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Abstract 
By using weakly compatible conditions of selfmapping pairs, we prove a com- 
mon fixed point theorem for six mappings in generalized complete metric 
spaces. An example is provided to support our result. 
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1. Introduction 

The study of fixed point theory has been at the centre of vigorous activity and it 
has a wide range of applications in applied mathematics and sciences. Over the 
past two decades, a considerable amount of research work for the development 
of fixed point theory have executed by several authors.  

In 1963, Gahler [1] [2] introduced 2-metric spaces and claimed them as gene-
ralizations of metric spaces. But many researchers proved that there was no rela-
tion between these two spaces. These considerations led Dhage [3] to initiate a 
study of general metric spaces called D-metric spaces. As a probable modifica-
tion to D-metric spaces, Shaban Sedghi, Nabi Shobe and Haiyun Zhou [4] have 
introduced D*-metric spaces. In 2006, Zead Mustafa and Brailey Sims [5] in-
itiated G -metric spaces. Several researchers proved many common fixed point 
theorems on G -metric spaces. 

The purpose of this paper is to prove a common fixed point theorem for six 
weakly compatible selfmaps of a complete G -metric space. Now we recall some 
basic definitions and results on G -metric space. 

2. Preliminaries 

We begin with  
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Definition 2.1: ([5], Definition 3) Let X  be a non-empty set and 
[ )3: 0,G X → ∞  be a function satisfying: 

(G1) ( ), , 0G x y z =  if .x y z= =  
(G2) ( )0 , ,G x x y<  for all ,x y X∈  with .x y≠  
(G3) ( ) ( ), , , ,G x x y G x y z<  for all , ,x y z X∈  with .y z≠  
(G4) ( ) ( )( ), , , ,G x y z G x y zσ=  for all , ,x y z X∈ , where ( ), ,x y zσ  is a 

permutation of the set { }, , .x y z  
And 
(G5) ( ) ( ) ( ), , , , , ,G x y z G x w w G w y z< +  for all , , , .x y z w X∈  
Then G is called a G-metric on X  and the pair ( ),X G  is called a G-metric 

Space.  
Definition 2.2: ([5], Definition 4) A G-metric Space ( ),X G  is said to be 

symmetric if 

(G6) ( ) ( ), , , ,G x y y G x x y=  for all , .x y X∈  
The example given below is a non-symmetric G-metric space. 
Example 2.3: ([5], Example 1): Let { },X a b=  Define [ )3: 0,G X → ∞  by 
( ) ( ), , , , 0;G a a a G b b b= =  ( ) ( ), , 1,  , , 2G a a b G a b b= =  and extend G  to 

all of 3X  by using (G4).  
Then it is easy to verify that ( ),X G  is a G-metric space. Since  
( ) ( ), , , ,G a a b G a b b≠ , the space ( ),X G  is non-symmetric, in view of (G6). 
Example 2.4: Let ( ),X d  be a metric space. Define [ )3: 0,d

sG X → ∞  by
 ( ) ( ) ( ) ( )1, , , , ,

3
d
sG x y z d x y d y z d z x= + +    for , ,x y z X∈ .Then ( ), d

sX G  
is a G-metric Space. 

Lemma (2.5): ([5], p. 292) If ( ),X G  is a G-metric space then  
( ) ( ), , 2 , ,G x y y G y x x≤  for all ,x y X∈ . 
Definition 2.6: Let ( ),X G  be a G-metric Space. A sequence { }nx  in X  

is said to be G-convergent if there is a 0x X∈  such that to each 0ε >  there is 
a natural number N  for which ( )0, ,n nG x x x ε<  for all n N≥ . 

Lemma 2.7: ([5], Proposition 6) Let ( ),X G  be a G-metric Space, then for a 
sequence { }nx X⊆  and point x X∈  the following are equivalent. 

(1) { }nx  is G- convergent to x . 
(2) ( ), 0G nd x x →  as n →∞  (that is { }nx  converges to x  relative to 

the metric Gd ). 
(3) ( ), , 0n nG x x x →  as .n →∞  
(4) ( ), , 0nG x x x →  as .n →∞  
(5) ( ), , 0m nG x x x →  as , .m n →∞  
Definition 2.8: ([5], Definition 8) Let ( ),X G  be a G-metric space, then a 

sequence { }nx X⊆  is said to be G-Cauchy if for each 0ε > , there exists a 
natural number N such that ( ), ,n m lG x x x ε<  for all , ,n m l N≥ .   

