
Journal of Software Engineering and Applications, 2011, 4, 534-545
doi:10.4236/jsea.2011.49062 Published Online September 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

Research and Application of Code Automatic
Generation Algorithm Based on Structured
Flowchart

Xiang-Hu Wu, Ming-Cheng Qu, Zhi-Qiang Liu, Jian-Zhong Li

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
Email: Wuxianghu@hit.edu.cn

Received June 17th, 2011; revised July 15th, 2011; accepted July 26th, 2011.

ABSTRACT

It is of great significance to automatically generate code from structured flowchart. There are some deficiencies in ex-
isting researches, and their key algorithms and technologies are not elaborated, also there are very few full-featured
integrated development platforms that can generate code automatically based on structured flowchart. By analyzing the
characteristics of structured flowchart, a structure identification algorithm for structured flowchart is put forward. The
correctness of algorithm is verified by enumeration iteration. Then taking the identified flowchart as input, an auto-
matic code generation algorithm is proposed. Also the correctness is verified by enumeration iteration. Finally an inte-
grated development platform is developed using those algorithms, including flowchart modeling, code automatic gen-
eration, CDT\GCC\GDB etc. The correctness and effectiveness of algorithms proposed are verified through practical
operations.

Keywords: Automatic Generation of Codes, Structured Flowchart, Identification of Structure, Integrated Development

Platform

1. Introduction

Software development ideas based on MDA (Model
Driven Architecture) have attracted much attention from
the research community in recent years [1,2]. MDA is
first proposed by OMG. It is a methodology and standard
system by which software systems are built on the basis
of a variety of models, through model transformation to
drive system development [3]. The development of
Model-driven software is a hot issue in the current field
of software engineering, and it has become a new soft-
ware development paradigm to improve the quality and
efficiency of software development [4]. Here the code
generation indicates that a generator reads the code or
documents related to the graphic model and generates
high-level language program, just like C, C + +, Java,
Perl, Ruby, Python and HTML and so on..

There are many relevant researches about automatic
code generation, such as: the solution, for automatic code
generation based on metadata-driven, by the framework
of .Net, achieve the objective of automatic generation of
storage procedure and trigger in database [3]; A tool
based on design pattern can automatically generate a

design pattern of abstract level [4]; A automatic code
generation technology based on uml meta model can
generate the architecture of system, and meanwhile the
generated code can reflect the hierarchy of original
model [5];

By analyzing the synergy effect of the syntax envi-
ronment between WWW and WEB, a WEB code auto-
matic generation prototype system is proposed based on
XML [6]. A UML tool can convert UML graphics into
specific language to predict the performance of system
[7]. In the field of multi-media, a data flow code auto-
matic generation technology based on template can re-
duce the workload of direct memory access, meanwhile it
can maintain the performance of multi-media computing
[8].

A fast automatic code generator based on preferred
pattern matching automata is proposed, it can be used to
verify the correctness of UML state diagram and collabo-
ration diagram, by insert primitives at fixed point of
model, it can generate code automatically [9]. The tools,
like I-Logix, Rhapsody, based on state machine, can gen-
erate code which can run at their real-time frameworks.

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart 535

2. Related Research and Main Contribution

2.1. Related Research

Flowchart plays an important role in system requirements
analysis, preliminary design and detailed design aspects.
It is particularly important when making communication
and discussion, analysis and design of algorithms. But
the traditional use of the flowchart are only limited to
display, communication, description, and its role is only
limited to graphical, intuitive, clear and easy communi-
cation and documentation compilation. So, automatic
generation of a specific language code from flowchart
will be a very important practical significance, it allows
the designer to design the system from high-level func-
tions without concerning for complicated code, and is
more in line with the objective of MDA [10].

Recently, there are some reports about the automatic
generation of code from flowchart. However, these re-
searches all have certain deficiencies, and the core algo-
rithm and technologies are not public, so the accuracy
and validity are hard to be convinced. More researches,
such as “AthTek Code to FlowChart”, “Code to Chart”,
“AutoFlowchart” etc, are just its reverse engineering, that
is automatic generation of flowchart from code,.

