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Abstract 
This article presents BigEar, a wireless low-cost speech capturing interface that 
aims to realize unobtrusive and transparent context-aware vocal interaction 
for home automation. The speech recognition process implemented in BigEar 
system considers noise sources including possible holes in the reconstructed 
audio stream and tries to overcome them by means of inexactness toleration 
mechanisms to improve intelligibility of the reconstructed signal. Key contri-
bution of this work is the use of extremely low cost devices to realize a mod-
ular flexible and real-time wireless sensor network. On-field implementation 
and experiments show that the proposed solution can perform real-time speech 
reconstruction, while listening tests confirm the intelligibility of the recon-
structed signal. 
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1. Introduction 

The ageing of world’s population will raise the demand and challenges of elderly 
care in coming years. Based on a study of the US census, the number of people 
aged over 65 will increase by 101 percent between 2000 and 2030, at a rate of 2.3 
percent each year; during that same period, the number of family members who 
can provide support for them will increase by only 25 percent, at a rate of 0.8 
percent each year. Several approaches have been devised to deal with the needs 
of older people proactively. 

Assistive domotics represents a relatively recent effort in this direction addressing 
the needs of people with disability, older persons, and people with little or no 
technical affinity, and offers new levels of safety, security and comfort, and 
thereby the chance to prolong their safe staying at home. 
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The BRIDGe1 (Behaviour dRift compensation for autonomous InDependent 
livinG) project [1], carried out at Politecnico di Milano-Polo di Como, aims to 
build strong connections between a person living independently at home and 
his/her social environment (family, caregivers, social services) by implementing 
a system that provides focused interventions according to the user’s needs. 

BRIDGe addresses the needs of people with mild cognitive or physical impair- 
ments and, more generally, fragile people whose weakness threatens their auto- 
nomy, health or other important aspects of their life. Fragile people need mutual 
reassurance: they typically want to be independent and autonomous, but they 
also know that often somebody else must be present to help them. 

BRIDGe’s core is a wireless sensor-actuator network that supports house con- 
trol and user behavior detection through a rich and flexible communication sys- 
tem between the person and his/her social environment, aiming at reassuring 
both the family and the user. BRIDGe is based on a modular architecture that 
can be easily configured to satisfy the single user needs, including: house control 
e.g., lighting and shutter control; home appliance monitoring for user activity 
recognition and energy consumption measurements purposes; presence 
detection, i.e. identifying the presence of people in specific areas of the house; 
indoor localization along with status (moving, sitting, falling, and so on); event- 
and status-based information transmission to inform caregivers promptly about 
specific events, such as when a fall is detected. 

Target of this work is to model, realize and implement a distributed audio acqui- 
sition system called BigEar (uBiquitous wIreless low-budGet spEech cApturing 
inteRface) to support vocal interaction between the user and the assistive envi- 
ronment, for example, to vocally control some parts of a dwelling like lights, 
doors, etc. BigEar has been built according to the following Wireless Sensor Net- 
work [2] requirements:   

The adopted technology (hardware and software) has to consider the econo- 
mical possibilities of people.  

The absence of power and/or signal cables is a strong requirement in order to 
lower costs for house adaptation. Moreover, wireless systems can ensure a higher 
degree of flexibility and configurability than wired systems.  

The key for pervasiveness is distributed computing [3], an interaction model 
in which the devices concur in building a result whose information content is 
more than the sum of single contributions. Moreover, sensors are completely 
independent and an eventual failure will not completely compromise the result 
of the sensor network collaboration.  

The system should be implemented using a modular approach in order to be 
scalable and quickly configurable to match the environment characteristics and the 
user’s needs.  

Speech recognition should be immediate, so speed of processing is a crucial 
requirement in order to give the user an immediate feedback; assistive domotic 
interaction has to be as fast as possible.  

 

 

1http://atg.deib.polimi.it/projects/atg.deib.polimi.it/projects. 



S. Gorla et al. 
 

62 

The proposed system consists of different modules that take into account the 
acquisition environment with its acoustic characteristics and the behavior of the 
sensor-network model. Such modules have been simulated to investigate the 
archiecture capabilities of the system. Then, a Reconstruction Algorithm recon- 
structing the audio signal starting from the audio packets received by the micro- 
phones has been developed. 

This work is organized as follows: after a brief analysis of existent solutions in 
literature (Section 2), in Section 3 the architecture of BigEar system is described, 
focusing on the characterization of the context of use, on the features of the pro- 
totyping board, and on the communication protocol among the components of 
the system. Section 4 describes the speech acquisition model that has been simu- 
lated to define the working parameters before the realization of the system and 
the real-world implementation. Section 5 explains operating principles of the Big- 
Ear Reconstruction Algorithm, focusing on crucial aspects such as energy com- 
pensation, time-delay analysis and streams superposition. The audio data cap- 
tured by means of the real-world prototype have been compared with the ones 
generated by the simulated model, and results of this comparison are discussed 
in Section 6. Speed of processing and the quality of the reconstructed speech sig- 
nal are evaluated in Section 7. Finally, in Section 8 final remarks conclude the 
paper and look out over the future works. 

2. Related Work 

Different solutions have been proposed in the literature exploiting audio in smart 
homes, briefly described in the following subsections. 

2.1. Sweet-Home Project 

The Sweet-Home project [4] aims at designing a smart home system based on 
audio technology focusing on three main goals: to provide assistance via natural 
man-machine interaction (voice and tactile command), to ease social e-inclusion, 
and to provide security reassurance by detecting situations of distress. The targeted 
smart environments are multi-room homes with one or more microphones per 
room set near the ceiling. 