Note that every G-convergent sequence in a G-metric space ( ),X G  is G- 
Cauchy.  

Definition 2.9: ([5], Definition 9) A G-metric space ( ),X G  is said to be G- 
complete if every G -Cauchy sequence in ( ),X G  is G-convergent in ( ),X G . 

Gerald Jungck [6] initiated the notion of weakly compatible mappings, as a 
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generalization of commuting maps. We now give the definition of weakly com-
patibility in a G-metric space. 

Definition 2.10: [7] Suppose f and g are selfmaps of a G-metric space ( ),X G . 
The pair ( ),f g  is said to be weakly compatible if ( ), , 0G fgx gfx gfx =  when-
ever ( ), , 0.G fx gx gx =  

3. Main Theorem 

Theorem 3.1: Suppose , , , ,f g h p Q  and R  are six selfmaps of a complete G
-metric space ( ),X G satisfying the following conditions.  

(3.1.1) ( ) ( )fg X R X⊆  and ( ) ( )hp X Q X⊆ , 
(3.1.2)  

( ) ( ) ( ) ( )
( ) ( )

, , , , , , , ,

+ , , , ,

G hpx fgy fgy G Rx Qy Qy G Rx hpx hpx G Qy fgy fgy

G Rx fgy fgy G hpx Qy Qy

α β

γ

≤ + +  
+  

 

for all ,x y X∈  and , ,α β γ  are non-negative real numbers such that  
2 2 1α β γ+ + < , 

(3.1.3) one of ( ) ( ),R X Q X  is closed sub subset of X , 
(3.1.4) ( ),fg Q  and ( ),hp R  are weakly compatible pairs, 
(3.1.5) The pairs ( ) ( ) ( ), , , , , ,h p h R f g  and ( ),f Q  are commuting. 
Then , , , ,f g h p Q  and R  have a unique common fixed point in X . 
Proof: Let 0x X∈  be an arbitrary point. Since ( ) ( )fg X R X⊆  and 
( ) ( )hp X Q X⊆  there exists 1 2,x x X∈ such that 0 1hpx Qx=  and 1 2fgx Rx=  

again there exists 3 4,x x X∈  such that 2 3hpx Qx=  and 3 4 ,fgx Rx= continu-
ing in the same manner for each 0,n ≥  we obtain a sequence { }nx  in X such 
that 

2 2 2 1 2 1 2 1 2 2, for 0  .n n n n n ny hpx Qx y fgx R nx+ + + += = = ≥=     (3.1.6) 

From condition (3.1.2), we have 

( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

2 2 1 2 1 2 2 1 2 1

2 2 1 2 1 2 2 2 2 1 2 1 2 1

2 2 1 2 1 2 2 1 2 1

2 1 2 2 2 1 2 2 2 2 1

, , , ,

, , , , , ,

, , , ,

, , , , , ,

n n n n n n

n n n n n n n n n

n n n n n n

n n n n n n n n

G y y y G hpx fgx fgx

G Rx Qx Qx G Rx hpx hpx G Qx fgx fgx

G Rx fgx fgx G hpx Qx Qx

G y y y G y y y G y y y

α β

γ

α β

+ + + +

+ + + + +

+ + + +

− − +

=

 ≤ + + 
 + + 

= + + ( )
( ) ( )

( ) ( ) ( ) ( )

2 1

2 1 2 1 2 1 2 2 2

2 1 2 2 2 2 1 2 1

, , , ,

, , , , .

n

n n n n n n

n n n n n n

G y y y G y y y

G y y y G y y y

γ

α β γ β γ

+

− + +

− + +

  
 + + 

≤ + + + +

 

Therefore 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 2 1 2 1 2 1 2 2

2 2 1 2 1 2 1 2 2

2 2 1 2 1 2 1 2 2

1 , , , ,

, , , ,
1

, , , ,

n n n n n n

n n n n n n

n n n n n n

G y y y G y y y

G y y y G y y y

G y y y kG y y y

β γ α β γ

α β γ
β γ

+ + −

+ + −

+ + −

− − ≤ + +

+ +
≤

− −

≤

  (3.1.7) 

where ( )
( )

1
1

k
α β γ

β γ
+ +

= <
− −

. 