Hemlata Dakhore presented a strategy based on XML
parser to generate code [11]. But the paper did not dis-
cuss how to identify the semantic of a specific flowchart.
That is, the identification method of selection and loop
are not discussed. According to the method, it must first
determine whether a judgment node is a loop or selection,
this information must be specified in advance by the
modeler. If so it will lose the flexibility and convenience
of a flowchart model, and also lack of automation and
intelligence. And the paper only gives a sequence- selec-
tion simple example, for the algorithms of converting
flowchart to XML and automatically generating code are
not discussed. Martin C. Carlisle proposed a modeling
and simulation system RAPTOR [12], which provides
selection and loop primitives. This means that the mod-
elers must know what kinds of structures they should
draw in advance. While in standard flowchart there is
only a judgment node, loop and selection nodes should
be determined according to the semantic of a specific
flowchart. So the RAPTOR is a specialized and non-
standard graphical language. And this article only de-
scribes the functions of a system. Tia Watts gave a flow-
chart modeling tool SFC, which can be used to auto-
matically generate code [13]. But its operation is me-
chanical, can only inserted pre-standard graphical ele-
ments from fixed points, the flexibility is very low, op-
eration is not convenient, lack of scalability, do not sup-
port the component model. Most importantly, it does not
support nesting flowchart (processing nodes can be im-

plemented as sub-flow chart). Kanis Charntaweekhun
simply introduced the methods of how to use flow chart
to program and its advantages, and said that the devel-
oped system can transform flowchart into code. But, the
conversion algorithm, key technologies and data struc-
tures are not mentioned, and the examples given are very
simple [14].

2.2. Main Contributions

Main contribution By analyzing the characteristics flow-
chart, we put forward a structure identification algorithm
for structured flowchart, after then taking the flowchart
identified in previous step as input, a algorithm which
can generate code automatically is proposed. We verify
the correctness and effectiveness of algorithms proposed
using enumeration iteration strategy.

At last we designed and implemented an integrated
development platform based on Eclipse and algorithms
presented above; the platform uses a structured flowchart
to describe program logic and can convert flowchart
model into standard ANSI-C code. At the same time
code editor (CDT), compilation tools (GCC) and debug-
ging tools (GDB) are all integrated into this platform.
 Build the system with flowchart: Tasks and interrupt

service can be modeled, platform can generate an in-
stance of the task or interrupt, and also support nest-
ing flowchart model and code generation.

 Variables and head-file management: Management of
global variables, local variables, macros, and various
header files.

3. Structured Flowchart

Any complex algorithms can be composed of three basic
structures, sequence, selection and loop. These basic
structures can be coordinates, they can include each other,
but they can not cross and directly jump to another
structure from the internal of a structure. As the whole
algorithm is constructed by these three structures, just
like composed by modules, therefore, it has the charac-
teristics of clear structure, easily verifying accuracy and
correcting errors [15,16].

Flowchart is independent of any programming lan-
guage. Structured flowchart can be further divided into
five kinds of structures: sequence, selection, more selec-
tion, pre-check loop and post-check loop, as shown in
Figure 1. Any complex flow chart can be built by the
combination or the nest of the five basic control struc-
tures. Now there are many tools support flowchart mod-
eling, such as Visio, Word, Rose and so on.

In order to make flowchart model more clear and in-
tuitive and unambiguously, as shown in Figure 3, in ad-
dition to the order structure, the remaining four structures
all use a judge node, when the executions exit their

Copyright © 2011 SciRes. JSEA

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart

Copyright © 2011 SciRes. JSEA

536

Figure 1. Five structures of structured flowchart.

Figure 2. Examples of convergence.

structures, the page reference primitive (“o”) must be
used. It is called “on page reference” in visio, in this pa-
per is called convergence, as shown in Figure 2.

In this paper we use the most commonly used five
kinds of primitives for flowchart to automatic generating
of code, and they are: “Begin”, “End”, “Process”,
“Judgment” and “Convergence”.

4. Structure Identification

4.1. Identification Method

4.1.1. Identification of Basic Structure
For the three basic structures shown in Figure 3 the loop
structure must be a cycle path, while the sequence and
selection structures must not be. Figure 3(a) and 3(b)
both have a cycle path. For a basic structure, if a cycle
path occurs in a Process node for the first time, its cur-
rent father (comes from) must be a Judgment, if not, the
flowchart must be wrong. We can identify the Judgment
as a do-while structure. If a cycle path occurs in a Judg-
ment node, we can also identify its current father (Judg-

ment node) as a do-while structure. If all the sons of a
Judgment have been processed (return from their Con-
vergence node), and the Judgment has not been identified,
we can identify it as a Selection structure.

