties: 

i iA R∆ ≤  and ij ijA S∆ ≤                     (9) 
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where Ri and Sij are defined as 

( ) 2i i iR V U= −  and ( ) 2ij ij ijS F E= − .            (10) 

Then, we derive the following criteria. 
Theorem 1. For 1,2, ,i N= � , if 

( )

( )
1

1

N

i i ij ij
j

N
T T
i i i i ji ji ji ji

j

A R A S

A A A R I A A A S I I

=

=

 
+ + + 

 
 

+ + + < 
 

∑

∑
        (11) 

then the composite uncertain time-delay system (1) or (5) is robustly stable 
Proof. The condition (11) infers 

( ) ( )
1

N
T

i i ij ij i i i i
j

A R A S A A A R I I
=

 
+ + + + < 

 
∑        (12) 

which can further implies 

( ) ( )( )2 T
i i i i i i i iA R I A R A A A R I I+ ≤ + + < .       (13) 

Therefore, we obtain 1i iA R+ <  and this means the matrix ( )i iA A+ ∆  is 
stable. Then, the following Lyapunov equation has a positive definite solution Pi 
for any given positive definite matrix Qi. 

( ) ( )T
i i i i i i iA A P A A P Q+ ∆ + ∆ − = − , 1,2, ,i N= �          (14) 

Here, we choose Qi as 

( )( )

( ) ( )
1

1 1

N
T

i ij ij i i i i
j

N N
T

i i ik ik ji ji ji ji
j k

Q A S A A A R I

A R A S A A A S I

α
=

= =


= + +


 

+ + + + +  
  

∑

∑ ∑
   (15) 

where α  is an arbitrary positive constant. 
Then, from the Lyapunov Equation (14), we have 

( ) ( )( ) ( )
( ) ( ) .

T
i i i i i i

T
i i i i i

A A I P A A I P

Q A A A A I

α α

α α

+ ∆ − + ∆ − −

= + + ∆ + ∆ −
          (16) 

Due to the fact that A A≤ , one obtains 

i i iA A R∆ ≤ ∆ ≤  and ij ij ijA A S∆ ≤ ∆ ≤ .       (17) 

Then, utilizing these inequalities, we obtain 

( ) ( )

( )( )

2 2

.

T T T T T
i i i i i i i i i i i i

T T T T
i i i i i i i i i i i i

T T
i i i i i i i i i i

T
i i i i i i

A A A A A A A A A A A A

A A R A A A A A A R A A

A A R A A A A A I R A I

A R A A A R I

+ ∆ + ∆ = + ∆ + ∆ + ∆ ∆

≤ + + ∆ ∆ + ∆ ∆

≤ + + ∆ + ∆

≤ + +

    (18) 

Substituting this inequality into (16), it is seen that if the condition (12) is sa-
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tisfied then the right-hand side of (16) is a negative definite matrix. This means 
that the solution Pi of the Lyapunov Equation (16) has the upper bound iP Iα< . 

Here, we construct a Lyapunov function as follows. 

( )( ) ( )( )

( )

( )( ) ( )

1

1 1 1

1

ij

N

i i i
i

N N N
T
i i i i i ik ik

i j k

d
T T T
j ij i ij ij ij i ij ij j

n

V x k V x k

x P x A R A S

x k n A P A A A P A S x k n

=

= = =

=

=

 
= + + + + 

 

× − + ∆ ∆ −

∑

∑ ∑ ∑

∑

         (19) 

Taking the forward difference for the Lyapunov function (19) results in 

( ) ( ) ( )

( ) ( )

1

1 1 1
1 1

N

i
i

N N N
T T
i i i i i i i i ik ik

i j k

T T T T
ij i ij ij i ij ij i ij ij i ijT T

j j jd jd
ij ij ij ij

TT
i i i i i i i i

V V

x k P x k x P x A R A S

A P A A P A A P A A P A
x x x x

A S A S

x A A P A A P x x

=

= = =

∆ = ∆

  = + + − + + + +  
 

    ∆ ∆ ∆ ∆     × + − +          

 = + ∆ + ∆ − + 

∑

∑ ∑ ∑

( ) ( )

( ) ( )

( )

1 1

1 1 1

1 1 1 1 1 1

1

N NTT
i i i i ij ij jd

i j

N N NTT T T
jd ij ij i i i i jd ij i ij jd

j j j

N N N N N N
T T T T T T T
jd ij i ij jd jd ij i ij jd jd ij i ij jd

j j j j j j

N

i i ik ik
k

A A P A A x

x A A P A A x x A P A x

x A P A x x A P A x x A P A x

A R A S

= =

= = =

= = = = = =

=

 + ∆ + ∆


+ + ∆ + ∆ +

+ ∆ + ∆ + ∆ ∆


+ + + +



∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ( )
( )

1

N
T T T
i ij i ij ij ij i ij ij i

j

T T T
jd ij i ij ij ij i ij ij jd

x A P A A A P A S x

x A P A A A P A S x

=

  + ∆ ∆  
− + ∆ ∆ 

∑

(20) 

( )( )

( ) ( )

( )( )

( )

1 1

1 1

1 1

1

[

N N
T T T
i i ij ij i i i i i i i i

i j

N N
T T

i i ik ik ji j ji ji ji j ji ji i
j k

N N
T T
i i ij ij i i i i i i

j j

N

i i ik ik ji
k

x Q A S A P A A A P A R

A R A S A P A A A P A S x

x Q A S A A A R I A R

A R A S A

α

= =

= =

= =

=

 = − + + + ∆ ∆ 
 

  + + + + + ∆ ∆  
   
 

< − + + + + + 
 

 
+ + + + 

 

∑ ∑

∑ ∑

∑ ∑

∑ ( )
1

0
N

T T
ji ji ji ji ji i

j
A A A A S x

=


+ ∆ ∆ =


∑

  (21) 

where (15) and the following relation are used. 

