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Abstract 
Beginning with a 5D homogeneous universe [1], we have provided a plausible 
explanation of the self-rotation phenomenon of stellar objects previously with 
illustration of large number of star samples [2], via a 5D-4D projection. The 
origin of such rotation is the balance of the angular momenta of stars and that 
of positive and negative charged e-trino pairs, within a 3 1⊗D D  void of the 
stellar object, the existence of which is based on conservation/parity laws in 
physics if one starts with homogeneous 5D universe. While the in-phase 
e-trino pairs are proposed to be responsible for the generation of angular 
momentum, the anti-phase but oppositely charge pairs necessarily produce 
currents. In the 5D to 4D projection, one space variable in the 5D manifold 
was compacted to zero in most other 5D theories (including theories of Kalu-
za-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last 
Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 
4th space variable in the 5D manifold is mapped into two current rings at both 
magnetic poles as required by Perelman entropy mapping; these loops are the 
origin of the dipolar magnetic field. One conclusion we draw is that there is 
no gravitational singularity, and hence no black holes in the universe, a result 
strongly supported by the recent discovery of many stars with masses well 
greater than 100 solar mass [6] [7] [8], without trace of phenomena observed 
(such as strong gamma and X ray emissions), which are supposed to be asso-
ciated with black holes. We analyze the properties of such loop currents on 
the 4D-5D boundary, where Maxwell equations are valid. We derive explicit 
expressions for the dipolar fields over the whole temperature range. We then 
compare our prediction with measured surface magnetic fields of many stars. 
Since there is coupling in distribution between the in-phase and anti-phase 
pairs of e-trinos, the generated magnetic field is directly related to the angular 
momentum, leading to the result that the magnetic field can be expressible in 
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terms of only the mechanical variables (mass M, radius R, rotation period P)of 
a star, as if Maxwell equations are “hidden”. An explanation for the occur-
rence of this “un-expected result” is provided in Section (7.6). Therefore we 
provide satisfactory answers to a number of “mysteries” of magnetism in as-
trophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experi-
mental finding that B-P graph in the log-log plot is linear. Moreover, we have 
developed a new method for studying the relations among the data (M, R, P) 
during stellar evolution. Ten groups of stellar objects, effectively over 2000 
samples are used in various parts of the analysis. We also explain the emer-
gence of huge magnetic field in very old stars like White Dwarfs in terms of 
formation of 2D Semion state on stellar surface and release of magnetic flux as 
magnetic storms upon changing the 2D state back to 3D structure. Moreover, 
we provide an explanation, on the ground of the 5D theory, for the detection 
of extremely weak fields in Venus and Mars and the asymmetric distribution 
of magnetic field on the Martian surface. We predict the equatorial fields B of 
the newly discovered Trappist-1 star and the 6 nearest planets. The log B − log 
P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s rela-
tion. Based on the above analysis, we have discovered several new laws of stel-
lar magnetism, which are summarized in Section (7.6). 
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1. Introduction-Understanding Our Universe by Expanding  
the 4D Lorentz Manifold to the 5D Homogeneous  
Manifold and Project Back to the 4D Space-Time  
Structure via Two Projection Procedures 

It is a very important step in physics to unify gravity with electrodynamics. De-
spite many trials, the past endeavors were unsuccessful. It is not correct to think 
that by adding another dimension to the Lorentz space-time, one can readily 
bridge gravity and electrodynamics. A unified theory along this line of thought 
therefore is not one that can be applied separately to a domain with masses in 
motion, and to another domain pertaining to dynamics of massless photons. The 
unified theory has to embrace both gravity and electrodynamics in an “inherent” 
manner. The general method we use is to analyze the physical properties of the 
universe via projection/mapping between the 4D and 5D space-time, with an 
analysis of the boundary conditions between the two domains. 

In our model, after the absolute time 0t = , the universe is to be observed/ 
perceived. Since observation/measurement is realized after this absolute time in-
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stant, based on the uncertainty principle, the uncertainty of energy observed at  

this time is specified by 
( )2π

hE t∆ ∆ ≥ . Thus there is an infinite amount of  

energy generated at this instant in the 5D manifold. The 5D manifold has to be 
homogeneous the reasons of which have been discussed in [1]. There is another 
reason: no physical laws have yet to be enforced. Some laws appear when the 
energy is perceived to be associated with e-trinos (conservation of spin, 
etc.).Other laws are realized when matter is being generated in the 4D Lorentz 
manifold. This time instant may be considered to be corresponding to the time 
when a Big Bang occurs in a Big Bang model discussed in literature. The term 
“Big Bang” in this paper therefore refers to the definition above according to the 
5D theory. Starting with the above defined Big Bang concept, energy is flowing 
“out” along the radial direction in 4D space, and due to the Maxwell 4D boun-
dary imposed, and any radial vector direction can become the Ricci Flow axis 
and generate beyond a finite 5D void core with a 4D Lorentz doughnut manifold. 
Since the choice of the Ricci Flow axis is arbitrary, hence many such doughnut 
Lorentz manifolds can be simultaneously created, thus completing the Big Bang 
picture of universe creation in the context of the 5D projection theory. 

We assume the universe began with a homogeneous 5D space-time structure 
described by the above metric equation. From the homogeneous 5D manifold, 
we can apply projection operations [1] back onto the 4D Lorentz manifold, and 
requiring all the basic laws of physics to satisfy the known gauge invariance 
properties, so that there is consistency of mathematical logic steps linking va-
riables in the 5D and 4D domains. We can then analyze and interpret the ma-
thematically -deduced consequence and compare some aspects when appropri-
ate measurable data are available. 

The above projection reduction approach was presented in [1], leading to the 
topological reduction of the homogenous 5D into the group representation of 

( ) ( )2 3SU SU L+ ⊗   , where the L group represents the Lorentz 4D domain. It 
was emphasized that the resulting Poincare sphere, a “product” in projection, 
encloses an inhomogeneous 5D void in the center. Based on parity analysis, it 
has been remarked that massless spinors with equal amount of opposite charges 
must be present in such a void. In addition, vector potential, which gives rise to 
photons, must also exist inside the 5D void. 

On the other hand, via the rigorous Perelman-Ricci Flow mapping [10] [11], a 
homogeneous 5D is mapped into an inhomogeneous 4D doughnut structure. 
The consequence carries the important implication that there is a Beginning of 
space-time from absolute Nothing, and time is unidirectional, i.e. irreversible 
and the law of causality follows. This mapping procedure is then followed by 
Perelman’s entropy mapping [12], via which the doughnut structure becomes a 
matter sphere satisfying the Lorentz manifold, thus proving Poincare’s conjec-
ture [13].  

It is our intention to show the mathematical connections between these two 
mapping/projection procedures, as well as to investigate the physical outcome 
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from such investigation in this paper, with special focus on the origin of mag-
netic field in the universe. Note that whatever method we employ to analyze the 
space-time structure of the universe, we always come up with a boundary sepa-
rating the 5D and 4D domains. We start with the Fermat’s Last Theorem to ana-
lyze the space structure in the void and 4D-5D boundary in Section (2).In par-
ticular, we show that that breaking of the homogeneity of the 5D space-time, due 
to the imposition of the lower dimension 4D boundary, would lead to a 
time-frozen, 3 1D D⊗  space domain, with concurrent matter formation sur-
rounding the void. The 1D space structure is interpreted, due to parity, as an 
entangled state of two loops at the void-4D boundary. The generation of matter 
is restricted by charge parity. When the lightest lepton is generated, there must 
be equal amount of positive charge generated also. The generation of neutron 
does not violate such parity. Modification of the size of the current loop when 
neutrons are generated is analyzed in Section (2.3), putting forth the notion that 
generation of heavy elements can achieved in a similar way. 

We pay special attention to the meaning and mathematical representation of 
homogeneity. Since other theories relating to transformation between a 5D do-
main and 4D domain have been published, we give a very shot review on the 
Kaluza-Klein (K.K.) [4] theory in Section (3). Also, we shall pay a revisit to the 
issue of gravitational singularity there. Note that Einstein’s unified theory [3] al-
so followed the consequence of the K.K theory. One crucial difference between 
the K.K. theory, hence Einstein’s, and the present one here is that the 5D mani-
fold of these theories are not homogenous, and the 4th space coordinate in the 
5D domain is compacted to reduce dimension. We need to review this issue also 
because the 4th space variable in our theory is rotated to the radial direction dur-
ing dimension reduction, together with the emergence of a current loop, (as a 
consequence of the space-space transformation) in the 5 4D D−  boundary 
where Maxwell equations must satisfy. It is precisely the existence of this non- 
zero space variable, as a result of the Perelman entropy mapping (leading to a 
3 1D D⊗  space structure) that provides the current loops that generate the in-
trinsic dipolar magnetic field in spherical stellar objects of the universe. Our 
analysis of the 5 4D D−  transformation leads us to conclude that there is no 
gravitational singularity in the universe. 

Explicit expression for the dipolar magnetic field of a general stellar object is 
derived in Section (4). Though the classical Biot-Savart law is employed, the 
quantum signature of the charge current is incorporated. The Three Laws of 
Dipolar Magnetic Fields of stellar objects, similar to the three laws of Stellar 
Angular Momentum discovered in [2] are also presented with numerical illu-
stration in the same section there. Moreover, we have derived the ratio of the 
dipolar magnetic field strengths when the matter shell is composed of either (i) 
pure hydrogen ions, or (ii) purely Helium ions as two examples based on quark 
mass analysis during the generation of matter based on the dimension projection 
theory. As the mass density within the shell increases, the 3D space homogeneity 
of a shell near the surface is broken into 2 1D D⊗ . The variation of gravity is 
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approximately only along a direction perpendicular to the local plane on the 
surface. It is this broken space that leads to the atomic binding from Bohr to 
Chern-Simons hydrogen solution. In the relativistic limit, the Chern-Simons so-
lution is given by the Semion state in which the electron collapses into the pro-
ton environment, bringing with it the pinned magnetic flux. We explain in Sec-
tion (5) how the consequence, qualitatively, of the formation of such Semion 
state could lead to the generation of huge sporadic magnetic field from the stel-
lar surface when the 2D state changes back to the 3D state, as part of the stellar 
evolution process. To test the general validity of the dipolar field equation we 
have derived, we introduce in Section (6) a new method of graphical analysis 
using measured values of the basic set of data (mass, radius, rotation period), 
and compare the power indices of the relevant variables. Very satisfactory results 
has been obtained for 8 different star groups: (6.1) the pre-main-sequence stars 
in the Orion Nebula; (6.2) the NGC 6819 stars; (6.3) the mid-to-low mass stars 
of the main sequence; (6.4) the pre-dwarf M34 stars; (6.5) the NGC 2516 stars; 
(6.6) brown dwarfs; (6.7) white dwarfs and (6.8) magnetic white dwarfs. There 
are two features in astronomy related to stellar magnetic field which are like 
mysteries. One is the linear relation between surface magnetic field sB  and 
equatorial rotation speed v in the log-log graph, and the other is the so-called 
“Magnetic Bode’s Law” which simply states that the parameter BsR3 and Iω rela-
tion is also linear in a log-log plot, particular for cool stars; here Iω  is the angu-
lar momentum. Though we have carried out a very detailed analysis of the B-v 
relation in Section (6) for many star groups, no suitable complete measured data 
sets ( ), , ,sB M R P  have been obtained for every star in these star groups in Sec-
tion (6). Such a set of four variables for each individual star in the sun-like group 
with over 100 members have been published. We apply that in Section (7) to 
analyze the stated two mysteries. The study there is important because on face 
value, no parameters related to electric current are involved in the stated two re-
lations. Where are the Maxwell equations “hidden” behind such Laws? Whereas 
other scientists have attempted to explain these features using various forms of 
dynamo theories, we find that our derived expression for the dipolar field 
can automatically explain such phenomena, implying that based on the 
5D-4D projection theory, the co-existence of in-phase and anti-phase spinor 
pairs circulating in the stellar void can automatically explain the origin of 
angular momentum and the origin of dipolar magnetic field in stellar ob-
jects at the same time. Section (7.5) is devoted to compare the difference of the 
theoretical prediction and measured values of the dipole fields of some members 
of our planets. Section (7.6) is a summary of the laws and issues discovered 
in this paper. Section (7.7) concludes our endeavor. The numerical values of 
the relevant variables/parameters to be applied in our numerical study in 
this paper are all based on the fundamental well-established constants, such 
as electron mass, quark mass, electronic charge, the Planck constant, plus 
data measured only—there is no other input parameter and no parameteri-
zation process involved. 
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2. The Meaning of Spatial Homogeneity & Application  
of the Fermat’s Last Theorem to the Boundary  
of the 5D-4D Domains 