Similarly, we can show that  
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( ) ( )2 1 2 2 2 2 2 2 1 2 1, , , , .n n n n n nG y y y kG y y y+ + + + +≤             (3.18) 

From (3.1.7) and (3.1.8) we have  

( ) ( ) ( )1 1 1 0 1 1, , , , , , .n
n n n n n nG y y y kG y y y k G y y y+ + −≤ ≤ ≤  

Now for every ,n m N∈  such that m n>  we have 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( )
( )

1 1 1 2 2 1

1 1
0 1 1 0 1 1 0 1 1

2 1
0 1 1

0 1 1

, , , , , , , ,

, , , , , ,

1 , ,

1
, , 0 as .

1

n m m n n n n n n m m m

n n m

n m n

m n
n

G y y y G y y y G y y y G y y y

k G y y y k G y y y k G y y y

k k k k G y y y

k
k G hx hx hx n

k

+ + + + + −

+ −

− +

−

≤ + + +

≤ + + +

≤ + + + +

−
≤ → →∞

−







 

Since 1.k <

 

Therefore, { }ny  is a Cauchy sequence in X . Since X  is a complete 
G-metric space, then there exists a point z X∈  such that  

2 2 1 2 1 2 2lim lim lim lim .n n n nn n n n
hpx Qx fgx Rx z+ + +→∞ →∞ →∞ →∞

= = = =       (3.1.9) 

If ( )R X  is a closed subset of X , then there exists a point u X∈  such that 
z Ru= . 

Now from (3.1.2), we have  

( ) ( ) ( ) ( )
( ) ( )

2 1 2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

, , , , , , , ,

, , , , .
n n n n n n n

n n n n

G hpu fgx fgx G Ru Qx Qx G Ru hpu hpu G Qx fgx fgx

G Ru fgx fgx G hpu Qx Qx

α β

γ
+ + + + + + +

+ + + +

 ≤ + + 
 + + 

 (3.1.10) 

Letting n →∞  in (3.1.10) and by the continuity of G we have 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

, , , , , , , ,

  , , , ,

2 , , ,

G hpu z z G z z z G z hpu hpu G z z z

G z z z G hpu z z

G hpu z z

α β

γ

β γ

≤ + +  
+ +  

≤ +

 

which leads to a contradiction as 2 1β γ+ < . 
Hence ( ), , 0,G hpu z z =  which implies .hpu z=  
Therefore,  

.hpu Ru z= =                       (3.1.11) 

Now since ( ) ( )hp X Q X⊆  then there exists a point v X∈  such that 
.z Qv=  

Then we have by (3.1.2) 
( ) ( ) ( ) ( )

( ) ( )
, , , , , , , ,

, , , ,

G hpu fgv fgv G Ru Qv Qv G Ru hpu hpu G Qv fgv fgv

G Ru fgv fgv G hpu Qv Qv

α β

γ

≤ + +  
+ +  

   (3.1.12) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

, , , , , , , ,

 , , , ,

, , ,

G z fgv fgv G z z z G z z z G z fgv fgv

G z fgv fgv G z z z

G z fgv fgv

α β

γ

β γ

≤ + +  
+ +  

≤ +  
which leads to a contradiction, since 1β γ+ < . Hence .fgv z=  

Therefore,  
.fgv Qv z= =                       (3.1.13) 
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From (3.1.11) and (3.1.13) we have .Ru hpu fgv Qv z= = = =  
Since the pair ( ),fg Q  is weakly compatible then fgQv Qfgv=  which gives 

.fgz Qz=  
Now (3.1.2) we have  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

, , , ,

, , , , , ,

 , , , ,

, , , , , ,

 , , , ,

2 , ,

G z fgz fgz G hpu fgz fgz

G Ru Qz Qz G Ru hpu hpu G Qz fgz fgz

G Ru fgz fgz G hpu Qz Qz

G z fgz fgz G z z z G fgz fgz fgz

G z fgz fgz G z fgz fgz

G z fgz fgz

α β

γ

α β

γ

α γ

=

≤ + +  
+ +  

= + +  
+ +  

= +

 

which is a contradiction, since 2 1.α γ+ <  Hence ( ), , 0G z fgz fgz =  thus 
.fgz z=  

Showing that z  is a common fixed point of fg  and .Q  
Since the pair ( ),hp R  is weakly compatible then hpRu Rhpu=  which gives 