It can be seen from Figure 3 that the identification of
while/for structure depends on its Judgment only; and the
identification of do-while must depend on the first node
(Process or Judgment: node J in A of Figure 3, Judgment
can exist in the nesting structure, as shown in Figure 4).
The first node in a do-while structure, the Judgment of a
while structure and the Convergence of a selection struc-
ture are all called key nodes.

4.1.2. Identification of nesting structure
According to the execution process of flowchart, the
structure first executes to end must be the internal and
basic structure. In Figure 4, nesting structures (a) (b) (c)
are constructed by the basic structures shown in Figure 3.
As each basic structure completes (jump to their Con-
vergence), the out layer structures are executed one by
one. So if nesting structures exist, the internal structures
must be identified firstly, and then the out layer.

As the identification of a while structure only depend
the Judgment node itself (begins and finishes at itself), so
if a cycle path appears in the Process node and its current
father (comes from) is Judgment, then we can identify
the father as a do-while structure. If the Process is the
first node (key node) in multi-do-while, we should record
the nesting level in the Process node and build a link
between the Process node and its current father.

Similarly, if a Judgment node (JN) has been identified
as a while/for or selection structure, and a cycle path
again appears in the Judgment node, and its current fa-
ther is Judgment node, then we can identify the father as

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart 537

Figure 3. Three basic structures.

Figure 4. Nesting structure of do-while.

a do-while structure. If the Judgment node (JN) is the
first node (key node) in a multi-do-while structure, then
we should record the nesting level in the Judgment node
(JN) and build a link between the Judgment node (JM)
and its current father.

As shown in Figure 4, the three figures are all nesting
do-while structures. The white nodes in Figure 4 are all
key nodes. In Figure 4(a) there are two cycle paths in
node F, and its current father F1 or G is Judgment, so F1
and G are both identified as do-while structures; as
shown in Figure 4(b), H is a key node of while structure,
meanwhile it is a key node of outer layer do-while struc-
ture; as shown in Figure 4(c), D is identified as Selection
structure, then a cycle path appears in D, so D is the key
node of the outer do-while.

In order to recursively traverse, every Judgment node
must be able to have a direct access to its Convergence
node, so it can jump current structure to traverse the
outer nodes recursively. As a Judgment node and its
Convergence is matched, when a Judgment has been

traversed, its Convergence must be the subsequent one.
So we can use a stack to match them. Define a stack as
StackofJudgement, when a Judgment node is first in, we
put it into StackofJudgement, when the execution arrive
at a Convergence (as currentConvergence), pop the first
node (as currentJudgment), and build a link between
currentJudgment and currentConvergence, i.e., current-
Judgment.Convergence = currentConvergence.

If the basic structures shown in Figure 3 are nesting
by do-while, we can get the structures shown in Figure 4
While D, F1, H will be identified first, then cycle paths
will again appear in F, H, D nodes, so we can know the
outer structure must be do-while. Then E, G, I are identi-
fied as do-while structure. We should build links between
them and G, I, E. Meanwhile the nesting level (as doW-
hileCounter) of G, I, E should do doWhileCounter++.
The program can access G, I, E from D, F, H by the
combinative conditions: get the father of (D,F,H) and
father.doWhileNode = (D,F,H) and
father.doWhileCounter = (D,F,H).doWhileCounter

Copyright © 2011 SciRes. JSEA

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart 538

4.2. Algorithm Description

We used a depth-first search algorithm based on recur-
sion. The return conditions of recursion: no need return
from sequence; when arrive at a Convergence or End
return; when a Judgment has been Identified return, and

jump the Convergence of Judgment to process the fol-
low-up nodes.

We process all the sub-nodes recursively when the
program arrives at a Judgment. When a Judgment is
identified, return to recursive call point.