2.1. Basics of the Special Properties of the 5D, 4D Domains  
and the 5D-4D Boundary 

As we proceed through the paper, the physical properties of the 5D-4D boun-
dary are of crucial importance; we therefore need to high-light some basics, 
which are consequence of the projection theory and fundamental physics. 

a) From the 5D homogeneous metric, one can obtain a 5D second order 
energy-momentum differential operator without a term pertaining to mass. So-
lutions of such metric equation represent 5 vector potential fields (including 
charge-source terms, thus existence of e-trinos) traveling with speed c, similar to 
the fields associated with the Maxwell potentials in the 4D Lorentz manifold. In 
the 5D domain, a term pertaining to magnetic monopole exists. In 4D domain, 
the electric, magnetic symmetry is broken, so that there is no magnetic-mono- 
pole term in Maxwell equations. 

b) In a 5D domain, a Dirac linearization process does not lead to mass crea-
tion via projection/mapping, implying the e-trinos must be massless, but 
charged. These spinor states are equivalent to magnetic monopole states in 5D. 
In 4D domain, a Dirac linearization process leads to solutions representing the 
state of massless, charge-neutral neutrino and the state of massive charged lep-
ton (described by the SU(2) group) in pair form. 

c) Based on (a) & (b), the states of e-trinos and 4D Maxwell potentials must 
form the boundary between the 5D & 4D homogeneous manifolds, implying 
that both classical and quantum representations are allowed in the boundary. A 
satisfactory quantum theory should also have such representations. 

d) The void space is expressed as 3 1D D⊗ , with time frozen, meaning that 
the pair spinor states in 3D are orthogonal to those in 1D structure. When a pair 
is charge neutral, it must be in 3D space, as the product 3 1D D⊗  gives the 
Maxwell potential after a Dirac linearization process; hence such spinor pairs 
generate a net angular momentum zL . The remaining 1D space, being ortho-
gonal to the 3D space, then must contain no net momentum. However, similar 
to the appearance of the monopole term in 5D Maxwell equations, the 1D space 
carries a current of magnitude 2ec, which results from ( ) ( )ec e c+ − − . If such a 
current forms a ring or loop, with a single frequency ν , then these charges will 
produce a magnetic dipole field, but could annihilate, and cannot remain in a 
perpetual state. Because the 3D space is symmetric, such a current pair loop 
must be split into 2 parity states in two different magnetic latitudes, one in each 
hemisphere. Since the 2 parity loops produces the same in line magnetic field, 
they will give a pure dipolar field similar to a bar magnet. The general charge 
neutrality within the 1D domain implies that it is possible to break the neutral 
charge condition between hemispheres, as long as their sum neutrality is main-
tained. A more detail discussion later in relation to the conformal projection P1 
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of these spinor states on the creation of quarks and thus hadrons will be given. 
e) According to the P1 projection, the 4th space coordinate of e-trinos in the 

5D manifold is conformally mapped into quarks of fractional charges. In order 
to produce a proton (composed of (u, u, d) quarks) and a neutron (composed of 
(u, d, d) quarks), as an example, we need 3 up and 3 down quarks. Since the 3 up 
quarks have a total charge of 2e, they are projected via the P1 process from 2 
e-trino loop states of one loop. As the 3 down quarks have a total net charge of 
-e, they can be produced by P1 from just 1 anti-e-trino state from the other loop. 
To balance the + e charge resulting from the stated P1 projection, the Po projec-
tion on an in-phase pair (on the void surface) gives a lepton, such as an electron 
(exists in Lorentz space L), due to SU(2) symmetry and the unidirectional nature 
of time in the 5D metric. Effectively, we say that the consequence of Po is speci-
fied by the group product ( )2SU L⊗ . We have overall charge neutrality in the 
universe all the time. 

f) After the entropy mapping, or equivalently the combined Po and P1 map-
ping, we have a spherically shaped mass stellar object model enclosing a 
3 1D D⊗  void filled with charged massless spinors satisfying the Fermi-Dirac 
distribution. We can connect the physical quantities of the thermal bath of the 
Fermions in the void and the physical quantities of the matter shell, leading to 
the discovery of the 1st and 2nd Laws regions for these spinors stated in [2]. It 
has been shown that under the time independent situation, eigen states of mass-
less spinors with opposite charges, together with vector potential exist inside the 
void. In fact, there are eight such eigen states:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , , , , , , , , , , , ,p e s p e s p e s p e s p e s p e s p e s p e s− − − − − − − − − − − −  

where p, e ,s represent the momentum, charge, and spin respectively. The in 
phase circulation of the oppositely charged massless spinors (with spin degene-
racy sg ) gives rise a net total angular momentum Lz  in the void. This angular 
momentum must be counter-balanced by an opposite angular momentum- Lz  
generated in the Lorentz spherical mass shell, in order to preserve total zero an-
gular momentum value. Thus, spherical stellar objects are found to be “self-ro- 
tating”. In the astronomical scale for stars, this Lz  leads to a repulsive potential 
within such a void, leading to the elimination of the gravitational singularity, 
similar to the action of the gluon repulsive potential within hadrons [14]. This 
aspect will be discussed in more details in Section (3). 

g) In this paper, we analyze the consequence of the out of phase rotating of the 
spinor pairs specified by the following four state groups:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , , , , , , , , , , , ,p e s p e s p e s p e s p e s p e s p e s p e s− − − − − − − − − − − −                

In the calculation of current, these four states lead to the spin degeneracy fac-
tor 4sg =  occurring in Section (4). These out of phase rotation states would 
generate a current of 2ec. For the 1D state to remain actually perpetual, such a 
1D (pair) current state must be split into two loops, one near each magnetic pole, 
each carrying a current of e c (see (d) above). 
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2.2. The Fermat’s Last Theorem and Space Time Metric 

Detail of the 4D Maxwell boundary can be explicitly analyzed through Fermat's 
theorem, in terms of Abelian angles. The Fermat’s sum of quadratic coordinate 
components has been proved to be rigorous for any number of coordinate di-
mensions [5]. 

Leonhard Euler in 1770 [15] was the first to prove that for all non-zero 
( ), , ,x y z  and n Z +∈ , where Z +  is the set of all positive integers, the equation 

n n nx y z+ =  admits no solutions for n = 3. Fermat was the first to provide a 
proof that there is no solution for the case n = 4 (see [16] and also [17]). It has 
been proved recently that 2 2 2x y z+ =  has solution, a result which is referred 
to as the Fermat’s Last Theorem for order 2. 

In fact, we put forth the notion that n = 2 is the only condition that 
n n nx y z+ =  has a solution. It is not surprising, therefore, to see that in relativi-

ty, manifold representation, equations of the form 2 2 2x y z+ =  repeatedly ap-
pear. 

By expanding the Lorentz manifold to the 5 space-time, we learn that the un-
iverse has a homogenous 5D space-time structure described by the metric  

2 2 4 2 2
1
j

jc t j x r=
= ′= ′=∑                    (2.2.1) 

where jx′  are the spatial vector variables; in the usual representation, 

1 2 3 4,  ,  ,&x x x y x z x w= = = = .  
In the homogeneous 5D space-time, all 4 orthogonal space axes are exactly 

equivalent. Thus each axis has a measure r' as represented in the complex phase 
angle O(1) group [18]. This group has three elements specified by angles , ,θ ϕ ξ′ ′ ′  
for the 4D orthogonal coordinates, reducing the Fermat's sum to 2 2 2c t r= ′ , to-
gether with the specification of angle elements in the O(1). For a 4D Maxwell 
space-time, this O(1) group has 2 angles: ,θ ϕ , and the transformation is speci-
fied by the Euler angles, where θ , is between 0 and π ; ϕ  is between 0 and 
2π . It is then easy to see that for a 3D space structure, the Little group O(1) is 
specified by the parameter 1 π and 2 πn = × × . For a 4D space, n has three values: 
1 π;2 π;4 π× × × . When we fix the third angle ξ ′  to be a constant, the 5D ho-
mogeneous space-time splits into two Maxwell 4D of opposite parities. It is this 
explicit split that is revealed as 2 spherical gamma ray bubbles, one above and 
one below the Center of the Milky Way galactic core observed by NASA [19]. By 
this parity split, the vector potential field solutions of the 5D homogeneous me-
tric equation with 2nd order operator breaks the 5D symmetry in the Maxwell 
sub-space-time, eliminating the magnetic mono-pole solution. It is also due pre-
cisely to this split, in the 5D Dirac linearized representation of the metric equa-
tion, that we have a set of e, and -e massless spinors. When these spinor fields 
couple to the Maxwell vector potentials, gauge transformation is satisfied. Such 
spinors exist only within a 5D manifold (see detailed discussion in [1] on this 
point). Application of projection Po on the 4x  variable in the 4D Lorentz 
boundary creates a set of lepton masses (accompanied by neutrinos) described 
by the SU(2) group. We then arrive at a spinor differential operator which splits 
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into two standard 4 4×  Dirac Gamma representations. On the other hand, the 
5D spinor field equation also contains a set of 5 5×  gamma matrices (Equation 
(7.9) of [1]). The superposition of these 2 sets of gamma matrices in the Dirac 
equations in the Maxwell space-time description leads to Parity violation in 
weak interaction as discovered in Bethe decay. [20]. 

Since the solutions of a differential equation is totally governed by the boun-
dary conditions that are imposed, the vector and massless charged spinor solu-
tions to the 5D homogeneous metric operator equation are dictated by the 4D 
Maxwell space-time boundary which forms the enclosure to (or embracing) the 
5D manifold. At the absolute time t, the space volume of the homogeneous ND 
manifold must have a boundary enclosure of ( )1 DN − , where N is an integer. 
Thus the homogeneous 5D manifold boundary is the Maxwell 4D. When the 
Fermat's sum is expressed in term of the rotation angles and the radius magni-
tude, it follows that the boundary condition must reduce the 3 independent an-
gles in 5D by fixing any one as a constant, thus reducing this set to 2 indepen-
dent angles in the Maxwell 4D domain. The result is that there is imposition in 
alignment between r′  of the Fermat's sum in 5D, and r that of the Fermat's 
sum in 4D. This boundary continuity leads to the manifestation of a Ricci Flow 
direction, which will convert the homogeneous Maxwell 4D boundary through 
the two projections (Po & P1) of the already broken symmetric property of the 4 
space coordinates further into a 4D Lorentz manifold containing masses. In 
terms of topological mapping, this 4D Lorentz boundary manifold is precisely 
the doughnut structure proved by Perelman’s Ricci Flow mapping [10] [11]. In 
terms of the reduced 5D domain, the space structure must still have a finite re-
gion, with a center core containing the axis z(in 3D space representation) per-
pendicular to the doughnut plane, which is an entangled coordinate composed 
of the 3D coordinate z and the 4th space dimension 4x  variable. The planer 
domain boundary in which 5D space structure still remains is then described by 
the Po projection of 4x  to a 2D circle of radius ocτ . On the other hand, the 
3D space volume of the Lorentz domain must be mapped by the remaining space 
variable 4x  to 3D space via the conformal P1 (space to space) projection. This 
mapping in turn would give us the created leptons and the Gell-Mann quarks 
enclosed in this covering Lorentz boundary. It is through these projec-
tion-mapping processes imposed by the boundary condition, and the gauge in-
variance property, on all the massive quantum field states in the Lorentz boun-
dary manifold, that we have created a model for the formation of a Galaxy. 