To show the results of the project, a smart home was set up. It is a thirty square 
meters suite flat including a bathroom, a kitchen, a bedroom and a study; in 
order to acquire audio signals, seven microphones were set in the ceiling. All the 
microphones were connected to a dedicated PC embedding an 8-channel input 
audio card. 

The authors based the architecture on a multichannel audio card; in general 
dedicated hardware increases costs and reduces flexibility. Moreover, a wired 
approach is hard to implement since it requires to fix wires onto walls or into 
existing electrical pipes. BigEar project is based on low-cost hardware and wire- 
less connections in order to preserve flexibiliy, ease of installation and reduce 
costs.  
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2.2. Wireless Sensor Networks for Voice Capture in  
Ubiquitous Home Environments   

The authors in Palafox and García-Macias [5] present a voice capture applica- 
tion using a wireless sensor network (WSN). The WSN nodes (each node is a 
MicaZ mote with a high sensitivity microphone) are grouped in clusters with a 
special node (cluster-head) coordinating the cluster activities in order to avoid to 
capture and transmit the same voice command by two or more nodes; the authors 
consider the command duplication unacceptable. Each cluster-head collects audio 
data from their cluster nodes and relays it to a base station. Each node con- 
tinuously senses audio signals at 2 kHz sampling frequency; if the sensed signal 
intensity exceeds a predetermined threshold, the node sends a notification to the 
cluster-head. The cluster-head selects a node to capture the command; the selected 
node enters into 8 kHz sampling frequency, captures three seconds of audio 
(with 8 bit resolution) and transfers the audio data to the cluster-head node which, 
in turn, relays it to the base station where a computer processes speech recog- 
nition tasks. The authors implement two capturing techniques: capture-and- 
send without coordination (consisting of human voice detection, three seconds 
of audio recording and transmission of the data packet to the cluster-head) and 
coordinate (consisting of human voice detection, node selection by the cluster- 
head, three seconds of audio recording and transmission of the data packet to 
the cluster-head). The main limit of this solution, beside having a quite high cost, 
is the sampling of three seconds instead of having a continuous voice detection 
and reconstruction. Our solution improves such limitation. 

2.3. Exploiting WSN for Audio Surveillance Applications:  
The VoWSN Approach   

The work in Alesii et al. [6] focuses on the analysis of fundamental issues about 
the transmission of the voice using a wireless sensor network (WSN). The paper 
is based on the MicaZ wireless sensor nodes. The prototype of the system has 
been developed through the use of the CrossBow MicaZ-TinyOS_v1.5. and a PC 
has been used for listening and the analysis of recorded data. The work focuses 
on audio surveillance systems (i.e. continuous or event-driven audio monitoring 
tailored to voice signals that have to be archived and/or postprocessed) and on 
multi-point sampling to make proper signals (or noises) cancellations. BigEar 
nodes are based on Wixel prototyping boards, that allow to reduce significantly 
costs with respect of the solution implemented from the authors, that is based on 
MicaZ motes [7] [8]. 

2.4. Differentiating Emergency Voice Traffic in Indoor  
Wireless Activity Monitoring Network 

Demir et al. [9] propose an indoor wireless activity monitoring network (WAM- 
N) to transmit data in real time to a monitoring application. The architecture is 
based on a personal device where data from an accelerometer are transmitted to 
the sink for the detection of current physical activities (e.g. lying and sitting); an 
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acoustic sensor was located close to the bed of the older person, to transmit short 
voice commands (e.g. need help, open the door etc.) for emergency attendance. 
The paper aims at experimenting a network which treats the voice data as emer- 
gency traffic and tries to achieve a certain Quality of Service. The system is only 
simulated considering the voice and activity data into two different Quality of Ser- 
vice classes: class 1 for voice and class 2 for activity data. The voice data segment 
(55 bytes) is periodically sent in every 3.57 ms and each voice command is repre- 
sented by 800 data segment while 55 byte activity data segment is periodically 
sent in every 2.7 s; they assume each captured voice command is digitized with a 
sampling rate of   8 KHzsf =  and bit depth of 8-bit. The authors consider only 
a single voice source for detecting the user command; compared to this approach 
we use a set of microphones, which are contemporaneously active. In this way, 
BigEar solution implements a wireless unobtrusive network that takes advantage 
of the simultaneous multi-sensor acquisition to reconstruct the speech signal 
regardless of the position of the source with respect to the sensors.  

2.5. The Research and Design on Time Division  
Duplex (TDD) Voice WSN 

Rong-lin et al. [10] present an architecture (including hardware architecture of 
voice node, routing node and gateway node) for Voice Wireless Sensor Net- 
works (VoWSN). The main goal of this paper is the quality of the transmitted 
voice; such an objective justifies both costs and the energy consumption of the 
presented hardware solution. The voice node includes a voice circuit (with signal 
amplifier, filtering, acquisition, quantization, encoding and decoding, A/D and 
D/A conversion), a digital signal processing circuit (with real-time voice digital 
signal processing including ADPCM encoding to reduce data rate), and a ZigBee 
module; the routing node includes only the ZigBee wireless communication 
module, while the gateway nodes includes the ZigBee communication module, 
the CDMA module, and an ARM processing circuit. The authors implement the 
time division duplex (TDD) method to achieve duplex voice communications; in 
particular, they use the same frequency but different time slots for data sending 
and receiving. 