(1) :
(2) :
(3) :
(4) :
(5) :
(6) :
(7) :
(8) :
(9) :
(10) :
(11) :
(12) :
(13) :
(14) :
(15) :
(16) :
(17) :
(18) :
(19) :
(20) :
(21) :
(22) :
(23) :
(24) :
(25) :
(26) :
(27) :
(28) :
(29) :
(30) :
(31) :
(32) :
(33) :
(34) :
(35) :
(36) :
(37) :
(38) :
(39) :
(40) :
(41) :
(42) :
(43) :
(44) :
(45) :
(46) :
(47) :
(48) :

/***
Function: Structure identification.
Input: All the nodes of a flowchart.
Output: The identified flowchart
**/
Stack StackofJudgement(Judgment); /* the elements of stack is Judgment, used to match Judgment and
its corresponding Convergnece */
Node root; /*root is Begin node, so the code of first node is root.son*/
StructureIdentify(root, root.son); /*start recursion*/
StructureIdentify(Father, Node)
{
 If(Node is Process) [1]

{
 If(Node has not be traversed) [2]

{
 StructureIdentify(Node, Node.Son); [2-1]
}

 else if(Father is Judgment) [3] /* Include multiple do-while nest */
{
 Father.type←do-while; /* recognized as do-while structure;*/
 Node.doWhileCounter++; /*the original value is 0*/
 Father. doWhileCounter = Node.doWhileCounter;
 Father.doWhileNode = Node; /* build a link between the Judgement and the first Process

of a do-while structure */
 }
 }

If(Node is Judgment) [4]
{
 If(Node has not be traversed) [5] /*first in*/
 {
 Stack.push(StackofJudgement, Judgment) /*push Judgment into StackofJudgement */
 for every son of Node do StructureIdentify(Node, Node.Son); [5-1]

If(Node is not recognized) [6] /*loop structures have been recognized, the left is selec-

tions*/
{

 /* according to the condition of judgment, the detailed structures of if-else/if/case can be
recognized also.*/

 Node.type←selection; /* recognized as selection structures; */
}
Node = Node. directJudgmentNode; /*Continue to process the nodes behind Convergence. */
StructureIdentify(Node, Node.Son); [5-2] /*continue to code the other node after Conver-

gence */
 }
 Else [8] /* traversed */

{
 If(Node is not recognized) [9] /*the first round trip*/
 {

Copyright © 2011 SciRes. JSEA

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart 539

(49) :
(50) :
(51) :
(52) :
(53) :
(54) :
(55) :
(56) :
(57) :
(58) :
(59) :
(60) :
(61) :
(62) :
(63) :
(64) :
(65) :
(66) :
(67) :
(68) :
(69)

 Node.type←while or for structure /* recognized as while or for structures;*/
 }
 else [10]
 {
 Father.type←do-while; /* recognized as do-while structure;*/
 Node.doWhileCounter++; /*the original value is 0*/
 Father. doWhileCounter = Node.doWhileCounter;
 Father.doWhileNode = Node; /* build a link between the Judgement and the first Proc-

ess of a do-while structure */
}

}
}
If(Node is Convergence) [11]
{
 If(Node has not been traversed) [12] /*match a judgment node and a convergence node*/
 {
 tempJudgeNode = Stack.Pop(StackofJudgement); /*use it when process the nodes behind

Convergence */
 Node.directJudgmentNode = tempJudgeNode;
 tempJudgeNode.directJudgmentConvergence = Node;
 Node.code = tempJudgeNode.code;

}
Return;

}
If(Node is End) return;

}

4.3. Effectiveness Verification of Algorithm

As the algorithm is based on recursion, so we can use
exhaustive method to verify its effectiveness, including
the recursive entry and return. For the three basic struc-
tures shown in Figures 3, they nest with each other or
their own can generate nine nesting structures, as shown
in Figures 4-6. We use these twelve structures to verify
the effectiveness of the algorithm.

4.3.1. The Test of Basic Structures
Take (a) in Figure 3 as a example: Node J goes into
code[2], execute [2-1] (recursion 1); then node K goes
into code [5], execute [5-1] (recursion 2); continue to
process node J or L. 1) Suppose process node J first, J
enters code [3], then node K is recognized as do-while
structure and the link between node J and K is con-
structed, return to [5-1] (recursion 2); continue to process
node L, enters code [12], construct a link between node
K and L, return to [5-1] (recursion 2); jump code [6],
continue to process the other node behind node L. 2) If
process L first, then we can get the same result.

As the process order of Convergence will not affect
the result, so in the following discussion we will not dis-
cuss it.

Similarly we can check Figure 3(b) and 3(c), also the
results are correct.