Since the determination of the Ricci Flow direction for the 4x  vector such 
that we obtain an entangled 3D, the z axis has infinite multiple choices from the 
O(1) angle between 0 and 4π , it is then possible to simultaneously create many 
Lorentz doughnut 4D structures during the very beginning of the 5D space-time, 
when the absolute time is near 0, and through uncertainty, the initial energy is 
near infinite. In short the creation of many galaxies, near the beginning of the 
universe, according to the 5D projection theory, is a picture consistent with the 
general Big Bang theory in the literature. Furthermore, since the 5D metric of 
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space-time implies the universe will expand continuously, in time course, ex-
pansion pushes all these created galaxies apart. 

Our remaining problem is the general spherical shape of the massive stellar 
objects observed within each galaxy satisfying the Poincare Conjecture. To illu-
strate this topological mapping process, Perelman introduced an entropy map-
ping [12], which basically closes the doughnut 5D core, into a void that contains 
a 3D spherical volume plus a 1D closed loop that is orthogonal to the 3D radius; 
this 1D loop must be on the surface of the spherical volume. Comparing projec-
tion theory and Perelman’s theory, the 3D radius of the void, is defined by the 
Po projection of the 4th space coordinate. This consequence is similar to that of 
the Ricci Flow mapping, except the matter domain totally encloses the 5D ma-
nifold. The physical state of this void is time frozen at ot τ= , a value specific to 
each stellar object. Electrons are thus created through Po outside of this void. 
However, overall charge neutrality must be maintained both within and outside 
the void in the mass shell of the stellar object. As such the measure of the 1D 
closed loop (hence the current density) on the spherical void surface cannot be 0, 
in opposition to that postulated by the KK and Einstein's theories. The measure 
of this 1D loop depends on the hadrons created through P1 in the Lorentz mass 
shell domain. 

2.3. Modification of the Size of the Current Loop When  
Neutrons Are Generated 

We note again that in the 5D manifold, there are 5 vector potential components 
(instead of 4 in the Maxwell domain), and 2 massless spinors with charges e and 
-e. [Section 2.1]. In order that these solutions satisfy the boundary conditions 
imposed by the Maxwell domain, we need to transform the 5 component sym-
metric vector potentials into the 4 Maxwell vector potentials by breaking the 
symmetry of solution as carefully illustrated by Maxwell in his thesis, with the 
emergence of a magnetic mono-pole potential, which corresponds to the 5th 
component vector potential in the 5D manifold. [21] [22] [23].  

We will find an explicit expression for r . Now the Poincare void is given by 
3 1D D⊗ . According to Fermat's theorem, the 3D orthogonal representation is 
given by 2r ; while r  is orthogonal to the 1D which must form a closed loop 
on the spherical surface. The quantum representations are given by photons 
along r , thus the diameter 2r must satisfy integer multiple of the photon 
wave-length. The charged massless spinor pairs, is specified by the 1D space 
structure. As stated before, the current loop states, being perpetual, are split by 
parity into an upper and a lower hemisphere loops. The loops are therefore of 
radius < r . There exists 2 parity representations all together. Thus according to 
the projection theory for the spinor states, the radius r, must be produced by Po, 
the time projection. Hence from the metric (2.2.1), with time frozen, we must 
have 

2 2 2
oc rτ =                         (2.3.1a) 

While the current loop r′ , split by north and south is given by 
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2 2 20.5c l l rτ ′= , where r r′ <                 (2.3.1b) 

Combining these two representations, & letting x ar′ = , with 1a < , we ar-
rive at 

{ }2 2 2 22or c aτ= +                    (2.3.1c) 

which determines the geometry of void boundary. 
The rotation of 4x  to the radial direction is governed by the Projection Po, 

which takes time oτ  to complete. At time ot τ= , the lightest lepton, with rest 
mass em , begins to be generated, and the void radius attains the perpetual value 

o oR cτ= . We interpret P1 as the conformal projection where the residue of the 
variable 4x , i.e. x′  (represented by c lτl, where τ is a three dimensional vector) 
is to be rotated to form the other orthogonal component (a ring with perimeter
x ar′ =  in (2.3.1)), with gauge confinement imposed, so that a 5D domain can 

become a 4D domain, accompanying the generation of three quarks with total 
charge of + e to conserve the charge of the lightest lepton. Thus we can interpret 
lτl as the time at which these quarks are generated. Since the generation of these 
massive particles starts from nothing to reach a stationary state, we can apply the 
uncertainty principle with the energy-time conjugate pair. In other words, we 
can write ( )2πEt nh= , where n is a quantum number greater or equal to 1, 
with t representing the time of the stated generation of the masses, and E the to-
tal rest mass generated in each case. Note that the conformal projection of 4x  
gives the SU(3) quarks, with proton as its lightest positive charged spinor par-
ticle, composed of a set of u, u, d quarks, due to gauge confinement. The bare 
total mass of these three quarks is precisely 34 MeVpm = . 

Therefore, ( )2 2πe om c nhτ =  and ( )2 2πpm c l l nhτ = . From the above two 
equations pertaining to uncertainty, we have the ratio 1 68o e pl l m mτ τ = = . As 
x cl lτ′ = , and o oR cτ= , stated above, we arrive at 

( )1 68ox R′ =                        (2.3.2) 

This is the size of the current loop if a pair of electron and proton is generated 
simultaneously; in other words, hydrogen atom is generated. 

Note that charge, linear momentum, angular momentum, and energy must 
each be conserved during the generation of matter. We have only the lightest 
lepton and quarks generated initially, before the gluon potential is in action to 
produce proton and neutron. A set of (u, u, d) of quarks must be generated (to 
build up eventually a proton) together with the generation of an electron, ac-
cording to the 5D projection theory. The gauge requirement for the solution on 
quark spinors is the charge to mass ratio j jq m α= , a constant [24], where j 
specifies the quark and its charge, we have ( ) ( )2 3 1 3u de m e mα = = , leading 
to 

( ) ( )&2 3 , 1 3u p d pm m m m= =                (2.3.3) 

where um  and dm  are respectively the masses of the up and down quarks , and 

pm  is the bare quark mass of 34 MeV. Now the sum of the bare quark masses 
building the proton (u, u, d) satisfies the Lorentz sum rule. Therefore we can 
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write 

[ ] [ ] [ ] ( ) ( )2 2 2 2 2 22 2 3 1 3u u d pm m m m + + = +            (2.3.4) 

Since mass is generated from nothing, the uncertainty principle requires that  

( )2
1 1mass 2πp pt t m h c∆ ∆ = ∆ =                (2.3.5a) 

(as a minimum); where 1t∆  measures the time taken to generate the set 
(u,u,d) of quarks for proton. Likewise, another similar equation can be written 
for neutron which is composed of the set (udd): 

( )2
2 2mass 2πn nt t m h c∆ ∆ = ∆ =               (2.3.5b) 

where nm  is the total bare quark mass building up a neutron. 
Using the data for um , dm , pm , nm , Equation (2.3.5a) & Equation (2.3.5b) 

give, 

( )2 13 2t t∆ = ∆                       (2.3.5c) 

However, there is also the factor due to the reduced-mass effect of the pro-
ton-neutron pair, and the reduced mass redm  becomes (chapter 8, [1]): 

( )0.5
red 1 3 2pm m  = +                   (2.3.6a) 

2.225  pm=                       (2.3.6b) 

Hence, effectively, the time to generate a proton-neutron pair is longer than 
generating two protons by a factor of 2.225. Now many electrons and protons 
are generated simultaneously, while the 5D void is expanding until the mass 
shell is generated. Thus, the void radius oR  would be larger if the mass shell is 
built of proton-neutron pairs, or alpha particles, namely, helium nuclei. The size 
of oR  is reflected in the calculation of angular momentum as report in [2], 
leading to a larger absolute value of loop size measured by x′  in (2.3.2). In oth-
er words, the current element integral in calculating the current density gene-
rating the dipolar magnetic field in Equation (4.1.6) and hence (4.2.2a) should be 
multiplied by factor of 

2.225b =                         (2.3.7) 

if the mass shell is composed of helium four. If the matter crust is composed of 
hydrogen and Helium 4, the factor b would be 1 2.225b< < . For more heavy 
elements, such as iron, the correction factor b will be different accordingly. 

With expressions (2.3.2) & (2.3.7), we can apply the magnitude of the current 
loop to calculate the magnetic field generated by such a loop. Before we do the 
application, we have to derive an explicit representation of the magnetic field 
generated such a current, one near each magnetic pole, when the particular ele-
ment(s) is considered to be existing at the Lorentz space-time and void boundary. 
Such derivation will be carried out in Section (4). At the meantime, we need to ana-
lyze in the next Section about the origin of the “key” variable 4x  in the conforma-
tion mapping, which is also effectively involved in previous unified theories. 
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3. Proof of Non-Existence of Gravitational Singularity  
in the Universe 

3.1. The Crucial Difference between the Kaluza-Klein 5D  
Theory, Einstein’s Unification Field Equation  
and Consequence of Perelman’s Two Mappings 

The original Kaluza-Klein theory (KK theory, see e.g. review in [4]) was an at-
tempt to develop a field theory which could unify all the forces under one fun-
damental law. In the framework of the theory, distance squared between the two 
neighboring space points ( )P x  and ( )Q x dx+ , the line element, in reference 
frame ( )S x , is expressed as 

( )2d d dµ
µs x g x xνν=                     (3.1.1) 

where the usual summation rule is understood, and ( )µg xν  is the metric tensor. 
The space-time is uniform so far. Since the interval between P and Q is inde-
pendent of the choice of reference frame, the line element (3.1.1) is invariant 
under the transformation between reference frames (such as from ( )S x  to 

( )S x′ ′ ), so that  

( )2d d dµ
µs x g x x ν
ν′ ′ ′ ′=                    (3.1.2) 

Equating (3.1.1) to (3.1.2) gives 

( ) ( )µg x e g x eαβ β
ν αµ ν′ ′ =                  (3.1.3a) 

where  
µ

µe x x µ
α ′= ∂ ∂                     (3.1.3b) 

is called the vielbein. For a non-uniform gravitational field, the KK theory in-
troduces the notion that “At every point in a reference frame with an arbitrary 
gravitational field it is possible to choose a locally inertial (freely falling) refer-
ence frame.” In other words, like carrying operation using the concept of calcu-
lus, the flat Minkowski metric can be transformed into a curved space-time me-
tric. However, we would remark that in Equations (3.1.3a) & (3.1.3b), it was al-
ready assumed that a gravitational field is present due to the presence of the 
Riemannian tensor. This assumption implies that in the domain considered, 
mass exists. Thus the 4D is a Lorentz manifold, and by an extension to 5D space- 
time, such a 5D structure would not be a homogeneous 5D. Hence the Ricci- 
Flow mapping does not reduce this 5D back to 4D, except simply by closing the 
extra 4th space dimension into a closed loop. 

Without going into further details, we would remark that both the KK theory 
and Einstein generalized field equations have difficulties to explain experimental 
data and interpret mathematical singularity: (i) In order to exclude the singulari-
ties in the equation set, both K.K. and Einstein introduced the method of com-
pactness. Such an assumption leads to the models of black hole, and dark matter, 
which to us, are not necessary.; (ii) The electron charge e and mass me are in-
cluded in a certain constant κ in K.K. theory which bridges the electromagnetic 
potentials and some metric tensor components including the 5th dimension. The 
values of both e & me deduced based on the KK theory (or Einstein’s field equa-
tions) were not consistent with the well-established experimental values then 
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(see comments in [4]); (iii) The KK theory (and Einstein unified field equations, 
[3]) did not contain any of the nuclear forces; during that time there was lack of 
experimental data from accelerators and the corresponding concept in particle 
physics. 

Concerning the key difference between their theories and projection theory 
developed in this series, we need to note that in KK theory, as well as Einstein's 
5D metric, the proper time τ is not connected to the 4th space dimension varia-
ble. Therefore, the KK 5D is not homogeneous, neither is mass a result of space 
projection. 