2.6. Blind Alignment of Asynchronously Recorded Signals  
for Distributed Microphone Array 

In this work, Ono et al. [11] present an architecture of independent recording de- 
vices that is used as a distributed microphone array. The main goal is to intro- 
duce a novel method for the alignment of recorded signals to estimate the locali- 
zation of microphones and sources. The authors implemented only a simulative 
experiment with 9 microphones and 8 sources randomly positioned. As source 
signals, real-recorded hand claps were used and each source was not overlapped 
each other. The sampling frequency used by the authors was 44,100 Hz and the 
signal length was 5.0 s. High sampling frequency force the use of devices with 
high computing capabilities that reflects on costs of the overall architecture. 
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Moreover, it requires high bandwidth in order to transmit data between nodes. 
BigEar solution focuses on vocal signals and minimizes bandwidth requirements. 
As it will be discussed in following sections, our approach ensures a proper align- 
ment of audio streams generated by different sensors. 

2.7. BigEar Approach 

The approach proposed in this work tries to improve the current state of the art 
by providing a faster and flexible access to the transmission channel that allows a 
more widespread acquisition, based on a low cost solution. Among non functional 
requirements we have considered that house adaptation should be avoided to 
ensure high degree of modularity and configurability. Moreover, closed systems 
and dedicated hardware have been considered as second-best choices not only 
for their licensing costs, but mainly to keep high levels of flexibility. 

3. BigEar Architecture 

Figure 1 illustrates the architecture of the BigEar system. It is composed of a 
network of audio sensors that distributively capture audio in a room. The speech 
is sent to a main receiver (BigEar Receiver), acting as an interface that converts 
speech packets received via radio channel into serial data to be sent to the Base 
Station. The Base Station contains the application logic to handle speech packets. 
Since the audio sensors perform a space-time sampling of the audio inside a 
room, the application logic tries to reconstruct a good-quality speech stream 
starting from packets that arrive to the base station with different timestamps 
and with different physical characteristics. Indeed, each sensor samples the audio 
signal that reaches the microphone after undergoing variations due to the phy- 
sical model of the environment: different delays and amplitudes that depend on 
the position of the person with respect to the sensors, and reflections diffusions 
due to the geometry of the room and materials of the walls and furniture. 

Granularity of space-time sampling is influenced by: 
• Number of audio sensors w.r.t the dimensions of the room: the bigger is the 

 

 
Figure 1. Overview of the BigEar architecture. 
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number of sensors spread in the room, the finer is the granularity of space 
sampling.  

• Audio sensor internal characteristics and constraints: each sensor needs time 
in order to sample data (depending on ADC type), store them into buffers and 
send them to the main receiver.  
• Network communication protocol characteristics and constraints: the num- 

ber of packets sent to the main receiver is affected by the number of collisions 
that may happen on the channel and also by the protocols themselves (hand- 
shaking, request-response timings, timeslot allocations).  

3.1. BigEar Audio Sensors 

The leaf nodes of the architecture are represented by the audio sensors, that are 
built using Wixel Programmable USB Wireless Modules, general-purpose 
boards featuring a 2.4 GHz radio and USB port. The Wixel is designed around 
the CC2511F32 System-on-Chip (SoC) from Texas Instruments, which has an 
integrated radio transceiver, 32 KB of flash memory, 4 KB of RAM, and a full- 
speed USB interface. 

Wixel’s ADC is connected to a simple signal acquisition and conditioning 
stage that captures audio signals. ADC resolution represents an important de- 
sign choice: the higher is the resolution, the lower is the quantization error. On 
the one hand, low resolutions allow high sampling frequency and so a higher 
temporal resolution with the drawback of a lower number of quantization levels; 
on the other hand, high resolutions reduce quantization error granularity. This is 
an important key factor in signal post-processing. 

3.2. BigEar Receiver 

The only task of the BigEar Receiver is to act as a Radio-to-USB interface (and 
vice versa) between BigEar Audio Sensors and the Base Station. It mainly re- 
ceives radio packets from the sensors, transforms them into hexadecimal nibbles 
and sends them to the Base Station via the USB port. When the Base Station 
needs to send commands to the sensors (or to reply to protocol messages), Big- 
Ear Receiver receives hexadecimal nibbles through the USB port, converts them 
into bytes and sends them using the built-in radio module. Like BigEar Audio 
Sensors, also the BigEar Receiver is based on a Wixel Programmable Module. 

CC2511F32 SoC has been programmed in order to handle up to 256 different 
radio channels [12]. All the sensors share the same channel used by the BigEar 
Receiver; if the network architecture requires channels separation (e.g., to reduce 
the number of collisions), a second BigEar Receiver connected to another USB 
port of the Base Station is needed. 

3.3. Base Station  

The Base Station is the device that collects data from the sensors and arranges 
packets in order to produce a clear and intelligible speech signal. In order to 
receive packets from audio sensors, it needs to be connected via USB port to the 
BigEar Receiver, which acts as a bidirectional Radio-to-USB dongle between the 
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Base Station and the wireless audio sensors. 
The Base Station receives radio packets containing each one a set of bufferized 

audio samples tagged with a timestamp and the sensor ID; for each sensor, audio 
samples are arranged according to their timestamp. In this way, for each sensor a 
coherent but incomplete stream is obtained: indeed, audio samples are in the right 
time position with respect to the sensor timestamp, but there is no guarantee 
that the transmission time is less than, or at most equal to, the sampling time. 