4.3.2. The Test of Do-While Nest Structure
Take (a) in Figure 4 as a example: F goes into [1], then
[2], execute [2-1] (recursion 1); F1 goes into [4], [5], and
is push into stack, execute [5-1] (recursion 2); continue
to process X or F(no effect), suppose F first enters [3],
and F1 is identified as do-while structure, build the link
between F and F1, recursive level(doWhileCounter) of
node F is increased by 1, then return to [5-1] (recursion
2); node X goes into [12], F1 is popped from stack, con-
struct the link between F and X, return to [5-1] (recursion
2), jump [6], execute [5-2] (recursion 3); process node G,
G goes into [5], is pushed into stack, execute [5-1] (re-
cursion 4); Y goes into [12], G is popped from stack, the
link between G and Y is constructed, return to [5-1] (re-
cursion 4); then F enters into [3], G is identified as
do-while structure, construct the link between F and G,
recursive level(doWhileCounter) of node F is increased
by 1, return to [5-1] (recursion 4), jump [6], process the
successor nodes of node Y.

It can be seen from the above process: First, the basic
structure within the dashed box is identified as do-while,
then the outer layer.

Similarly we can check Figures 4(b) and 4(c), also the
results are correct.

4.3.3. The Test of While Nest Structure
Similarly, the inner structure (inside the dashed border)

Copyright © 2011 SciRes. JSEA

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart

Copyright © 2011 SciRes. JSEA

540

selection(if). Jump Y to process the successor nodes. was first identified.
Take (a) in Figure 5 as a example: M goes into [5-1],

then M1 goes into [5-1], M2 goes into [2], M1 enters [9],
M1 is identified as while structure; jump X to process M,
M enters [9], M is identified as while; jump Y to the
successor nodes.

Similarly we can check Figures 6(b) and 6(c), also the
results are correct.

4.3.5. Summary
The innermost structure is always identified first, and
then the outer layer, each recursive call returns correctly,
and all structure identifications are correct. As the above
12 structure covers all nesting structures (continued
nesting structure is only a combination of these struc-
tures), so we can say the algorithm can correctly identify
the structure of structured flowchart.

Similarly we can check Figures 5(b) and 5(c), also the
results are correct.

4.3.4. The Test of Selection Nest Structure
The inner structure (inside the dashed border) was first
identified. The outer layer is a single branch selection,
that is “if” structure.

5. Code Generation Take (a) in Figure 6 as a example: M goes into [5-1],
M1 goes into [5-1], then M2 goes into [2], return from X;
M3 goes into [2], return from X; continue return to [5-1],
enter [6], M1 is identified as selection(if-else). Then
jump X, process Y, directly return to the position where
M goes into [5-1], then M enters [6], M is identified as

5.1. Algorithm Description

Take the identified flowchart as input, define a string as
output, traverse from root node.

Process: if current node is sequence structure, then

Figure 5. Nesting of while.

Figure 6. Nesting of selection.

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart 541

append current code in Process node at output; if current
node is selection or loop structures, then define a temp
string as tempcode, and process the inside code recur-
sively, append the code in selection or loop at tempcode,
when return from recursion, append the tempcode at
output.

Return condition of recursion:
1)Selection structure: return when a branch reaches

Convergence; if all branches return (all the sons of
Judgment have been processed), begin to process suc-

cessor nodes of Convergence.
2)Loop structure: a) if Judgment is identified as

for/while structure; if it is first in, then process all its
sons; if it is not first in, then return and process succes-
sor nodes of Judgment. b) if doWhileCounter of Process
or Judgment is not equal to 0, it is shows that current
node is the first node of a do-while structure, then
process the do-whiles from the outer to inner, when
doWhileCounter == 0, then return from recursion from
the inner to outer.

(1) :
(2) :
(3) :
(4) :
(5) :
(6) :
(7) :
(8) :
(9) :
(10) :
(11) :
(12) :
(13) :
(14) :
(15) :
(16) :
(17) :
(18) :
(19) :
(20) :
(21) :
(22) :
(23) :
(24) :
(25) :
(26) :
(27) :
(28) :
(29) :
(30) :
(31) :
(32) :
(33) :
(34) :
(35) :
(36) :
(37) :
(38) :
(39) :
(40) :
(41) :
(42) :