3.2. Absence of Gravitational Singularity 

As analyzed in Section (2), the 1D space within the Poincare matter sphere is a 
set of two closed loops that includes the 4x  variable, one in each stellar hemis-
phere. This loop expression was employed by Einstein in his unified electrody-
namic and gravity equation, as a compactization of the 4x  variable. In his grav-
ity solution, he then further assumed that the loop can be reduced to a structure 
with zero measure, and ignored the 5D space-time domain external to the 
doughnut domain by simply changing it to a simple Maxwell 4D space-time 
without the 4x  variable. This definitely is an error, which would lead to singu-
larities for the gravity field both within the doughnut domain as well as outside 
it. It is such mathematical errors that led to the appearance of singularities in the 
unified theory, and the suggestion of the existence of black holes in the universe. 
When 4x  is carefully retained in the space-time structure, black holes do not 
appear in the theory (see Wheeler’s early work [25] and a recent paper on the 
classical solutions of Maxwell equations [26]). In fact, the mathematical/logical 
exclusion of the gravitation singularity based on simple classical physics can be 
realized by the following analysis. The important issue on the solutions of Max-
well equations in the 5D-4D boundary will be followed in the next section.  

Assuming a uniform mass distribution in a plane with the 2D void region 
bounded by or cτ< . Then the gravitation force f in the region or cτ<  must 
vanish. However, for the region  

20,or c f GM rτ ′> > = −  

where [ ]22π oM D r cτ′ = − , with D representing the 2D mass density. If oτ  va-
nishes, according to Einstein, then f diverges as r goes to 0.This f divergence 
disappears when 0ocτ > , or equivalently 4 0x > . From another angle, we 
would remark that energy flow must be conserved into the Maxwell 4D boun-
dary. Therefore the r of the Maxwell 4D as related to the r′  of that from the 5D, 
is scaled by 0.52r r′=  (see deduction leading to Equation (2.3.1b)). In quan-
tum phase space representation, a spinor pair along r is an entangled state, and 
carries energy outward. It is precisely this physics that makes the doughnut core 
center of a galaxy, which remains in 5D, is not a black hole, since energy is ra-
diating outward, not flowing into the center as suggested by some [27]. This is 
an absolutely clear reason against Einstein’s compacting 4x .. If we follow the 
analysis of the metric equation pertaining to the 5D manifold and the 5D-4D 
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boundary as above, the 4D Maxwell space-time does not allow outward flow of e, 
-e massless spinor pairs that carry outward energy of 2 hν. Then at the origin of 
the center of the universe, or the center of the galaxy, if a black hole should exist 
according to those theories, mathematical logic does not indicate there is any 
outward flow of energy and then becomes a black hole, as we transform 4D Lo-
rentz space-time with mass into the covariant Riemannian curvature space-time 
to obtain the gravity equation, since energy density seeks for uniformity. On the 
contrary, according to the 5D projection picture, energy seeks for uniformity by 
flowing outward to fill the universe at all t. Hence the singularity in the gravity 
field solution due to mass distribution does not appear. The above statement is 
both mathematical precise as well as philosophical subtle. Recently, stars of huge 
masses have been detected by telescopes expositions. For examples, R13601 (M = 
365 M



), BAT99-98 (226 M


), R136c (230 M


), R136a2 (195 M


), Melnick42 
(189 M



), WR101c (150 M


), LBV 1806-20 (130 to 200 M


) plus a long list 
have been detected with masses > 100 solar mass (see e.g., [6], [7], [8]). If gravi-
tational singularity were to exist, they would long have become black holes al-
ready. Such undebatable experimental results give the strongest support to our 
proof sketched above. 

Moreover, the finding of a 125 GeV  two photon emission, together with 
neutrino obtained from the p-p collision experiment [28] and associated theo-
retical explanation [29] indicates that the generation of the lepton is accompa-
nied by (neutral) neutrino. More precisely, it is shown in [29] that the spinor 
solution contains an oscillating phase, and the 125 GeV  resonance is shown to 
be predictable, without the necessity to introduce a Higgs vacuum. Since no an-
ti-neutrinos have been detected so far, such negative result supports the notion 
that there is no anti-matter universe, and hence no black hole. Recently, a small 
distinctive X-ray signal (Photon~ 3.5 keV ) from the Milky Way was observed by 
the Nasa’s chamber satellite and the result has been interpreted as indicative of 
the existence of dark matter [30]. According to the 5D theory, Perelman entropy 
mapping process on the creation of stellar objects necessarily will lead to a short 
period of gamma radiation (similar to gamma radiation out of a galactic center 
discussed in Section (2.2)) as the object becomes a Poincare sphere. That is our 
model of the birth of a pulsar [2]. Therefore we do not agree to the interpretation 
of [30] because there are many pulsars in the region of the signal source. 

Having analyzed the concrete role played by the space variable 4x  in the 
conformal mapping, we can now proceed to derive the expression of the intrin-
sic dipolar magnetic fields appearing in stellar objects. 

4. Explicit Expression of the Intrinsic Dipole Magnetic  
Field Generated by Current with Quantum  
Signature at the 5D-4D Interphase 

4.1. Quantum Current Density of the Ring Current  
in the Void Boundary 

During the deduction of the three laws of angular momentum in [2], we have 
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not included those spinor pairs circulating out of phase. They do not produce a 
net angular momentum, but they produce a net electric current generated by the 
(e, p; -e, -p) massless spinor pairs within the 3 1D D⊗  time frozen void. 

As these charges build up a stationary/perpetual current state, the wave func-
tion of a spinor pair represented by the symbol ( ) ( ), ; , , ; ,S e p x t S e p x t∗ ∗ − −  
can be written as a plane wave state, 

( ) ( ) [ ]1 expor A i tψ ω= −k.x                  (4.1.1) 

where oA  is a normalization constant, the dimension of which will be analyzed 
later in this section. The wave function squared gives the probability density. If 
there are N numbers of charges e, the charge density is defined simply as

2
e Neζ ψ= . One can get the current density J (unit to be determined by oA  in 

(4.1.1)) via eJ tζ= ∂ ∂ : 
2J N e tψ= ∂ ∂                      (4.1.2) 

Now for non-relativistic particle with mass m moving along a circular orbit so 
that differentiation with respect to space variable is one-dimensional, we use the 
symbol ( )2πp mv hk= =  to represent the momentum &v is the velocity. It is 
elementary to show that  

( ) [ ] ( ){ }
( )

2

2

2

2 grad grad 

2π 1

2π
o

o

J e t e m ih

pev mv A

ev A

ψ ψ ψ ψ ψ∗ ∗= ∂ ∂ = − −  

 =     
=

      (4.1.3) 

Since the spinor e and spinor–e are two distinguishable particles, in carrying 
the thermal averaging process later on, we need to calculate the number N for 
either type of spinors. The electric current, however, is doubled, because they are 
circulating out of phase in the classical sense. Therefore the overall current den-
sity in one ring is finally 

2
2 4π oJ ve N A=                      (4.1.4a) 

We have left our sign convention in deciding the magnetic polarity, as the sign 
convention is very simple. We have fixed the “classical current” to be one di-
mensional, 2

oA l= , which is the track length of the current; namely, 2π ol Rη=  
and , where oR  is the void radius as defined in [2], whereas ( )1 68 1η = < , is a 
proportionality constant which is determined in Section (2). There is another 
factor b to be multiplied to the current ring length to include the effects of pres-
ence of various elements (hydrogen, helium) at the 5D-4D boundary. This factor 
will be specified if we apply our theory to find the magnetic field of specific pla-
net or star with fuel heavier than hydrogen. Therefore, before such specification, 

( )2 4π 2 Amperπ eoJ veN R mdη=             (4.1.4b) 

Remark again that the subscript 2 signifies that the 1D space structure has an 
entangled structure of two loops, composed of both e & -e spinors as explained 
in Section (2). Note that 2ψ  is the probability of finding the spinor pair in a 
certain region of space. Within the space allowed to be traveled by the plane 
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wave expressed in (4.1.1), the normalization of constant should take on a value 
such that 2 1ψ =  in this “normalized space”. If a material wire is present, the 
current can only circulate around this wire and 2

oA  in (4.1.1) is the one D 
length l as stated above. But in quantum mechanics, a classical 1D current has a 
spread in space variable due to the uncertainty principle so that 2

oA l= 2πd rd=  
where d is the spatial spread. The dimension of J is then ampere per meter, 
which is a physically realizable and a calculable quantity. 

The electrodynamics of charged massless particles moving with velocity c is 
not at all explored much within the frame work of Maxwell equations and the 
frame work of quantum field theory. An insightful investigation of the exact so-
lution of such particles in Maxwell equations has recently been published [26]. 
Explicit expressions for the vector potential and the electromagnetic field were 
derived under the following conditions of motion of the charged massless par-
ticles: (a) linear, (b) accelerated unbounded, (c) accelerated bounded. However, 
unless the model charge is attached to a string (as in string theory), usually there 
are singularities in those solutions. 

First, we would emphasize that we proposed that the existence of the massless 
charged spinors are represented by solution(s) of the 5D metric, rather than the 
4D Maxwell potentials generated from classical massless charged particle. In fact, 
if the spinor solution is obtained from the massless 4D Dirac equation, with the 
introduction of charge, such solution must be coupled to the Maxwell potentials, 
and the coupled equation(s) cannot satisfy the Lorentz gauge transformation 
without a string attachment. Yet when this hypothetical string is reduced to zero, 
singularities appear in the Maxwell solutions. 

It might be simple to analyze the gauge invariance property for charged mass-
less spinor in 4D by applying the projection of the metric from 4D onto 3D (as 
explained in [1]). In this case the Lorentz gauge is changed to the Chern-Simons 
gauge [31]. To investigate whether a massless spinor moving with c can exist in 
the 4D metric, let us consider the hydrogen system, where the electron is as-
sumed to be massless. This system has a Semion ground state [32] with binding 
energy equal to the reduced mass, which is then zero, implying such a ground 
state does not exist. In general, massless charged spinors cannot be bounded in 
4D Maxwell space-time. The solutions found in [26] by attaching a string, is 
precisely found by addition of the 4th space dimension (making the system a 5D 
manifold), so that a finite confinement can occur in the (added) 4th space di-
mension. Hence if we extend the Maxwell 4D to 4 1D D⊗ , then a confined 
state of such massless charged spinors within the Maxwell 4D, due to the entan-
gled representation between the 1D string and the 4D manifold, could exist. One 
can proceed and follow step by step, with the same arguments in [26] but by in-
troducing a finite string as the 5th dimension, then we expect none of the singu-
larities would appear if only the scalar potential is involved. On the other hand, 
if the stated extra dimension also includes the vector potentials, then in place of 
the vanished Coulomb potential (a problem stated by the authors in that stated 
paper), a magnetic monopole potential is then created. This monopole can be 
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removed only if we impose that such massless charged spinors can only exist in 
charge neutral pairs, and not in single entity. In fact, this is one reason for us to 
hypothesize that one system of the charge pairs is the origin of the angular mo-
mentum of the universe [2], and another system of charged pairs is proposed in 
this paper to be the origin of the magnetic field in stellar, perhaps also in other 
objects. We would endorse particular credit to that paper for laying stone for re-
searchers to stand on and think deeply about the inclusion of charge massless 
entities traveling with c in Maxwell’s equations. Under the updated research in 
quantum electrodynamics, we must admit that we cannot offer analytical solu-
tion to the magnetic field generated by the charged current composed by oppo-
sitely circulating spinors pairs strictly under the regime of quantum field theory. 
We could proceed with our analysis, however, based on the fact that the boun-
dary condition of the 5D manifold is the 4D Lorentz space. We propose that 
Maxwell’s equations are satisfied at the 5D-4D interphase. We therefore propose 
to generalize the solution of charged current J2 in (4.1.4b) to the relativistic case 
by simply replacing v by c, obtaining an estimation of the current density: 

( )2 4π 2π oJ ceN R dη=                   (4.1.5) 

And the current over the ring is 

2 4πI ce N d=                      (4.1.6) 

In passing, we would note that even if there were e & -e charges circulating in 
opposite directions along the 1D classical current ring, the chance of annihila-
tion is non-zero. In general, the interaction cross-section of massive particles is 
larger than those of massless particles, such as photons. In fact, the strength of 
interaction of photons with massive particles depends strongly on the masses of 
the interacting particles. The cross-section area of a charge-neutral neutrino is 
well known to be extremely small, so that equipment to detect neutrinos is set in 
gold mine deep down underground. It has been estimated that there is only an 
upper limit on the mass of neutrino µm , but it has not been verified that µm  is 
zero. As in our model, the spinors are massless, we assume that their interaction 
cross-sections are extremely small, so that the annihilation rate of the oppositely 
circulating charges is practically zero, or extremely small over the life time of an 
stellar object. Moreover, we would remark that the interaction cross-section in-
creases as the wavelengths of the spinor pairs are large; namely, those spinors 
with very low energy has a larger chance of annihilation. At temperature close to 
0 K, the Fermi particles are confined mainly in the energy range of 0 to fE . The 
result of [2] demonstrates that those spinor particles contributing to the total 
angular momentum have energies fE∼  even under the Second Law condition 

( )910  KT < .  