Once the samples have been sorted by their timestamps, the application 
performs a time delaying-or-advance of the audio streams coming from the sen- 
sors in order to remove the delays caused by the different distances between the 
mouth of the user and the sensors. Therefore, in-phase audio contributions are 
obtained; they can be summed each other in order to produce a seamless stream. 

During the alignment process the different energy contribution of the sensors 
are considered: the closer is the sensor to the user, the bigger will be the signal 
amplitude and vice versa. 

Figure 2 summarizes the Speech Reconstruction Logic carried out by the Base 
Station: in the left plot in Figure 2(a), audio packets can be seen as received 
from the Base Station. Then, the Base Station exploits timestamp information 
carried by each audio packet to arrange audio samples onto the sensor’s timeline 
(right plot in Figure 2(a)). Figure 2(b) illustrates the operating principles of 
cross-correlation analysis that allows the Base Station to obtain the in-phase 
contributions that will be superposed to generate a unique, coherent and inte- 
lligible speech signal. 

3.4. Network Protocols 

Network protocols have a big impact on the efficiency of the whole system: colli- 
sions, granularity of the network of sensors and presence of protocol messages 
can affect the number of audio packets transmitted and received successfully.  

In general, when the granularity of the network increases, also the likelihood 
of collisions grows. At the same time, the number of service messages to imple- 
ment synchronization mechanisms have to be increased in order to reduce the 
number of collisions. This can be done at the expense of the channel availability 
and software complexity. 

The simplest protocol that can be adopted in this scenario is ALOHA [13]. 
Our application has been tested using the pure ALOHA protocol (without 
acknowledge) in order to exploit and examine system capabilities with the sim- 
plest communication protocol. 

4. Speech Acquisition Model and Implementation 

Figure 3 shows a functional view of the BigEar application within its acquisition 
environment. It is composed of four interconnected modules: the Audio Model 
block performs the acoustic simulation of the acquisition environment, the Sensor 
Network Model (which is in turn composed of two inner blocks) simulates the 
behavior of the transmitters-receiver network; finally, the Speech Reconstruction  
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(a) 

 
(b) 

Figure 2. Base station reconstruction logic. (a) Audio packets arranged w.r.t. their timestamp; (b) Audio packets are aligned 
exploiting cross-correlation between signals. 

 
block performs the reconstruction of the speech signal. 

While the first three blocks concerning the behavior of the sensor-receiver 
network have been simulated, the Speech Reconstruction block has been imple- 
mented and its prototype will be described and discussed in Section 5. 

4.1. Audio Model 

The Audio Model block models the acoustic environment and sets: the room 
dimensions (and optionally other parameters such as reflection and diffraction 
coefficients of walls), the location of the sensors and of the audio source. Once 
an input audio file is provided, the block produces an audio stream for each 
sensor. Each stream differs for its amplitude, delay and diffusion, depending on 
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Figure 3. Architecture model. 
 
the acoustics characteristics of the room and on the position of the sensor with 
respect to the source. 

In order to create an audio model of the typical use case, we made some 
assumptions about the typical environment where the system may work. The 
room is modeled as a parallelepiped represented by a three-dimensional space 
bounded by six surfaces (four walls, ceiling and floor). Each room surface has its 
own absorption and scattering (diffusion) coefficients. Sound scattering due to 
furniture and other objects in the room can be approximated by higher levels of 
overall room diffuseness. Audio modeling is performed by means of MCRoom- 
Sim multichannel acoustics MATLAB simulator [14]. 

4.2. Sensor Network Model 

This module recreates a realistic simulation of the behavior of the network where 
each sensor samples audio signals, buffers them into packets of a specific size 
and sends them according to a network communication logic. The module is 
internally split in two parts: the Radio Transmission model, that implements the 
communication protocol including possible interactions between a receiver and 
the transmitters or between transmitters, and the N-buffer model, that carries 
out the internal buffer mechanism of each transmitter. 

The Sensor Network module receives in input the audio streams generated by 
the audio simulator described in Section 4.1, and provides as output the packets 
of audio sampled and transmitted by each sensor. 

Radio Transmission model This block implements the pure ALOHA 
protocol described in Section 3.4, where each transmitter sends data whenever 
there is a packet to send and then waits for a random delay before sending another 
packet. Since audio data are time-dependent, for our purposes it is worthless to 
re-transmit audio packets, so the transmitter will not wait for any acknowledg- 
ment from the receiver. The random delay between transmissions is obtained by 
the internal random number generator of each transmitter and it is chosen be- 
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tween 0 and a maximum value max DelayT .  
The model also checks for collisions. Given the time instant ( ),i jt  in which 

the thj  transmitter starts to transmit the thi  packet, and called busyt  the du- 
ration of the transmission, all the transmissions started in the interval  

( ) ( )busy busy, ,,i j i jt t t t − +  , where busyt  are marked as colliding. 
N-Buffer model This block implements the buffering system internal to each 

transmitter. In a real world, data are continuously sampled and buffered by each 
transmitter in order to be ready to send them when needed; during the simu- 
lation, instead, the time instants in which transmission occurs are known, but we 
need to model the buffering structures to know which data are ready for being 
transmitted. This block produces in output the audio samples packed as if they 
were coming from real transmitters. The structure of each packet is described in 
Figure 4: each packet contains the ID of the transmitter, the timestamp of the 
first sample of the packet and a number of samples that correspond to the frame 
size of each buffer. Only the timestamp of the first sample is sent, since the 
timestamps of other samples can be inferred by adding i si Fτ = , where i  is 
the (0-based) index of thi  sample in the packet and sF  is the sampling 
frequency. 