( ) ( )

( ) ( )
1 1 1

1 1 1
.

N N N
T T T
j i i ik ik ij i ij ij ij i ij ij j

i j k

N N N
T T T
i i i ik ik ji j ji ji ji j ji ji i

i j k

x A E A F A P A A A P A F x

x A E A F A P A A A P A F x

= = =

= = =

   + + + + ∆ ∆    
   = + + + + ∆ ∆    

∑∑ ∑

∑ ∑ ∑
(22) 

Therefore, obviously the condition (11) can infer ΔV < 0 and hence the com-



C.-H. Lee 
 

763 

posite uncertain time-delay system (5) is robustly stable. Thus, this completes 
the proof. 

Following the same approach that proposed in the proof of Theorem 1, we 
have the following results. 

Theorem 2. The composite uncertain system (6) or (1) is robustly stable if the 
following condition is satisfied for 1,2, ,i N= � . 

( ) ( )
1 1

N N
T

i ij ij i ji ji ji ji
j j

H A S H I A A A S I I
= =

  
+ + + + <  

  
∑ ∑ .   (23) 

Proof. Using the Lyapunov Equation (7) with 

( ) ( )
1

1 1

N
T

i ij iI iI i
j

N N
T

i ik ik ji ji ji ji
j k

Q G A A H

H A S A A A S I

α
=

= =


= 


 

+ + + +  
  

∑

∑ ∑
      (24) 

Then, let 

( )

( )( ) ( )

1 1 1

1

ij

N N N
T
i i i i ik ik

i j k

d
T T T
j ij i ij ij ij i ij ij j

n

V x P x H A S

x k n A P A A A P A F x k n

= = =

=

 
= + + + 

 

× − + ∆ ∆ −

∑ ∑ ∑

∑
     (25) 

It is easy to obtain the stability condition (23). Details of the proof are omit-
ted. 

Theorem 3. If the following condition holds for 1,2, ,i N= � , 

1 1
) 1

N N

i i ij i i ji
j j

A R G A R G
= =

  
+ + + + <  

  
∑ ∑           (26) 

then the composite uncertain system (7) or (1) is robustly stable. 
Proof. From (14), if we choose  

( )( )
1

1 1
)

N
T

i ij ij i i i i
j

N N
T

i i ik jiI jiI ji
j k

Q A S A A A R I

A R G A A G

α
=

= =


= + +


 

+ + +  
  

∑

∑ ∑
 

and 

( )

( )( ) ( )

1 1 1

1

ij

N N N
T
i i i i i ik ik

i j k

d
T T T
j ij i ij ij ij i ij ij j

n

V x P x A R A S

x k n A P A A A P A S x k n

= = =

=

 
= + + + + 

 

× − + ∆ ∆ −

∑ ∑ ∑

∑
      (27) 

then the condition (26) can assure the stability of the large-scale system (7) or 
(1). We also omit the remaining proof. 

Remark 1. In [5], a robust stability condition for system model (5) has been 
driven. We re-write it as follows. 
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( ) ( ) 2 21 1

1,
1 2

1

N

i i i i i j j ji ji i i
j j i

N A R R N A S M Wβ β − −

= ≠

    + + + + +      
<

∑  (28) 

where Ni denotes the number of 0ijA ≠  corresponding to the ith subsystem 
with 1, 2, ,j N= � , ( ) ( ) 1 2

1 1k i i iA Nλ β
−

 < + +  , 1
i i i iA M M −= Λ  with 

( ){ },i k idiag AλΛ =  1, 2, ,k N= � , Wi is defined by 

( ) ( )( ){ }222 1 1 1i i i i k iW diag M N Aβ λ = − + +  . 

It is obvious that the condition (28) involves an inverse matrix and how to 
determine the positive constant βi such that (28) is satisfied is an open problem. 
Furthermore, it is assumed that all eigenvalues of Ai are distinct. The conditions 
(11), (23), and (26) do not involve any inverse matrix and free variable. It is also 
not necessary to assume all eigenvalues of Ai are distinct. Therefore, they are less 
restrictive than (28). Besides, we have found that the tightness of the obtained 
results cannot be compared. 

3. Conclusions 

A new approach of the analysis of the robust stability for discrete large-scale in-
terval systems with timedelays has been proposed in this paper. By utilizing the 
Lyapunov equation approach associated with a simple upper solution bound, 
several concise criteria have been derived to guarantee the robust stability of the 
aforementioned systems. The feature of these obtained results is that they do not 
involve any Lyapunov equation although the Lyapunov approach is utilized. 
Furthermore, comparing to a previous one, all eigenvalues of the system matrix 
A are not needed to be distinct in this work and the obtained results do not in-
volve any inverse matrix and free variable. Therefore, they are less restrictive and 
easy to be checked. It is believed that this work is useful for the stabilization 
problem of discrete large-scale interval systems with timedelays. 
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