/***
Function: Generation code
Input: a identified flowchart.
Output: code
**/
Node root = Begin;
String CodeOutPut;
CodeGenerate(Begin.son, CodeOutPut); /*the first node*/
PrintAndFormatCode(CodeOutPut); /*format and output code*/
CodeGenerate(Node currentNode, String TempCodeBlock)
{

if(currentNode is Process) [0]
{

if(currentNode.doWhileCounter == 0) [1]
{
 TempCodeBlock.append(currentNode.programCode);
 CodeGenerate(currentNode.son, TempCodeBlock);
}
else [2] /*nesting by do-while*/

 {
 tempNode←get the father of currentNode, must met :{

(father.doWhileCounter == currentNode.doWhileCounter) and
(father.doWhileNode == currentNode) }
currentNode.doWhileCounter--; /*from the outer to inner*/
CodeGenerate(tempNode, TempCodeBlock);

}
}
if(currentNode is Judgment)
{
 if(currentNode.doWhileCounter! = 0) [3]
 {

 tempNode←get the father of currentNode, must met :{
(father.doWhileCounter == currentNode.doWhileCounter) and
(father.doWhileNode == currentNode) }
currentNode.doWhileCounter--;

 CodeGenerate(tempNode, TempCodeBlock);
}

 else if(currentNode.type is do-while) [4]
{
 /*first enter Judgment */
 If(JudgmentStack.top! = currentNode) Push currentNode into JudgmentStack; [4-1]
 else [4-2] /*reenter Judgment*/

Copyright © 2011 SciRes. JSEA

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart 542

(43) :
(44) :
(45) :
(46) :
(47) :
(48) :
(49) :
(50) :
(51) :
(52) :
(53) :
(54) :
(55) :
(56) :
(57) :
(58) :
(59) :
(60) :
(61) :
(62) :
(63) :
(64) :
(65) :
(66) :
(67) :
(68) :
(69) :
(70) :
(71) :
(72) :
(73) :
(74)
(75) :
(76) :
(77) :
(78) :
(79) :
(80) :
(81) :
(82) : :
(83) : :
(84) : :
(85) : :
(86) : :
(87) : :
(88) : :
(89) :

{
 JudgmentStack.pop;

return;
 }

String do_while_loopBody = currentNode.doWhileLoopBody; [4-3]
String codeInLoop;
CodeGenerate(currentNode.doWhileNode, codeInLoop);
insert codeInLoop into do_while_loopBody;
TempCodeBlock.append(do_while_loopBody);
/*process the successor nodes of Convergence*/
CodeGenerate(currentNode. directJudgmentConvergence.son, TempCodeBlock);

[4-4]
}
else if(currentNode.type is while (or for)) [5]
{
 /*first enter Judgment */
 If(JudgmentStack.top! = currentNode) Push currentNode into JudgmentStack; [5-1]
 else [5-2] /*reenter Judgment*/

{
 JudgmentStack.pop;

return;
 }

String while_loopBody = currentNode.WhileLoopBody; [5-3]
String codeInLoop;
get the son(pson) of currentNode who is not Convergence;

CodeGenerate(currentNode.pson, codeInLoop);
insert codeInLoop into while_loopBody;
TempCodeBlock.append(while_loopBody);
/*process the successor nodes of Convergence*/
CodeGenerate(currentNode.directJudgmentConvergence.son, TempCodeBlock);

[5-4]
}
else if(currentNode.type is selection) [6]
{
 For every son of currentNode do [6-1]
 {
 Get one branch of currentNode,
 String tempBranchBody←Generate branch code(if/else/case);

String codeInBranch;
CodeGenerate(currentNode.son, codeInBranch);
insert codeInBranch into tempBranchBody;
TempCodeBlock.append(tempBranchBody);

 }
/*process the successor nodes of Convergence*/
CodeGenerate(currentNode.directJudgmentConvergence.son, TempCodeBlock);

[6-2]
}

}
else if(currentNode.type is Convergence or End) return; [7]

}

Copyright © 2011 SciRes. JSEA

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart

Copyright © 2011 SciRes. JSEA

543

5.2. Effectiveness Verification of Algorithm code; F enter [1], generate the loopbody code of F1; F1

goes into [4], [4-2], return to [4-2] where F1 calls Code-
Generate, generate the inner full do-while code; Then
execute [4-4], G goes into [4-2] and return to [4-3] where
G calls CodeGenerate, at this time codeInLoop contains
the full code of inner do-while. At last generate the outer
complete do-while code, execute [4-4] to process suc-
cessor nodes.