Multiple buffering allows the sensor to work simultaneously on read and write 
sides: a periodical interrupt routine acquires the signal and stores samples into 
the write frame, while the main loop can read from the read frame for the trans- 
mission. 

4.3. Real-World Implementation 

The three modules described so far compose the virtual model that has been used 
in order to define the working parameters before the realization of the proto- 
types. In the real world, the system is composed of a set of audio sensors that 
perform a space-time sampling of a room. Before sampling, the audio signal con- 
verted by each microphone capsule has to be amplified and biased in order to 
match to ADC characteristics. Each audio sensor samples the signal and packs 
data into frames in order to send them to the receiver. The multi-buffer internal 
structure of each transmitter allows an efficient application logic where the 
sampling stage is managed by means of a timer-handled interrupt routine, and 
the network logic is handled by the main loop of the applications. Network struc- 
ture can be layered onto several radio channels in order to reduce the number of 
collisions. A separate BigEar Receiver is needed for each radio channel. 
 

 
Figure 4. BigEar data field structure. 
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Once the packets arrive to the BigEar receiver, they are converted into he- 
xadecimal nibbles and serially sent to the Base Station by means of the USB port. 
The Base Station, in its experimental form, is composed of a pipelined appli- 
cation that listens to each BigEar Receiver connected to the USB ports of the ma- 
chine, receives audio packets and stores them into an ordered sequence of files 
that are processed by means of a MATLAB script that reconstructs the audio da- 
ta using the reconstruction principles described in Section 5. 

5. Speech Reconstruction 

This section illustrates how audio packets are processed in order to produce the 
best speech signal in terms of intelligibility. 

Starting point of the Speech Reconstruction is constituted by the audio 
packets received by the Base Station from each audio sensor. Due to sound pro- 
pagation laws, the closer is the sensor to the source, the higher will be the power 
of captured audio signal; so, in order to preserve energy of the reconstructed 
signal, audio packets are unbiased and normalized. Then, audio samples are 
arranged using timestamp information contained in each packet (as already illu- 
strated in Figure 4). 

Delays introduced by the different distances between the source and the audio 
sensors (the closer is the sensor to the source, the lower will be the time of arri- 
val of pressure wave to the microphone) are compensated in the streams align- 
ment stage using cross-correlation analysis. 

When the signals have been properly aligned they can be superposed with se- 
veral summing or replacing methods in order to preserve the signal energy and 
not to introduce energy variations due to the different number of contributions 
that are summed at the same time. 

The flowchart in Figure 5 illustrates the operation performed by the Speech 
Reconstruction module; they are described in the next subsections. 

5.1. Energy Compensation 

Audio packets have to be processed in terms of energy compensation to prevent 
distortions. In particular, the following steps are performed:   
• Bias removal, in order to eliminate possible incorrect polarization of the input 

stage.  
• Normalization of input signals, to remove the amplitude attenuation due to 

the different distances between the speech source and the sensors.  

5.1.1. Bias Removal 
Incorrect polarization of the input signal can affect the result of the reconstruc- 
tion block, that is based on the summation of contributions that vary randomly 
in time. Audio signals coming from different sensors are affected by different 
polarization. The summation of different DC components corresponds to the 
superposition to the audio signal of a square wave whose frequency and amplitu- 
de are randomly changing, introducing in this way harmonic distortion to the 
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Figure 5. Flowchart of the signal reconstruction block. 

 
speech signal, as illustrated in Figure 6.  

( ) ( ) ( ) ( )
( ),

, , , ,
1

 ,
N i j

i j i j i j i j
k

a
a a a a

N=

 = − = −  ∑              (1) 

where N  is the number of sensors. 

5.1.2. Normalization 
Normalization removes energy dependence on the distance between the speech 
source and the sensor. In this way, neglecting differences in frequency response 
of microphones and small variations in spectral content due to room acoustics, 
contributions of different sensors can be summed without compensations co- 
efficients: 
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Figure 6. The image shows the effect of the acquisition of the same signal by means of different sensors, 
each one characterized by a different DC bias. 
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5.2. Audio Packets Arrangement 

The second step of Speech Reconstruction is the arrangement of audio packets. 
Audio samples are extracted from each packet and get ready for processing using 
two matrices:   and  , where each element ( ),i ja ∈  represents the thi  
sample transmitted by the thj  sensor and the corresponding element ( ),i jp ∈  
represents the position of the audio sample in the stream expressed in discrete- 
time units: 

( ) ( ) ( )( ) ( ) ( )( ), , min min ,where min  .si j i j j j i jj j
p F t t t t

=
 = ⋅ − =         (3) 

Using position information, audio samples are correctly spaced on the sen- 
sor’s timeline. For each sensor :1j j N< ≤ , a vector jy  of samples is created:  

( )( ) ( ), ,  .j i j i jy p a=                         (4) 

The elements in jy  where no audio samples are present are 0-filled. 

5.3. Streams Alignment  

The streams generated from audio data coming from sensors are aligned to 



S. Gorla et al. 
 

74 

reduce the delay due to the distance of the speech source with respect to the 
position of the sensors. The alignment is obtained by using the cross-correlation 
function [15]. In order to apply it efficiently, the audio streams are processed 
according to their informative contribution: they are sorted by their normalized 
power in descending order to allow the cross-correlation algorithm to work in 
the best condition. 