.hpz Rz=  
Then we have by (3.1.2) 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

, , , ,

, , , , , ,

 , , , ,

, , , , , ,

 , , , ,

2 , , ,

G hpz z z G hpz fgz fgz

G Rz Qz Qz G Rz hpz hpz G Qz fgz fgz

G Rz fgz fgz G hpz Qz Qz

G hpz z z G hpz hpz hpz G z z z

G hpz z z G hpz z z

G hpz z z

α β

γ

α β

γ

α γ

=

≤ + +  
+ +  

= + +  
+ +  

= +

 

which is a contradiction, since 2 1α γ+ < . Hence ( ), , 0G hpz z z =  thus 
.hpz z=  

Showing that z  is a common fixed point of hp  and .R  
Therefore, z  is a common fixed point of fg , hp , R  and .Q  
By commuting conditions of the pairs in (3.1.5), we have  

( ) ( ) ( ) ( ) ( ),    .fz f fgz f gfz fg fz fz f Qz Q fz= = = = =  
And 

( ) ( ) ( ) ( ) ( ),      .hz h hpz h phz hp hz hz h Rz R hz= = = = =  

From (3.1.2) 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

, , , ,

, , , , , ,

 , , , ,

, , , , , ,

 , , , ,

2 , , .

G z fz fz G hpz fgfz fgfz

G Rz Qfz Qfz G Rz hpz hpz G Qfz fgfz fgfz

G Rz fgfz fgfz G hpz Qfz Qfz

G z fz fz G z z z G fz fz fz

G z fz fz G z fz fz

G z fz fz

α β

γ

α β

γ

α γ

=

≤ + +  
+ +  

= + +  
+ +  

= +

 

Since 2 1,α γ+ <  we have ( ), , 0G z fz fz =  thus .fz z=  

Also .gz gfz fgz z= = =  
Therefore, we have .fz gz Rz fgz z= = = =  
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Similarly, we have .hz pz Qz hpz z= = = =  
Therefore, z  is a common fixed point of , , , ,f g h p Q  and .R  
The proof is similar in case if ( )Q X  is a closed subset of .X  
We now prove the uniqueness of the common fixed point. 
If possible, assume that w  is another common fixed point of , , , ,f g h p Q  

and R . 
By condition (3.1.2) we have 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

, , , ,

, , , , , ,

 , , , ,

, , , , , , , , ) , ,

2 , , ,

G z w w G hpz fgw fgw

G Rz Qw Qw G Rz hpz hpz G Qw fgw fgw

G Rz fgw fgw G hpz Qw Qw

G z w w G z z z G w w w G z w w G z w w

G z w w

α β

γ

α β γ

α γ

=

≤ + +  
+ +  

= + + + +      
= +

 

which is a contradiction, since 2 1α γ+ < . 
Hence ( ), , 0G z w w =  which gives z w= . 
Therefore, z  is a unique common fixed point of , , , ,f g h p Q  and R . 
As an example, we have the following. 

3.1. Example 

Let [ ]0,1X =  with ( ), ,G x y z x y y z z x= − + − + −  for , ,x y z X∈ . Then 
G is a G-metric on X . 

Define 

: ,  : ,  : ,  : ,  : ,  :f X X g X X h X X p X X Q X X R X X→ → → → → →  

by 

1,  ,
3

3 1,  ,
5

,  .

xfx hx x X

xgx px x X

Qx Rx x x X

+
= = ∀ ∈

+
= = ∀ ∈

= = ∀ ∈

 

3 1 2 3 1 2,  ,
5 5 5 5

x x x xfgx f hpx h+ + + +   = = = =   
     

[ ] [ ]3 32 2, ,  , ,  0,1 ,  0,1
5 5 5 5

fgX hpX RX QX   = = = =        
,  .fgX RX hpX QX⊆ ⊆  

Proving the condition (3.1.1) of the Theorem (3.1). 
RX  and QX  are closed subsets of X . Proving the condition (3.1.3) of the 

Theorem (3.1). 

Since 
1 1
2 2

fg   = 
 

 and 
1 1
2 2

Q   = 
 

 then ( ) ( )1 1 ,
2 2

fgQ Qfg=  showing that 

the pair ( ),fg Q  is weakly compatible. 