4.2. Simple Representation of the Magnetic Dipolar Field  
Generated by the Classical Ring Current Model with  
Quantum Signature Incorporated 

A charge current generates magnetic field in space. The Biot-Savart Law ex-
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presses the magnetic field in terms of the magnitude, spatial length, direction, 
and the distance from a reference point (such as the center of a ring current) of a 
current. According to this law, the magnetic induction field generated by a 
charge current density J at the space point x is  

( ) ( ) ( ) [ ]{ }3 34π do l lµ ′ ′ ′ ′= − −∫B x J x x x x x x        (4.2.1a) 

Using elementary vector analysis, 
( ) ( ) ( ) } 34π curl do l lµ ′ ′ ′= −∫B x J x x x x         (4.2.1b) 

When the distance between the coordinate origin and the point of observation 
is much greater the radius of the model ring current, i.e. r r′

 in (4.2.1b),  

( ) [ ]2 3
22 cosr o oB I R rµ η θ=              (4.2.2a) 

( ) [ ]2 3
24 sino oB I R rθ µ η θ=              (4.2.2b) 

Here 2I  is the current in units of Ampere, given by expression (4.1.6) above 
and θ is the polar angle in the usual polar coordinate system. We need to find 
the number of spinors in the loop, which is 

( ) ( )
( ) ( ) { }up2 2 2

low 0

2 2 2 24π d d

4π d 2π d 2π d exp 1

s

fh

N h r pg F

c gs r r E E E E E
∞ ∗ ∗   ′

  ′′

′= ⋅ ⋅ − +  

′=  

∫ ∫

∫
 (4.2.3a) 

where sg  is the spin degeneracy, energy E pc= , F is the Fermi-Dirac distri-

bution, & ( ) ( ) ( ), , low , upf f o oE E kT E E kT R R dη η∗ ∗= = = = + . Since  
up

0low
d 2π 2π  r r R dη′ ′⋅ =∫ , and  

the statistically averaged energy is ( )0
d exp 1fI E E E E

∞ ∗ ∗  = ⋅ − + ∫ , so that 
from (4.2.3a) 

3 2 216π s oN g d R I h cη  =   ; <dimension is 1>      (4.2.3b) 

From (4.1.6), 

[ ]{ }3 2 2
2

4 2

4π 4π 16π

64π

s o

s o

I ce N d ce d g d R I h c

g e R I h c

η

η

 = =  

 =  
     (4.2.4) 

In view of the derivation in Appendix A, we obtain 

( ) ( ){ }1 4 1 4 1 43 4 5 3 2
0 0

640π 1 d . exp 1fR h c E E E E MR P
∞ ∗ ∗     = − +     ∫  

(4.2.5) 

Then from (4.2.2b), the magnetic filed measured at the equator of the matter 
star ( )π 2θ =  becomes 

( ) ( ) [ ]

{ } ( ){ }
( ){ }

3 44 3 3 2 3 4

2 3

5
0

3 4 3 43 2

2

0

64π 640π

  1 d . e

4

xp 1

o o

f

e R h c h c

E E E E M

B eq I

R P

R

I

Rµ η

µ η

∞ ∗ ∗

  =    

   +

=

−   ∫

  (4.2.6) 

This equation may be called the Law of Intrinsic Dipole Magnetic Field for 
Stellar Objects.  
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Before we proceed to obtain numerical values to illustrate the laws we discover 
related to the origin of the intrinsic dipolar magnetic field of stellar objects, we 
need to find explicit expression of I . The derivation of the analytical form of 
this integral is given in Appendix B: 

( )
( ) ( ) ( ) ( ){ }

0

2 12 2 2 2
1 1

d . exp 1

1 2 π 12 1 1

f

n n nEf
f n n

I E E E E

kT E n n e

∞ ∗ ∗

+∞ ∞∗ − ∗
= =

  = − + 

 = + + − + − 

∫

∑ ∑
 (4.2.7) 

Through computer program, using Simpson’s rule of integration, the integral 
5 2 is 1.7004 10  JI ×  at 710  KT = . The approximate form in Equation (4.2.7) 

is 5 21.70119 10  J× . So the approximation is very good for our estimation. Mul-
tiplied the area (as calculated via Simpson’s rule) by ( )2kT , the energy squared 
of spinors as weighted by the Fermi distribution =  

( )223 7 2 27 21.38 10  J 3.2382 10  J− + −× = × . At 910  KT = , integration using Simp-
son’s rule, is 18.643. Multiplied 18.643 by ( )2kT , the energy squared of spinors 
as weighted by the Fermi distribution = 27 23.55 10  J−× , not much different from 
the case with 710  KT = . At 1110  KT = , integration via Simpson’s rule, is 
0.86332. The energy of spinors as weighted by the Fermi distribution  

24 21.6441 10  J−= × , which is over two orders of magnitude higher than the case 
with 910  KT = . Since the integral is directly proportional to the magnetic field, 
it means that there must be a sudden change in the integral I  over 

910  KT ∼ , similar to the Laws reported in [2]. 
We now plot the I versus T graph, since 130.805 10fE −= ×  Joule is a univer-

sal constant, considering it as the rest mass of the lightest lepton created. Figure 
1 shows such a graph, indicating clearly that there is a rather sharp transition, in 
line with our numerical analysis just stated. The graph representing Equation 
(4.2.7) is composed of the green straight line, and the red horizontal line, plus 
the blue transition curve. In fact, let us consider the situation at very high tem-
perature  

Such that ( ) 1f fE E kT∗ =  . Take 1110  KT = , 0.05833fE∗ = , the two 
summations in (4.2.7) cancel, so that I  is approximated by 

( ) ( )2 2 21 2 π 12fI kT E∗   = +              (4.2.8a) 

For even greater temperature such as 14  KT ,  

( )2 2π 12I kT   =                   (4.2.8b) 

to good approximation. The straight green line in Figure 1 with a constant posi-
tive slope represents such a line. 

On the other hand, if the temperature is relatively low, such that 1fE∗
 , the 

integral in (4.2.7) takes on a constant value of  

( ) ( ) ( )2 2 2 27 21 2 1 2 3.24 10  Jf fI kT E E∗ − = = = ×         (4.2.9) 

In Figure 1, the integral in this region is represented approximately by a red-
horizontal line. The intersection of the above two straight lines cross at the  
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Figure 1. The integrand, as depicted in expression (4.2.7), is a function of temperature T 
(K). The straight green line with a constant positive slope represents the approximate so-
lution given by Equation (4.2.8b). The red horizontal line represents the approximate so-
lution indicated by Equation (4.2.9). The two straight lines intersect at. T = 3.2 × 109 K. 
We observe that the stated approximated solutions in the “low/cold” and “high/hot” 
temperature ranges are very good. 
 
temperature 93.2 10  KcT = × . This is the transition temperature, which is > 
Bethe temperature of fusion. 

We would emphasize that integral I  is not the only function that could be 
T-dependent in calculating magnetic field. In Equation (4.2.6), 

( )3
0

1 d . exp 1fE E E E
∞ ∗ ∗ − + ∫  

can also be separated into two regions in temperature. Under the First Law of 
the angular momentum, i.e. fkT E , 

( ) ( )( )43 4
0

1 d . exp π1 7 1920fE E E E kT
∞ ∗ ∗ ≈− + ∫      (4.2.10) 

In view of Equations (4.2.8b) & (4.2.10), we obtain the Law of Intrinsic Di-
pole Magnetic Field for Hot Stars below: 

( ) [ ] ( ){ }
[ ] ( )

3 4 3 2 3
0

3 4 3 2constant 

constant 1 1 d . exp 1

1 1

fB eq x M P R

x M P

I E

R kT

E E E
∞ ∗ ∗

 =   

 = − +   



∫
 (4.2.11) 

As P&R are dependent implicitly on T, when T is large, P is small, and one has 
to carry out detailed numerical analysis before one can learn how B(eq) varies 
with T in realistic samples. Moreover, all the equations for B(eq) hold under the 
condition of oR R . In case the matter shell is thin, a more complicated pro-
cedure is needed to study the angular momentum (and hence B) as demonstrat-
ed in [2] on the analysis of Pulsar angular momentum. Due to limitation in 
space, we shall not study stars at very high temperature in this paper as it will be  
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equally complicated. Here we want to emphasize that ( )3
0

d . exp 1fE E E E
∞ ∗ ∗ − + ∫   

can be separated into two regions in T. At small T and large T, the asymptotic 
lines are respectively two straight lines (one horizontal, and one with positive 
slope) intersecting at cT ≈  several times of 910  K , as demonstrated in [2]. The 
above integral is in the denominator of (4.2.11). The analysis of the property of 

I  above, which is in the numerator, together with the result of [2] tells us  

right away that ( ){ }3
0

1 d . exp 1fE E E EI
∞ ∗ ∗ − + ∫  is a constant for a wide  

cool region. Inspection of (4.2.11) reveals that therefore B(eq) depends explicitly 
only on the mechanical variables in front of the quotient of the state two inte-
grals. This is a very crucial aspect of our discovery. 

Under the regime of the Second Law of angular momentum, we present in 
Appendix B, the approximate expression of statistically weighted over 3E : 

( ) ( ) 43
0

d . exp 1 41f fE E EE E
∞ ∗ ∗ − + ≈ ∫  

and Equation (4.2.9) already gives the approximate expression for the integral 
( ) 21 2 fI E= . The equatorial magnetic field as depicted in (4.2.6) becomes 

( ) { } ( ){ }
( ){ }{ } { }

[ ]

3 4
4 3 2 3

3 4 3 43 4 5 2 2 3

3 43 3

0 0

2

642π 1 d . exp

  640π 2

1

f

fB eq e h c E E E E

h c MR P E R

M P R

µ η

η

∞ ∗ ∗

 
 

= Γ

  = − +   ∫

 (4.2.12) 

where 

( ){ } ( ){ }
( ){ }{ }

3 4
4 2 3

0

9 4 3 3 4 15 4 2

4 43 3 33

62π 1 d . exp 1

  640 π

1.08 10  J m s  Tesla

2

o f f

f

e h cE E E E E

h c E

µ

−−

∞ ∗ ∗

−=



×

Γ = − + ∫
 (4.2.13) 

Recalling that ( )33 61 68 3.18033 10η −= = × . For convenience of computation, 

( ) [ ]3 49 3 2 3 4 3 3 43.43476 10  J m s  TeslaB eq M P R− − −= ×   (4.2.14) 

We may call Equation (4.2.12) as the Law of Intrinsic Dipole Magnetic Field 
for Cool Stellar Objects. This equation will be used throughout the numerical 
analysis in this paper. 

We have deduced the magnetic expression understand the Second Law condi-
tion because we are interested in finding the dipole field when the matter shell 
has been formed and the temperature of the void-matter boundary is not too 
high ( )910  KT <  in this paper. The huge magnetic field generated by quark 
current has been treated qualitatively in [2]. The intrinsic dipole field of pulsars 
where T is very high, will be treated elsewhere. It is important to note that ac-
cording our theory, the dipole field intensity can be calculated if we know 
the “mechanical variables” (M, R, P). The very large magnetic field of stars 
near their end stage of evolution will be discussed in a later section. 
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5. On the Plausible Origin of Huge Non-Dipolar Strong  
Magnetic Fields of Many Stars, Including the  
Old/Dying Ones 

It has been shown that the Maxwell and Chern-Simon gauge theories are 
coupled/compatible and the charge flux pinning phenomenon can be realized by 
the Maxwell-Chern-Simons gauge theory in a 2D system [31] [32] [33]. 