Cross-correlation is a measure of similarity of two series as a function of the 
lag of the one relative to the other. For two generic discrete functions [ ]f m  
and [ ]g m , cross-correlation measure is defined as:  

[ ] ( )[ ] [ ] [ ]*  ,fg
m

R n f g n f m g m n
+∞

=−∞

= +∑             (5) 

where *f  denotes the complex conjugate of f . The equation essentially slides 
the g  function along the x-axis, and calculates the integral of their product at 
each position. When the functions match, the value of ( )f g  is maximized. 
Thus, applying cross-correlation to the streams iy  and jy  generated by two 
different sensors i  and j  means to find the delay n  (expressed in number 
of samples) that should be applied to jy  to obtain the best in-phase super- 
position with iy .  

Envelopes Cross-Correlation 
A drawback of Cross-correlation function is the inability in discriminating be- 
tween the true signal and noise or holes. 

Cross-correlation function operates on signals that, for their origin, are noisy 
and holey. If holes and noise are negligible, cross-correlation gives expected 
results; if sequence of zeros (holes) are much bigger than the signal itself, or if 
the signal is subject to particular types of noises such as impulse trains, the 
Cross-correlation function would produce wrong results. To overcome this pro- 
blem, instead of applying Cross-correlation function directly on noisy or holey 
signals, it has been applied to the positive envelopes of the signals themselves. A 
positive envelope is a particular representation of a signal that evidences the 
shape of the signal. Figure 7 illustrates the result of the alignment step of the 
envelopes. On the image, for the sake of readability, envelopes of the streams 
coming from different sensor have been shifted along y-axis. It can be noted that 
peaks and valley of the signals are globally aligned. This alignment technique 
offers higher robustness with highly noisy or highly depleted streams, although 
the effort for a better alignment could be frustrated from the lower intelligibility 
of the speech signal. 

5.4. Streams Superposition  

Once audio streams obtained by sensor acquisition have been made uniform by 
means of unbiasing and normalizations, and they have been delayed to make 
them coherent, they need to be superposed in order to reconstruct the recorded 
speech signal. Two methods have been implemented: Weighted Sum of Con- 
tribution and Holes Replacement. 
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Figure 7. Cross-correlation analysis and alignment on signal’s envelopes. 

5.4.1. Weighted Sum of Contributions  
Contribution coming from different sensors are summed and scaled to prevent 
amplitude artifacts. Given ( ),i jy  the thi  sample of the audio stream coming 
from thj  sensor and ( )w i  the number of sensors that contribute to the thi  
sample, the thi  sample of the resulting stream sumy  is given by:  

( )
( )
( )

,
1

sum  .

N

i j
j

y
y i

w i
==
∑

                    (6) 

Weighted Sum is needed for energy preservation and for avoiding harmonic 
distortions due to the summation of contributions. Figure 8 illustrates an example 
of distortion caused by the sum of multiple contributions without weighting. 

5.4.2. Holes Replacement  
Weighted Sum of Contribution presents some drawbacks: it does not take into 
account the big differences in the spectrum of signals and in the environment 
contributions between sensors located in different places. Each BigEar Audio 
Sensor is subject to an environment contribution that depends on:   

• The distance between the sensors and the speech source;  
• The position of the sensors in the environment.  
Contributions can be very different in terms of signal spectrum and of re- 

verberation. In general, the closer the sensors, the lower will be the overall effect 
of the environment-inducted artifacts since spectrum of the signals will be simi- 
larly colored and reverberation tails will be alike. 
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Figure 8. Harmonic distortion due to unweighted sum of contributions. 
 

For this reason, an alternative superposition policy has been tested: instead of 
performing a weighted sum of each contribution, only the holes in the most 
powerful audio stream are filled with contributions coming from other sensors. 
This method reduces the number of summation artifacts, provided that the re- 
ference signal (the one on which the holes will be replaced with samples coming 
from other sensors) has the higher number of valid samples, otherwise there is 
the risk that replacing artifacts will become prominent with respect to summing 
artifacts. A comparison metric between Weighted Sum and Holes Replacement 
will be discussed in Section 7.2. 

6. BigEar Simulation and Model Validation 

Once the system has been implemented and the prototype realized, some metrics 
have been defined to compare the data captured by means of the BigEar pro- 
totype and the data obtained by means of the BigEar simulated model described 
in Section 4. 

This Section focuses on the quality of reconstructed signal analyzing amount 
of overlapping data between the stream generated by each sensor, while Section 
7 illustrates system capabilities in terms of speed of processing and outlines qua- 
litative aspects of the reconstructed speech. 

6.1. Metrics Definition  

The metrics defined in this sections provide quantitative measures concerning 
the reconstructed speech signal. As already mentioned in Section 5, the success 
of speech recognition is influenced by the number and the size of holes in the 
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reconstructed signal. Moreover, the BigEar Reconstruction algorithm conver- 
gence is influenced by the amount of information that can be overlapped for the 
Cross-correlation alignment. The following metrics are therefore defined: 

( )No of samples_ where Length of the stream in samples .Fill ratio N
N

⋅
= =  

Referring to the reconstructed signal, it represents the amount of samples with 
respect to the total length of the stream. The more the value is close to 1, the 
more the reconstructed signal is complete. 