As the algorithm is based on recursion, so we can use
exhaustive method to verify its effectiveness, including
the recursive entry and return. We use those twelve
structures to verify the effectiveness of the algorithm.
The difference from structure identification algorithm is
that the identification is from the inner to outer for nest
structure, and generation is on the contrary.

Similarly we can check the other nesting structures,
also the results are correct. 5.2.1. Code Generation for Basic Structure

Take (a) in Figure 3 as a example: J goes into [2], K
goes into [4], [4-1], [4-3], then J enters [1], K enters [4],
[4-2], return to CodeGenerate() of [1]; then return to
CodeGenerate() of [4-3]. At this time codeInLoop has
been generated, further the entire code of do-while is
generated. Execute [4-4], continue to process successor
nodes of Convergend.

5.2.3. Summary
As the above 12 structure covers all nesting structures
(continued nesting structure is only a combination of
these structures), so we can say the algorithm can cor-
rectly generate the code for structured identified flow-
chart.

6. Integrated Development Platform Similarly we can check Figures 3(b) and 3(c), also the
results are correct.

We developed a integrated develop platform based on
Eclipse platform and Graphical Editor Framework (GEF),
including flowchart modeling and code automatic gen-
eration, to verify the effectiveness of the proposed algo-
rithms.

5.2.2. Code Generation for Nesting Structure
Take (a) in Figure 4 as a example: F goes into [2], as F
lies in two do-while structures, so it’s doWhileCounter is
2; G goes into [4], [4-1], execute [4-3], generate the out-
ermost do-while framework code; F reenter [2], at this
time doWhileCounter==1; then F1 goes into [4], [4-1],
execute [4-3], generate the inner do-while framework

We construct a model to test various complex nesting
structures, including the case of sub-flowchart nest. As
shown in Figure 7, there are totally five structures:

Begin

Judgement

Judgement

Judgement

Judgement Judgement

Sub-block Calling

code

code code

0

1
2

3

End

Figure 7. An example of flowchart in integrated development platform.

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart 544

Begin

Judgement3

Judgement0

Process

3

End

0

Begin

Process

Judgement1

1

Judgement2

2

End

Figure 8. Sub-flowcharts nesting.

switch, for, while, do-while, and if-else. The outer is case,
in its first branch we create two sub-flowchart, the type
of automatic code generation is source-block (all the
code generated will be put in original place) and func-
tion-call (all the code generated will be put in fun ction,
in original place there will be put a function call state-
ment).

As the program code in TempCode is unformatted, so
a third part tools should be called to format that file when
they are written into a text file, here we used Codeblocks
to do that.

The left figure in Figure 8 is a sub-flowchart of
source-block type (while nests while), the right one is
function-call (do-while nests do-while).

The code generated automatically is as shown below.

/*Task_1.c*/
#include "Task_2.h"
#include "sub_flowchart_fun_call.h"
void Task_2()
{
 unsigned int inner_var;

unsigned int inner_var2 = 44;
int i=10;

 switch (inner_var)
 {
 case 3 :
 {
 for (inner_var = 0 ; inner_var < 10 ; in-
ner_var ++)
 {
 printf("this is a for condition");
 }
 break;

 }
 case 2 :
 {
 while (inner_var < 0)
 {
 printf("this is a while condition");
 }
 break;
 }
 case 1 :
 {
 do
 {
 printf("this is a do_while condition");
 } while (inner_var < 0);
 break;
 }
 case 0 :
 {
 if (inner_var2 > 0)
 {
 while (1) /* Generated by
sub-flowchart, the type is source-block */
 {
 while (i--)
 {
 printf("this is a
sub-flowchart");
 }
 }
 }
 else
 {
 sub_flowchart_fun_call();/*Generated
by sub-flowchart, the type is function-call */
 }
 break;
 }
 }
}
/*sub_flowchart_fun_call.h*/
#ifndef sub_flowchart_fun_call_h
#define sub_flowchart_fun_call_h
#include "GLOBALHEAD.h"
void sub_flowchart_fun_call ();
#endif
/* sub_flowchart_fun_call.c*/
#include "sub_flowchart_fun_call.h"
void sub_flowchart_fun_call ()
{
 int i = 10;
 do
 {
 do
 {

Copyright © 2011 SciRes. JSEA

Research and Application of Code Automatic Generation Algorithm Based on Structured Flowchart 545

 printf("this is sub_flowchart function
call");
 } while (i--);
 } while (1);
}

7. Conclusions

We proposed a structure identification algorithm for
structured flowchart. The effectiveness of the proposed
algorithm is checked using exhaustive method, i.e.,
twelve structures can be identified, then a algorithm can
be used to generate code from identified flowchart using
recursion algorithm. The technologies and algorithms are
used in a integrated development platform, we develop a
weapon system based on the platform to verify the effec-
tiveness of the proposed algorithm.