Now the confinement of a 3D hydrogen to a 2D state is supported by the fact 
that exact analytical solutions for 2D hydrogen can be derived for the non-relati- 
vistic and the relativistic H-atom model [34] [35]. From the view point of the 
Bohr’s model, the exact solutions for the relativistic ground state of the 2D-hy- 
drogen atom gives a binding energy as large as the reduced mass of the compo-
site system [34]. The consequence is that the binding energy plus the rest energy 
of the system can become zero if the positive charge (the center of attraction) is 
much more massive than the electron. In other words, a 2D or collapsed hydro-
gen atom hydrogen atom can approach a Semion state, with magnetic flux at-
tached to every electron [33]. 

When a star has a large mass (such as the sun) and a small radius (such as the 
terrestrial radius), a large gravitation gradient exists along the radial direction, 
confining the motion of electrons from a 3D space to a 2 1D D⊗  space struc-
ture, considering the stellar surface to be a plane in a local region. 

From the symmetry point of view, we say that the 3D space homogeneity is 
broken into 2 1D D⊗ , with gravity field along the 1D. It is this broken space 
homogeneity that leads to the atomic binding from Bohr to Chern-Simons hy-
drogen solution. In the relativistic limit, the Chern-Simons solution is given by 
the Semion state, where the electron collapses into the proton environment, 
bringing with it the pinned magnetic flux. Since the Semion state is applicable to 
all elements, and not just for the hydrogen, massive neutral objects including 
atomic structures, can be considered in such 2 1D D⊗  space manifold near the 
stellar surface. The atomic Coulomb binding between a nucleus and its outer-
most electron is no longer described by the homogeneous Coulomb potential 
alone, but must also include a difference in energy between the gravitation po-
tential at the nucleus gn n nP GMm r= − , and that of the electron ge e eP GMm r= − ; 
where nm  & em  are respectively the nucleus& electron masses; &n er r  are the 
(radial) distances between the center of the star to the nucleus and electron re-
spectively. From the 5D theory &n er r  are both greater than void radius oR . 

Setting e nr r h= + , 

( ){ }
{ } ( ) ( ){ }2 21

gn ge n n e n

n n e n e n n n

P P GM m r m r h

m GM r m m m m h r h r

− = − + +

= − − + −
     (5.1) 

via simple expansion of ( )1 nr h+ . Now 45.5 10e nm m −= ×  if the nucleus is 
proton. The ratio nh r  is of different scale and must be much smaller than that. 
Therefore 

( ) ( ) 2 2
e n n nm m h r h r . 
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Hence for non- zero h values, the gravitational potential difference gn geP P−  
is mainly modified by the (positive)factor ( ) ( )e n nm m h r  and has a bigger abso-
lute value; this modification effect is larger for larger h(which is atomic size), so 
far as nh r , a condition always satisfied . The physical consequence is that if 
the gravitation potential is mainly on the radial direction, the electrons tend to 
escape from the stellar surface, and away from the nucleus. Let us include the ef-
fect of the binding energy of a Semion state and Coulomb potential also. Now 
the exact binding energy of the Semion ground state energy is 2

o eE m c=  [35], 
which is equal to–(kinetic energy + Coulombic potential energy+ gP ).Here the 
relativistic kinetic energy is { }2. 2 2. . 1 1 1eK E m c v c = − −  , and the Coulombic 
potential energy is 2

neV e r= − , where ner  is the distance between the nucleus 
and the associated electron. In other words, { }2. 2 21 1g eV P m c v c + = −  . On 
the stellar surface, gP  is small compared to V in magnitude. We can say that 
effectively the Coulomb potential under (Semionic) gauge constrain gives rise to 
the relativistic electron mass. Due to pressure fluctuation, and the fact that sur-
face temperature is at least several thousand K, some of the Semions readily have 
enough kinetic energy to escape the Coulombic &gravitation pull, and the 
pinned magnetic flux is released, together with relativistic electrons. 

Let us take some concrete examples. It is well-known that magnetic storms are 
found to be periodic on the solar surface. We anticipate that the solar motion 
participates in the occurrence of periodicity. Thus if the gravitational potential 
difference (as a matter pressure) is the cause of Semion states formation, such 
states are likely to be formed slightly below the photosphere. Cyclic plasma tur-
bulence could bring the Semion states to the surface, and the 2 1D D⊗  struc-
ture could change back to a 3D structure, releasing magnetic flux in a cyclic 
manner, as explained in [36]. The consequence is the occurrence of flares and 
radio wave storms (emitted by the maser effect of relativistic electrons via cyclo-
tron radiation). In fact, close to 100% circular polarized radio waves have been 
reported from Brown Dwarfs and the sun [37] [38] [39]. Based on the frequency 
of the emission, the magnetic field at the source is calculated, as will be discussed 
further in Section (7). 

We would note also that the star will be positively charged and would attract 
negatively charged particles with low kinetic energy. Note for small stars such as 
Magnetic White Dwarfs ( )mass 0.7 1.0M∼ −



, when gravity is strong enough 
to provide the necessary condition for Semion states to exist, but at relative 
higher temperature, Semions can escape, releasing huge magnetic field as stated. 
Electrons leave the star, leading to reduction of stellar mass. As the star further 
collapses, its gravity becomes far too strong for Semions to escape, and the sur-
face magnetic storms cease. Many White Dwarfs have masses between 
0.6 0.4M−



, showing irregular or weak magnetic field. We speculate that White 
Dwarfs could well be the “older stage” of Magnetic White Dwarfs which have 
larger masses. 

Let us “borrow” some result in condensed matter physics to estimate the 
magnitude of magnetic field generated by a group of Semions. The 2D number 



P. C. W. Fung, K. W. Wong 
 

692 

density of composite fermion system σ is related to the magnetic field B by (see 
e.g. [31]) 

onBσ = Φ                           (5.2) 

where n is the “level” of quantum flux and oΦ  is the unit quantum flux given 
by h/e. We should note that the magnetic field is pinned in the Semion layer. We 
propose during the evolution, a star could go through first the change in matter 
density leading to a situation that would favor the formation of 2D Semion state 
near its surface as sketched above. 

Suppose for rough estimation, let us take a magnetic white dwarf WD0011134 
associated with the set of data ( )0.71 , 1.1M M R R= =

 

, giving mass density of 
9 3 30.753 10  kg m & 1.67 10  TeslaB× = ×  [40]. Whereas helium plus other 

heavier elements are formed near the matter center region, suppose there are 
still Semion layers whose total area amounts to the whole surface area of 24πR



, 
as an upper limit estimation. Recalling the diameter of a hydrogen atom is 120 
pm, mass of proton is 271.67 10  kg−× , the total number of hypothetical Semions 
there is  

( ){ }29 3 6 10 27

40

0.753 10  kg m 4π 1.1 6.955 10  m 1.2 10  m 1.67 10  kg

4.0 10

csn − −= × × × × × × ×

= ×
  (5.3) 

taking the level n = 1 as the upper limit of the magnetic field B estimation. The 
2D density of Semion, from Equation (5.2), is therefore  

( )
{ }

26

9 3 10 27

25 2

4π 1.1 6.955 10  m

0.753 10  kg m 1.2 10  m 1.67 10  kg

5.41 10  m

CSnσ

− −

−

 = × ×  

= × × × ×

= ×

       (5.4) 

If Semions in the whole surface layer have enough energy to overcome gravi-
tational and Coulomb attractions, the average magnetic field (which is radial in 
directions) over the whole stellar surface, being hypothetical released is then 

25 2 34 19
s

11

5.41 10 m 6.626 10 J 1.6 10 Coulomb

2.24 10  Tesla
oB h eσ σ − − −

−  = Φ = = × × × × 
= ×

  (5.5) 

It is known that the magnetic fields of Magnetic White Dwarfs are non-dipo- 
lar and distributed irregularly [40]. Thus to produce a magnetic field of 

31.67 10  Tesla×  in certain surface areas for the particular MWD as observed, it 
is necessary that only a small region of the hypothetical Semion layer with area 

810−>  of the stellar surface forms the Semion state. When those Semions cov-
ering only 810−  of the surface area change from 2D back to 3D structure, a 
magnetic field ~ 32 10  Tesla×  will be released. Note that it is the flux that can 
be taken as the “absolute measure”, because when the magnetic flux lines are re-
leased and spread out to a certain area A, say, the magnetic field is flux/A. 
Without more observable information, we cannot compare the theoretical result 
and the detected magnitude of the sporadic magnetic field. The above rough or-
der of magnitude estimation points to the fact that it is feasible that pressure 
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wave oscillations in our model could explain qualitatively the huge magnetic 
field detected in MWD and other old stars. 

Note that this final stage of the star still possess the 3 1D D⊗  void center, 
which might or might not have enough massless charged spinors to maintain a 
self-rotation or dipolar magnetic field. In fact, according to our theory, the void 
radius ( )0.25 0.5constantoR M P R=  for cool stars. As the radius of the stars be-
comes smaller, even though the mass can increase, the increase in P due to loss 
of energy from the void as the star cools down, can cause a reduction in

. ,  ,  oR M R P  of stars can vary in very complicated ways as shown by many ex-
amples in Section (6) later. In the limit when Ro approaches zero, the explicit 
expression of B (equatorial) shows that it becomes zero, together with oR  too— 
this is how a star “dies” in our theory. 

6. Analysis of the Variation of the Theoretically Derived  
Dipole Magnetic Field with Respect to Change  
of the Basic Features of a Star 

6.1. Introduction with a Set of Data of the Halo  
Stars in the Orion Nebula 

We have derived the equatorial magnetic surface field in terms of the basic/“raw” 
data set (M, R, P): 

( ) ( )3 4 3 2ConstantB eq M P R=               (6.1.1) 

We define the set of variables (M, R, P) as the basics/raw data variables. In 
some stars, all the three variables can be measured, but the number of such stars 
is small, and the accuracy of measurement is left with some high degree of un-
certainty. In some star groups, the radius can only be theoretically deduced; a 
typical example is the application of the Hamada-Salpeter equation [41] to ob-
tain the radii of (cool) dwarf stars with values of mass as input data. The above 
expression is valid only when the angular momentum is equal to that of a solid 
sphere with the same mass density, as a zero-order approximation. In stars, the 
matter sphere is built of magnetized plasma while fusion processes proceed to 
build up heavier elements. Eventually, we have neutron stars as briefly sketched 
in [2]. Essentially, therefore the three basic variables are inter-connected. We 
will leave the more detailed discussion on the laws we discover in the next sec-
tion. As the rotation periods of pulsars have been observed to be slowed down 
continuously, and such an aspect is intuitively true from the consideration of 
energy conservation, obviously the B-P relation of different star groups would 
bring us useful information in stellar structure and stellar evolution. Therefore, 
we focus on the variation of the equatorial/polar field with respect to changing 
period of rotation first. We remark that the normalized void radius oR R  is a 
function of mass density, as analyzed in our previous paper [2]. In this paper, we 
have found theoretically that the surface dipole field is proportional to ( )3

oR R . 
Therefore, we have to take data for stars within a relatively close range of density 
as a subgroup in our investigation. We will introduce the methodology of our 
analysis as we follow a number of star groups.  
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So we begin with the pre-main –sequence or hollow stars of the Orion Nebula. 
Data of these stars in the Milky Way are taken from [42]. Here the mass M M



, 
radius R R



, period of rotation P(days)are “basic data”. Only stars with densi-
ty D greater than 347.5 kg m  are included. This number is arbitrary, but the 
choice is based on the idea that we analyze objects with a rather concrete spheri-
cal-like structure. Inclusion of the lower density ones does not affect the result. 
The surface equatorial magnetic field B (eq, theory, Gauss) has been derived in 
Section (4) to be expressible as a function of the basic parameters only. Under 
the condition of the Second Law of angular momentum ( )cT T  with Fermi 
energy 0.5 MeVfE =  (rest mass of electron), we calculate this B, the void ra-
dius Ro, the magnetic parameter 3BR , the angular momentum Iω , density and 
enter these values for each star in Table 1. 