Normalized number of 0   sequencesNoH ed= −  

Average size of 0  sequences.SoH ed= −  

Since reconstructed signal is given by the superposition of audio packets 
sampled by different sensors at random time instants, it can be affected by se- 
quences of empty samples. In conjunction with NoH , SoH  characterizes the 
distribution of empty samples (holes) into the reconstructed signal. In case of 
constant _Fill ratio , SoH  and SoH  allow to compare whether empty 
samples are gathered into few big blocks or are diffused into many small blocks. 

Average number of contributor per sample.Sf =  

Sf  gives a measure of the contribution of each single transmitter to the 
construction of the final speech signal. ( ]0, TXSf N∈  where TXN  is the num- 
ber of transmitters. The higher Sf , the higher the overlapping of the streams 
obtained by the different transmitters. 

6.2. Simulation Setup 

Simulations have been performed using the BigEar Simulator described in Sec- 
tion 4 in a MATLAB 2015b environment [16] using McRoomSim v. 2.14 [14] and 
varying some parameters in order to study system behavior under different con- 
figurations. The parameters that have been changed are: the number of sensors, 
their positions in the room, the radio channel configuration (how many trans- 
mitters communicating on the same radio channel), and the maximum delay be- 
tween adjacent transmission of the same transmitter. 

From these simulations, Statistic data and Metrics have been calculated according 
to Section 6.1. These data will be compared with real data obtained from On-field 
setup (Subsection 6.3) and discussed in Section 6.4. 

6.3. On-Field Setup 

Near-field Tests During Near-field tests, the consistence between the simulated 
model and the real world has been probed. In this setup, BigEar Audio Capture 
boards were placed side by side on a plane surface, and the speaker has been 
asked to talk at a distance of about 0.6 m far from the microphones. Then data 
have been captured using different configurations:   

• Number of transmitters and channel configuration. Character sequences 
indicate the number of channel and how many transmitters are transmitting on 
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the same channel (e.g. AAB means two transmitters on radio channel A and one 
transmitter on radio channel B):   

-One transmitter: A.  
-Two transmitters: AA-AB.  
-Three transmitters: AAA-AAB.  
-Four transmitters: AAAA-AAAB-AABB.  
• Maximum delay between adjacent transmissions from the same transmitter 

( max DelayT  parameter): 1-3-7-15-31-63 ms.  
Far-field Tests During Far-field tests, the focus has shifted on the Reconstruc- 

tion Algorithm. This is a test stage close to real situation since BigEar Audio Cap- 
ture boards have been fixed to poles 1.60 m high from ground level and have been 
placed in a medium-size room. The talker has been asked to speak from an asym- 
metric position to examine the signal power differences between the different 
streams. 

Figure 9 shows the obtained plots; black asterisks mark real values obtained 
from the prototypes, while lines indicate the simulated ones. By varying the 

max DelayT  parameter and the number of transmitters, the obtained curves are 
asymptotic. Differences are notable when { }max Delay 1,3,7T ∈ , i.e., when the ave- 
rage distance between adjacent transmissions of the same transmitter are com- 
parable with the duration of a frame of samples  

( 1_ _ _ 20 = 3.31 ms
6040 Hz

samples per frame sampling period⋅ = × ).  

This difference is due to the modular structure of the BigEar Simulator: the 
N-buffer Internal model (Section 4.2) does not communicate to its predecessor - 
the Radio Transmission model (Section 4.2)-any information about the buffer 
status. In the real world, if the buffer is empty, no transmission happens; instead, 
the Radio Model makes no considerations on the buffer status, with the result 
that virtual transmitters that have no data to transmit also contribute to the sa- 
turation of the audio channel and then to the valid packet loss. 

Looking at _Fill ratio , it can be observed that in most cases the real 
_Fill ratio  is slightly higher than the simulated _Fill ratio . The motivation is 

due to the fact that the model adopts Tbusy = 1 ms as duration of the transmission, 
while for the prototype the measured duration of a transmission is 0.937 ms. 

In general, the increase of the number of transmitters leads to an increment of 
the overlap between sampled data, while the increase of the used radio channel 
leads to the reduction of the collisions between packets traveling on the same 
channel. By comparing Figure 9(a) with Figure 9(b) it can be observed that 
doubling the number of transmitters and working on 2 channels instead of 1, a 
big increment in _Fill ratio  and in Sf  (support factor) are obtained, thus 
improving the quality of signal (in term of size of holes) and the support factor, 
i.e. the quantity of overlapped samples between the streams. 

7. Experimental Results and Evaluation 

In this section experimental results will be evaluated to test the reactivity of the  
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(a) 

  
(b) 

Figure 9. Metrics of the reconstructed signal plotted as a function of max DelayT  parameter. (a) Test case: 2 transmitters on the same 

channel (AA); (b) Test case: 4 transmitters on the two channels (AABB). 
 

system and the accuracy of the speech recognition process. 

7.1. Speed of Processing Evaluation  

System reactivity can be considered as the system’s ability to interact with the user 
in real-time, i.e. to perform an action as soon as possible. Due to the modular archi- 
tecture of the system, the reactivity can be analyzed from different points of view. 

Clock Tests During the implementation of the hardware part of the BigEar 
prototype, the timer stability have been verified since one of the crucial points of 
the application is that every BigEar Audio Capture board samples the analog sig- 
nal at the right sampling frequency sF . Moreover, it is important to observe that 
the N-Buffer mechanism works perfectly in order to avoid corrupted data that 
could generate unattended behaviors in the reconstruction step. All the tests con- 
firmed the clock stability. 