Also, the pair ( ),hp R  is weakly compatible. 
Proving the condition (3.1.4) of the Theorem (3.1). 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ,  ,
5

2 ,  ( ) ,
5

xhp x ph x hR x h x Rh x

xfg x gf x fQ x f x Qf x

+
= = = =

+
= = = =

 

showing that ( ) ( ) ( ), ,  , ,  ,h R f Q h p  and ( ),f g  are commuting pairs. 
Proving the condition (3.1.5) of the Theorem (3.1).  
Now we prove the condition (3.1.2) of the Theorem (3.1).  

On taking 1 1 1,  ,  
10 8 12

α β γ= = =  then 312 2 1.
60

α β γ+ + = <
 

Now ( ) 2, , 2
5

G hpx fgy fgy hpx fgy x y= − = −  

( )

( )

( )

( )

( )

, , 2 2 ,
4, , 2 2 1 ,
5
4, , 2 1 2 ,
5
2, , 2 5 2 ,
5
2, , 2 2 5
5

G Rx Qy Qy Rx Qy x y

G Rx hpx hpx Rx hpx x

G Qy fgy fgy fgy Qy y

G Rx fgy fgy Rx fgy x y

G hpx Qy Qy hpx Qy x y

= − = −

= − = −

= − = −

= − = − −

= − = + −

 

( ) ( ) ( )
( ) ( )

( ) ( )

( )

, , , , , ,

, , , ,

4 22 2 1 1 2 5 2 5 2
5 5
4 22 2 2 6 6
5 5

8 122
5 5

3 2 , , .
5 5

G Rx Qy Qy G Rx hpx hpx G Qy fgy fgy

G Rx fgy fgy G hpx Qy Qy

x y x y x y x y

x y x y x y

x y

x y x y G fgx hpy hpy

α β

γ

α β γ

α β γ

βα γ

+ +  
+ +  

= − + − + − + − − + − −

≥ − + − + −

 = + + − 
 

= − ≥ − =

 

Therefore, 

( ) ( ) ( ) ( )
( ) ( )

, , , , , , , ,

  , , , , .

G hpx fgy fgy G Rx Qy Qy G Rx hpx hpx G Qy fgy fgy

G Rx fgy fgy G hpx Qy Qy

α β

γ

≤ + +  
+ +  

 

Proving the condition (3.1.2) of the Theorem (3.1). 
Hence all the conditions of the Theorem (3.1) are satisfied. 

Therefore, 1
2

 is a unique common fixed point of , , , ,f g h p Q  and R . 

3.2. Corollary 

Suppose , ,f p Q  and R  are four selfmaps of a complete G -metric space 
( ),X G  satisfying the following conditions: 

(3.1.1) ( ) ( )f X R X⊆  and ( ) ( )p X Q X⊆ , 

(3.1.2) 
( ) ( ) ( ) ( )

( ) ( )
, , , , , , , ,

  , , , ,

G px fy fy G Rx Qy Qy G Rx px px G Qy fy fy

G Rx fy fy G px Qy Qy

α β

γ

≤ + +  
+ +  
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for all ,x y X∈  and , ,α β γ  are non-negative real numbers such that  
2 2 1α β γ+ + < , 

(3.1.3) One of ( ) ( ),R X Q X  is closed sub subset of X, 
(3.1.4) ( ),p R  and ( ),f Q  are weakly compatible pairs, 
Then , ,f p Q  and R  have a unique common fixed point in X . 
Proof: Follows from the Theorem (3.1) if g h I= =  the identity map. 

3.3. Corollary 

Suppose ,f p  and R  are three selfmaps of a complete G -metric space 
( ),X G  satisfying the following conditions: 

(3.1.1) ( ) ( )f X R X⊆  and ( ) ( )p X R X⊆ , 

(3.1.2) 
( ) ( ) ( ) ( )

( ) ( )
, , , , , , , ,

  , , , ,

G px fy fy G Rx Ry Ry G Rx px px G Ry fy fy

G Rx fy fy G px Ry Ry

α β

γ

≤ + +  
+ +  

 

for all ,x y X∈  and , ,α β γ  are non-negative real numbers such that  
2 2 1α β γ+ + < , 

(3.1.3) ( )R X  is closed sub subset of X, 
(3.1.4) ( ),p R  and ( ),f R  are weakly compatible pairs. 
Then ,f p  and R  have a unique common fixed point in X . 
Proof: Follows from the Theorem (3.1) if g h I= =  the identity map, and 

Q R= . 
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