Figure 2(a) and Figure 2(b) show the B(equatorial)-P graphs for the density 
ranges of 48 - 100, and 100 - 160 3kg m  respectively. The average den- 
 

 
(a) 

 
(b) 

Figure 2. (a) The surface equatorial magnetic field B (eq, Gauss) vs the period of rota-
tion P(s) for stars in the Orion of the Milky Way with mass density between about 48 
to 100 kg/m3. The one off star is reported to have a radius of 3.23 solar radii, and con-
sider that is out of the group. The correlation is over 0.9 if we take off this “off-line” 
sample. We keep it there to show that when the density is too low, the B-P relation is 
deviated from linear in the log-log plot. The maximum of horizontal axis is 106 s. See 
data in Table 1; (b) The surface equatorial magnetic field B(eq, Gauss) vs the period of 
rotation P(s) for stars in the Orion of the Milky Way with mass density between about 
100 to 160 kg/m3, using data in Table 1. The correlation is good and power index is 
−0.69. Though the correlation is good, further analysis as shown in the text indicates 
that the comparison between theory and experimental data is not simple, and several 
steps are needed, and the methodology becomes clearer as we go through the other 
sub-sections following. 
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Table 1. Data of the pre-main-sequence stars in the Orion Nebula in the Milky Way are taken from [42]. Here the mass M M


, 

radius R R


, period of rotation P(days)are “basic data”. Stars with density D greater than 347.5 kg m  are included. This 
number is arbitrary, but the choice is based on the idea that we analyze objects with a rather concrete spherical-like structure. In-
clusion of the lower density ones does not affect the result. The surface equatorial magnetic field B (eq, theory, Gauss) has been 
derived in Section (5) to be expressible as a function of the basic parameters only. Under the condition of the Second Law of an-

gular momentum ( )T Tc  with Fermi energy 0.5 MeVfE =  (rest mass of electron), we calculate this B, the void radius oR , 

the magnetic parameter 3BR , the angular momentum Iω , density and enter these values for each star in the table. 

 
Orion  
stars 

M M


 R R


 ( ) 510P s ×  R3 (m3) ( )3 3GaussBR m−  Iω  
B (eq, theory, 

Gauss) ( )3kg mD  ( )oR m  

1 1171 0.26 1.98 6.3936 2.611 × 1027 1.497 × 1027 3.857 × 1042 0.5733 4.798 × 101 1.151 × 106 

2 1219 0.40 1.96 1.1319 2.530 × 1027 7.455 × 1027 3.285 × 1043 2.9430 7.502 × 101 1.967 × 106 

3 1297 1.38 1.90 5.7280 2.308 × 1027 5.347 × 1027 2.104 × 1043 2.3170 2.847 × 102 1.761 × 106 

4 1325 0.20 1.30 3.8360 7.391 × 1026 9.594 × 1026 2.132 × 1042 1.2980 1.286 × 102 9.930 × 105 

5 1354 0.23 1.67 0.6912 1.567 × 1027 5.613 × 1027 2.245 × 1043 3.5820 6.973 × 101 1.789 × 106 

6 1368 0.23 1.35 2.3846 8.277 × 1026 1.612 × 1027 2.137 × 1042 1.9470 1.320 × 102 1.180 × 106 

7 1396 0.28 2.03 1.6589 2.814 × 1027 4.520 × 1027 1.683 × 1043 1.6060 4.727 × 101 1.665 × 106 

8 1428 0.17 1.31 1.0022 7.563 × 1026 2.352 × 1027 7.042 × 1042 3.1100 1.068 × 102 1.339 × 106 

9 1440 0.27 1.47 1.1750 1.069 × 1027 3.512 × 1027 1.201 × 1043 3.2860 1.200 × 102 1.530 × 106 

10 1453 0.23 1.66 1.1750 1.539 × 1027 3.740 × 1027 1.305 × 1043 2.4300 7.100 × 101 1.562 × 106 

11 1465 0.27 1.85 1.1059 2.130 × 1027 5.176 × 1027 2.021 × 1043 2.4300 6.000 × 101 1.742 × 106 

12 1485 0.23 1.44 5.4778 1.005 × 1027 9.513 × 1026 2.106 × 1042 0.9470 1.088 × 102 0.990 × 106 

13 1500 0.24 1.90 7.6205 2.308 × 1027 1.163 × 1027 2.750 × 1042 0.5040 4.940 × 101 1.058 × 106 

14 1501 0.29 1.74 7.5427 1.772 × 1027 1.183 × 1027 2.816 × 1042 0.6674 7.770 × 101 1.065 × 106 

15 1511 0.38 1.89 1.3306 2.271 × 1027 6.026 × 1027 1.240 × 1043 2.6530 7.948 × 101 1.832 × 106 

16 1522 0.35 2.09 6.2986 3.071 × 1027 2.053 × 1027 5.872 × 1042 0.6683 5.414 × 101 1.279 × 106 

17 1545 0.25 1.79 4.5965 1.930 × 1027 1.602 × 1027 4.216 × 1042 0.8300 6.155 × 101 1.178 × 106 

18 1566 0.23 1.57 6.0480 1.302 × 1027 1.006 × 1027 2.268 × 1042 0.7724 8.393 × 101 1.008 × 106 

19 1627 0.26 1.93 8.7264 2.419 × 1027 1.141 × 1027 2.685 × 1042 0.4719 5.107 × 101 1.052 × 106 

20 1753 0.16 3.23 3.6288 1.134 × 1028 3.315 × 1027 1.113 × 1043 0.2924 6.582 × 101 1.500 × 106 

21 1760 0.20 1.57 5.2963 1.302 × 1027 1.000 × 1027 2.252 × 1042 0.7680 7.298 × 101 1.007 × 106 

22 1805 0.30 2.03 4.5965 2.814 × 1027 2.217 × 1027 6.507 × 1042 0.7880 5.064 × 101 1.312 × 106 

23 1966 0.22 1.86 6.1430 2.165 × 1027 1.240 × 1027 3.000 × 1042 0.5730 4.828 × 101 1.081 × 106 

24 2037 0.21 1.73 1.8490 1.742 × 1027 2.643 × 1027 8.224 × 1042 1.5170 5.727 × 101 1.392 × 106 

25 2168 0.21 1.63 5.2877 1.457 × 1027 1.099 × 1027 2.550 × 1042 0.7540 6.847 × 101 1.039 × 106 

26 2246 0.33 1.63 8.1734 1.457 × 1027 1.113 × 1027 2.595 × 1042 0.7636 1.076 × 102 1.043 × 106 

27 2301 0.15 1.42 0.7344 9.633 × 1026 3.051 × 1027 9.964 × 1042 3.1676 7.398 × 101 1.460 × 106 

28 2425 0.13 1.44 1.4774 1.005 × 1027 1.655 × 1027 4.414 × 1042 1.6472 6.148 × 101 1.191 × 106 

29 2744 0.43 1.79 5.6419 1.930 × 1027 2.063 × 1027 5.910 × 1042 1.0689 1.059 × 102 1.281 × 106 

30 2784 0.22 1.26 3.4214 6.730 × 1026 1.072 × 1027 2.470 × 1042 1.5930 1.553 × 102 1.030 × 106 

31 2913 0.21 1.65 4.5014 1.511 × 1027 1.263 × 1027 3.073 × 1042 0.8356 6.601 × 101 1.088 × 106 
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32 2470 0.23 1.55 2.4278 1.253 × 1027 1.956 × 1027 5.506 × 1042 1.5613 8.722 × 101 1.259 × 106 

33 3014 1.13 1.74 6.7565 1.772 × 1027 3.562 × 1027 1.225 × 1043 2.0100 3.029 × 102 1.537 × 106 

34 3115 0.27 1.91 5.8147 2.344 × 1027 1.567 × 1027 4.098 × 1042 0.6686 5.472 × 101 1.169 × 106 

35 3142 0.23 1.62 7.4650 1.430 × 1027 9.001 × 1026 1.956 × 1042 0.6293 7.639 × 101 0.972 × 106 

36 3161 0.27 1.89 0.7258 2.271 × 1027 7.345 × 1027 3.215 × 1043 3.2344 5.647 × 101 1.957 × 106 

37 3189 0.30 1.54 6.0480 1.229 × 1027 1.158 × 1027 2.846 × 1042 0.9428 1.160 × 102 1.078 × 106 

38 3217 0.23 1.35 3.2314 8.277 × 1026 1.283 × 1027 3.138 × 1042 1.5500 1.320 × 102 1.094 × 106 

39 3314 0.20 1.42 4.5446 9.633 × 1026 9.652 × 1026 2.147 × 1042 1.0020 9.864 × 101 0.995 × 106 

40 3341 1.12 1.80 1.4256 1.962 × 1027 1.196 × 1028 6.158 × 1043 6.0970 2.712 × 102 2.302 × 106 

41 3406 0.54 2.03 2.4106 2.814 × 1027 5.589 × 1027 2.233 × 1043 1.9860 9.115 × 101 1.786 × 106 

42 3438 0.14 1.55 2.2032 1.253 × 1027 1.450 × 1027 3.693 × 1042 1.1572 5.309 × 101 1.139 × 106 

43 3613 0.22 1.87 0.9763 2.200 × 1027 4.965 × 1027 1.906 × 1043 2.2570 4.750 × 101 1.717 × 106 

45 3668 0.66 1.20 7.0675 5.813 × 1026 1.318 × 1027 3.253 × 1042 2.2670 5.394 × 102 1.104 × 106 

46 3672 0.30 1.27 6.4627 6.891 × 1026 8.497 × 1026 1.811 × 1042 1.2330 2.068 × 102 0.953 × 106 

47 3678 0.36 1.61 5.6419 1.404 × 1027 1.539 × 1027 4.001 × 1042 1.0965 1.218 × 102 1.162 × 106 

48 3756 0.60 1.76 4.2422 1.834 × 1027 3.197 × 1027 1.060 × 1043 1.7430 1.554 × 102 1.483 × 106 

 
sity of the stars in Figure 2(a) is very low, and we neglect the mathematical analysis. 
The B-P plot in Figure 2(b) for stars with density in the range of about 1.0 - 1.6 

3kg m  gives an expression 
3 0.699.9045 10B P−= ×                     (6.1.2) 

Substituting (6.1.2) into (6.1.1), we arrive at 
3 4 0.06 3 21 constantM P R    =    , 

Or  

log 12.5log 25.0 log constantP M R= − +           (6.1.3) 

Further analysis shows that there is no clear mathematical relation of the P-R plot, 
nor the P-M plot, using the raw data. In other words, we cannot compare the theo-
retical prediction and experimental relations for this group of stars. Such a result is 
to be expected, because they are halo stars and the theory assumes that the angular 
momentum expression to be represented by ( ) 24π 5 MR P . The average density of 
this pre-main sequence stars is one order smaller than the sun, which is a lump of 
plasma, and is several hundred times smaller than that of the earth. As we proceed to 
analyze different groups with greater density, the comparison between theory and 
raw data becomes valid. 

6.2. NGC 6819 Stars 

We proceed with another group of stars with larger density, since the magnitude of B 
is sensitive to density values. Parameters include mass M in units of solar mass M



, 
radius R (in units of solar radius R



), the period of rotation ( )P s  of 30 stars in 
NGC 6819 according to [43]. The masses are read approximately from the data 
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points of the ( )oP B V− −  graph of [43]. The radius is deduced according to 
the following equation: ( )0.9451.06R M M= ×



, for 1.66M M<


 as in refer-
ence [44]. The other variables are calculated and entered into Table 2, with the 
same setting of Table 1.  

 
Table 2. Some parameters of stars in NGC 6819. Parameters mass M in units of solar mass M



, radius R (in units of solar radius 

R


), period of rotation ( )P s  of 30 stars in NGC 6819 according to [43] and the deduced void radius oR , the equatorial surface 

magnetic field B(equatorial, Gauss) are calculated, under the condition of the Second Law ( )cT T  according to Section (5) of 

this paper. The Fermi energy of the spinorpairs is taken to be 0.5 MeVfE = . The masses are read approximately from the data 

points of the ( )o
P B V− −  graph of [43]. The radius is deduced according to the following equation: ( )0.9451.06R M M= ×



, for 

1.66M M<


, as in reference [44]. The magnetic parameter ( )3 3GaussBR m−  and the angular momentum ( )I J sω −  are also 

entered into the table. 