Speed of Speech Reconstruction Algorithm The speed of the Speech Recon- 
struction Algorithm can be expressed as the ratio of the length of the considered 
audio segment recT∆  over the duration of the elaboration process elabT∆ . This 
metric, called Realtime Performance Ratio (RPR), is defined as: 

( )
rec

elab elab

1length of reconstructed signal
RPR  .sT F

T T

⋅
∆

= =
∆ ∆

          (7) 
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This measure depends on the number of transmitters, since with a higher 
number of transmitters, there is also a higher data flow. So the metric can be 
used as a global trade-off parameter: RPR 1>  states that the whole system is 
able to buffer, send and process data faster than sampling. For each test case 
discussed in Section 10, RPR has been measured. For all the tests RPR 1 , i.e. 
the processing speed of the BigEar Reconstruction Algorithm is faster than the 
sampling speed. 

7.2. Reconstruction Quality Metric  

During Far field tests, the speech signal was reconstructed using both Weighted 
Sum method (Section 5.4.1) and Holes Replacement method. Listening tests 
have denoted big differences in reconstructed speech signal depending on the 
superposition policy adopted. As explained in Section 5.4.2, the higher the dis- 
tances between BigEar Audio Capture boards, the higher the differences in the 
audio signals due to different environment reflections and diffusions. These di- 
fferences cause discontinuity artifacts in the reconstructed signal at the positions 
where different contributions are superposed in the attempt to fill the holes in 
the reconstructed signal (described in Section 5). 

In order to examine how superposition methods could affect the presence of 
artifacts, Potential Artifact Ratio metric counts the number of positions where 
artifacts could be generated and normalizes it with respect to the length of the 
signal, obtaining thus a comparable metric. 

1

edges
 ,

TXN
k

ws
k

A
N=

= ∑  

where edges 2k kNoH= ⋅  and no of holes in the stream producedbykNoH = ⋅  
thk  sensor. 

( )
1

edges edges
 ,

TX
h kN

k k
hr

k
A

N

<

=

−
= ∑  

where thedges edges in the h k
k k< =  stream covered by samples of previous 

streams. 
Since number of potential artifacts is dependent on the chosen superposition 

policy, two different calculation methods are needed: wsA  is the metric used for 
Weighted Sum reconstruction and hrA  is the one used for Holes Replacement 
method. 

Figure 10 shows that for each TmaxDelay set, Weighted Sum method (whose 
Artifact Ratio is denoted with wsA ) is more prone to artifacts creation than 
Holes Replacement method. Moreover, as expected, Potential Artifacts Ratio 
grows with the number of transmitters that compose the system, in particular 
when multiple transmitters operate on multiple channel: since there is high 
overlapping between audio packets, Weighted Sum has more data to superpose. 

The approach of the Holes Replacement policy (Section 5.4.2) is different: it 
adopt as reference the more powerful signal, then it uses other streams for holes 
replacement. In this way, the Potential Artifacts Ratio metric gives better results, 
keeping low the number of points in which an artifact could be generated. 
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Figure 10. Potential Artifacts Ratio plotted for different test cases, divided by TmaxDelay sets. 

8. Conclusions and Future Works 

In this paper, we have presented an application based on a distributed wireless 
sensor network that performs a space-time audio sampling of an environment. It 
is based on the low cost technology, i.e. on Wixel Prototyping boards, whose 
cost is around 20 $ each one; cost for speech acquisition circuit is under 10 $ per 
board2. 

A virtual model of the architecture has been first implemented, including an 
Audio Model that performs the acoustic simulation of the acquisition environ- 
ment and a Sensor Network Model simulating the behavior of the transmitters- 
receiver network: this BigEar Simulator can be used to perform an apriori ana- 
lysis to identify the best parameters (such as number of sensors, position of sen- 
sors, number of channels, software-configurable parameters) for a specific use 
case, minimizing production and installation costs. A real-world system has also 
been implemented to examine its real behavior and capabilities. A speech recon- 
struction algorithm has been proposed to reconstruct the audio signal coming 
from different microphones; finally, since in case of speech recognition, the re- 
constructed stream may contain holes; an inexactness toleration mechanism has 
been included in the speech recognition process to improve recognition accuracy. 
The whole architecture is scalable and it can be easily reconfigured by adding or 
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removing sensors from the sensor network. 
Results show that the BigEar Reconstructor algorithm can perform real-time 

speech reconstruction, and listening tests confirm the intelligibility of the recon- 
structed signal. 

As future work, we plan to improve the BigEar Reconstruction Algorithm to 
properly feed GSR by filtering only vocal commands. Some experiments have 
shown that the differential information of power and delay of the signals acquired 
by the sensors can be used to make a coarse-grain localization of the source. 
Further studies will lead to a significant increase in localization accuracy to asso- 
ciate each keyword to a spatial information. In order to neutralize effects of su- 
perposition artifacts, filtering or far-field speech processing methods can be 
integrated into the BigEar Reconstructor algorithm; moreover, periodical training 
stages can be adopted for identifying physical and spectral characteristics of the 
ambient noise. Finally, the Network Interaction Model could be extended to 
other network protocols than pure ALOHA family in order to explore how Re- 
constructed Signal Metrics are influenced by different Network Interactions. In 
particular, different Network Protocols might help in reducing superposition 
artifacts; furthermore, Network Protocol could include synchronization me- 
chanisms to prevent sensor clock drift. 
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