REFERENCES
[1] T. Zhang, Y. Zhang, X.-F. Yu, et al., “MDA Based De-

sign Patterns Modeling and Model Transformation,”
Journal of Software, Vol. 19, No. 9, 2008, pp. 2203-2217.

[2] R.-F. Lv, G. Wang, X.-X. Wen, et al., “Process Modeling
Method of Calculation Independent Model Level Based
on MDA,” Computer Integrated Manufacturing Systems,
Vol. 14, No. 5, 2008, pp. 868-874.

[3] S. Needham, “OMG Unified Modeling Language Speci-
fication,” Object Management Group, 2003, pp. 275-293.
http://www.digilife.be/quickreferences/Books/OMG%20
UML%20Specification%201.4.pdf

[4] Z. K. Zhao, Q. J. Sheng and Z. Z. Shi, “An Execution
Semantics of UML Activity View for Workflow Model-
ing,” Journal of Computer Research and Development,
Vol.42, No. 2, 2005, pp. 300-307.

[5] R. Eshuis and R. Wieringal, “A Formal Semantics for
UML Activity Diagrams,” Tech Report, University of
Twente, 2001, pp. 201-204.

[6] H. Jiang, D. Lin and X. R. Xie, “The Formal Semantics of

UML State Machine,” Journal of Software, Vol. 13, No.
12, 2002, pp. 2244-2250.

[7] D. Harel, “Statecharts: A Visual Formalism for Complex
Systems,” Science of Computer Programming, 2007.

[8] J.-L. Shen, L.-Z. Wang, X.-D. Li, et al., “An Approach to
Generate Scenario Test Cases Based on UML Sequence
Diagrams,” Computer Science, Vol. 31, No. 8, 2004, pp.
1-6.

[9] S. Raman, N. Sivashankar and W. Stuart, “HIL Simula-
tors for Powertrain Control System Software Develop-
ment,” American Controls Conference, St. Louis, Mis-
souri, USA, 2009, pp. 23-32.

[10] S. Sendall and W. Kozaczynski, “Model Transformation:
The Heart and Soul of Model-Driven Software Develop-
ment,” IEEE Software, Vol. 9, 2003, pp. 42-45.
doi:10.1109/MS.2003.1231150

[11] H. Dakhore and A. Mahajan, “Generation of C-Code
Using XML Parser,”
http://www.rimtengg.com/iscet/proceedings/pdfs/advcom
p/ 149.pdf

[12] M. C. Carlisle, T. A. Wilson, J. W. Humphries, et al.,
“Raptor: Introducing Programming to Non-majors with
Flowcharts,” Journal of Computing Sciences in Colleges,
Vol. 19, No. 4, 2004, pp. 1-6.

[13] T. Watts, “The SFC Editor: A Graphical Tool for Algo-
rithm Development,” Journal of Computing in Small Col-
leges, Vol. 20, No. 2, 2004, pp. 73-85.

[14] K. Charntaweekhun and S. Wangsiripitak, “Visual Pro-
gramming Using Flowchart,” International Symposium
on Communications and Information Technologies, ISCIT
'06, 20 September - 18 October 2006, pp. 1062-1065.

[15] I. Nassi and B. Shneiderman, “Flowchart Techniques for
Structured Programming,” ACM SIGPLAN Notices, Vol.
8, No. 8, 1973, pp. 12-26.
doi:10.1145/953349.953350

[16] J. F. Gimpel, “Contour: A Method of Preparing Struc-
tured Flowcharts,” ACM SIGPLAN Notices, Vol. 15, No.
10, 1980, pp. 35-41.

Copyright © 2011 SciRes. JSEA

http://dx.doi.org/10.1109/MS.2003.1231150
http://dx.doi.org/10.1145/953349.953350