No. 
NGC 6819  

stars M/M☉ R(m) P(s) 
R3  

(1026m3) 
G-R3 (G-m3) Iω (J-s) 

B  
(eq, G) 

D  
(102 kg/m3) 

Ro(m) 

1 5,111,207 1.405 1.0166 × 109 4.568 × 105 10.507 4.33 × 1027 1.59 × 1043 4.123 6.19 1.64 × 106 
2 5,023,899 1.37 9.9267 × 108 4.156 × 105 9.7820 4.40 × 1027 1.62 × 1043 4.500 6.52 1.65 × 106 

3 5,023,760 1.355 9.8239 × 108 4.130 × 105 9.4810 4.32 × 1027 1.58 × 1043 4.556 6.79 1.64 × 106 

4 5,024,227 1.355 9.8239 × 108 4.370 × 105 9.4810 4.14 × 1027 1.52 × 1043 4.366 6.79 1.62 × 106 

5 5,024,122 1.3 9.4470 × 108 5.500 × 105 8.4300 3.19 × 1027 1.06 × 1043 3.781 7.33 1.48 × 106 

6 5,112,499 1.28 9.3093 × 108 3.840 × 105 8.0680 4.04 × 1027 1.45 × 1043 5.003 7.54 1.60 × 106 

7 5,113,601 1.28 9.3093 × 108 6.060 × 105 8.0680 2.87 × 1027 9.16 × 1042 3.552 7.54 1.43 × 106 

8 5,026,583 1.228 8.9520 × 108 4.230 × 105 7.1730 3.43 × 1027 1.16 × 1043 4.776 8.13 1.52 × 106 

9 4,938,993 1.21 8.8273 × 108 1.030 × 106 6.8787 1.71 × 1027 4.60 × 1042 2.484 8.36 1.20 × 106 

10 5,111,834 1.101 8.0740 × 108 1.200 × 106 5.2635 1.08 × 1027 2.99 × 1042 2.051 9.94 1.03 × 106 

11 5,111,908 1.09 7.9975 × 108 1.500 × 106 5.1160 1.02 × 1027 2.32 × 1042 1.998 10.1 1.01 × 106 

12 5,024,856 1.037 7.6296 × 108 1.570 × 106 4.4420 8.88 × 1026 1.92 × 1042 1.999 11.1 9.67 × 105 

13 5,024,280 1.026 7.5531 × 108 1.500 × 106 4.3100 8.99 × 1026 1.95 × 1042 2.085 11.3 9.71 × 105 

14 5,112,507 1.026 7.5531 × 108 1.570 × 106 4.3093 8.68 × 1026 1.86 × 1042 2.013 11.3 9.60 × 105 

15 5,023,796 1.012 7.4558 × 108 1.580 × 106 4.1450 8.38 × 1026 1.78 × 1042 2.023 11.6 9.49 × 105 

16 5,024,008 1.00 7.3723 × 108 1.590 × 106 4.0070 8.13 × 1026 1.71 × 1042 2.030 11.9 9.40 × 105 

17 5,023,724 0.99 7.3030 × 108 1.560 × 106 3.8943 8.09 × 1026 1.70 × 1042 2.078 12.1 9.38 × 105 

18 5,023,875 0.978 7.2193 × 108 1.580 × 106 3.7620 7.77 × 1026 1.61 × 1042 2.066 12.4 9.26 × 105 

19 5,112,268 0.972 7.1775 × 108 1.620 × 106 3.6970 7.56 × 1026 1.55 × 1042 2.045 12.5 9.17 × 105 

20 4,937,169 0.952 7.0870 × 108 1.700 × 106 3.4853 6.97 × 1026 1.39 × 1042 2.000 13.0 8.92 × 105 

21 5,025,271 0.952 7.0871 × 108 1.840 × 106 3.4853 6.55 × 1026 1.28 × 1042 1.880 13.0 8.74 × 105 

22 5,111,939 0.952 7.0871 × 108 1.880 × 106 3.4853 6.45 × 1026 1.26 × 1042 1.850 13.0 8.70 × 105 

23 5,112,871 0.946 6.9953 × 108 1.840 × 106 3.4234 6.47 × 1026 1.26 × 1042 1.890 13.1 8.71 × 105 

24 5,023,666 0.93 6.8834 × 108 1.860 × 106 3.2620 6.18 × 1026 1.18 × 1042 1.894 13.5 8.57 × 105 

25 5,024,182 0.916 6.7860 × 108 1.840 × 106 3.1245 6.03 × 1026 1.15 × 1042 1.930 13.9 8.50 × 105 

26 5,023,926 0.903 6.6949 × 108 1.800 × 106 3.0000 5.94 × 1026 1.13 × 1042 1.980 14.3 8.46 × 105 

27 4,937,149 0.883 6.5544 × 108 1.870 × 106 2.8160 5.49 × 1026 1.01 × 1042 1.950 14.9 8.24 × 105 

28 4,936,891 0.862 6.4069 × 108 1.900 × 106 2.6300 5.16 × 1026 9.32 × 1041 1.960 15.6 8.07 × 105 

29 4,937,119 0.852 6.3367 × 108 2.010 × 106 2.5445 4.81 × 1026 8.51 × 1041 1.890 15.9 7.89 × 105 

30 4,937,356 0.847 6.3019 × 108 1.830 × 106 2.5024 5.10 × 1026 9.17 × 1041 2.038 16.1 8.04 × 105 
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First, we plot the B − P graph in log scale using the measured basic variables 
(established expression like mass-radius relation for dwarfs). Figure 3 gives such 
a graph with a negative slope of −0.584. Equation (6.1.1) can then be written as 

( ) ( ) ( )3 4 0.75 0.5840.584 3 2Constant 1 1B eq M P P R−     =           (6.2.1) 

Since the correlation is very good, we can assume that 

( ) 0.584Constant 1B eq P =                     (6.2.2) 

is valid, and Equation (6.2.1) becomes  

( ) ( )3 4 0.166 3 2
11 1M P R F    =                   (6.2.3) 

Since the stars are associated with various values of the sets (M, R, P), if Equa-
tion (6.2.2) is to be approximately true, these variables must vary in such a way 
that the function F1 is approximately a constant. We plot in Figure 4 the values 
of F1 for these 30 stars using the raw data from Table 2. There are some fluctua-
tions, but in a rough way, we can proceed to analyze Equation (6.2.3), taking F1 
as a constant. 
 

 
Figure 3. The variation of the theoretical surface magnetic fields B (eq, theory, Gauss) of 
NGC 6819 stars with changing period of rotation P(s), according to the 5D theory. The 
data are taken from numbers entered into Table 2. The slope of the log-log plot is about 
minus 0.584. 
 

 
Figure 4. Values of the function F1 for 30 stars in NGC 6819. The upper horizontal line 
represents the value 3.0 × 108. The average of these 30 numbers is about 2.5 × 108 (SI 
units). 
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Equation (6.2.2) can then be approximated by: 

( ) ( )log 0.75 0.166 log 1.5 0.166 log constantP M R= − +      (6.2.4a) 

Or 

log 4.518log 9.036 log constantP M R= − +        (6.2.4b) 

Employing raw data from Table 2 for different star members of the NGC 6819 
group, the graph of log P against log R is linear with a slope of -3.76 (see Figure 
5), so that Equation (6.2.4b) can be expressed as 

log 4.518log 3.76 log 3.76 log 9.036 log constantP M R R R= − + − +  (6.2.5) 

Or  

( )4.518log 9.036 3.76 log constant 0M R− − + =        (6.2.6) 

Or  

log 1.168log constantM R= +               (6.2.7) 

Note that the above equation is the consequence of the theoretically derived 
Equation (6.2.1), with the use of the P-R relation from measured data. To test 
the validity of the theory, we now use the raw data sets (M, R) from Table 2, and 
plot their relation in Figure 6 below. This graph gives a power index of 1.0612. 
Observing that there are variations of data of this group of stars with density 
several hundred of 3kg m , the comparison can be considered to give satisfac-
tory result. Recollecting no such comparison is possible for pre-main sequence 
stars with mass density up to 160 3kg m , we observe that we might arrive at 
better results with other star groups with larger mass density (and/or more ac-
curate data) in later sub-sections. 

Following, Figure 7 shows the variation of the theoretical surface magnetic 
fields B (eq, theory, G) of NGC 6819 stars with changing values of the void ra-
dius ( )oR m . The result indicates that for larger void size, the surface magnetic 
field is larger because the effective number of spinor pairs rotating in opposite 
direction is also larger. The variation of ( )oR m  vs density ( )3kg mD  is 
shown in Figure 8, giving slope of −0.867. Such a result suggests that those  
 

 
Figure 5. Employing raw data values in Table 2, this graph shows the variation of the pe-
riod P with different values of the radius R for different star members. The slope of the 
above graph is −3.761. The maximum of horizontal axis is 2 × 109 m. 
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Figure 6. The Mass–radius relation using raw data from Table 2. The slope of the power 
relation is 1.0612. As a very rough estimation, we predict from theory that the slope of the 
log M-log R plot is 1.168. The maximum value on the horizontal axis is 2.0 × 109 m. 
 

 
Figure 7. The variation of the theoretical surface magnetic fields B (eq, Gauss) of NGC 

6819 stars with changing void radius ( )oR m  indicates that for larger void size, the sur-

face magnetic field is larger because the effective number of spinor pairs rotating in op-
posite direction is also larger. For other basic parameters and calculated variables, refer to 
Table 2. The slope of this log-log plot is about 1.3. The maximum of the horizontal axis is 
2.0 × 106 m. 
 
stars have larger void radius Ro when the mass density is low, suggesting that 
gravity contraction causes the void size to decrease, but at a very slow rate be-
cause the value of the slope is not far from unity. We would investigate whether 
such effect is similar to other star groups, and the power index should in prin-
ciple, indicative of the mass of the stars involved. As suggested by the crowing of 
data points in Figure 3 and Figure 8, we could have divided these 30 stars into 
two sub-groups according to density. Since the NGC 6819 stars have density up 
to 31000 kg m  as a maximum value, we will not do such sub-divi- sion analy-
sis, but would proceed to analyze other groups with different densities in the 
following sub-sections. Using the “raw data” in Table 2, we show the M- R rela-
tion in a log-log plot, giving a power index of 1.0612. The deduction is not very 
accurate, as expected, since the model is rather crude; however the analysis pro-
vides a modality to analyze stellar properties. 
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Figure 8. Void radius ( )oR m  against the mass density ( )3kg mD  for the 30 NGC 

6819 stars. The limit of the horizontal axis is 32000 kg m . 

6.3. Low to-Mid Mass Main Sequence Stars 

We follow up to study the B - P graph for Low-to-Mid mass main sequence stars. 
Parameters mass M M



, period of rotation P are obtained from the data pub-
lished in [45] [46], with radius deduced using the equation in [44]. Other rele-
vant data calculated are entered into Table 3. Figure 9 gives us the power index 
is 0.769ε = , and Equation (6.1.1) for this group becomes 

( ) ( ) ( )3 4 0.75 0.7690.769 3 2Constant 1 1B eq M P P R−     =          (6.3.1) 

Following the argument of the previous sub-section, we can take that the 
function 

( ) ( )3 4 0.75 0.769 3 21F M P R−   =                 (6.3.2) 

is approximately constant, and the above equation gives  

( ) ( )3 4 0.019 3 21F M P R−   =    , resulting 

( )log 1.5 0.75 log 0.019 log logM R P F= − +        (6.3.3a) 

log 2.0 log 0.019 log logM R P F= − +          (6.3.3b) 

Since the M vs R plot is a good straight line with positive slope β = 
1.0985(Figure 10), we can write (6.3.3b) as 

log 1.0985log 1.0985log 2.0 log 0.019 log logM R R R P F= − + − +  (6.3.4) 

We require  

( )2.0 1.0985 log constant 0.019 logR P− + =  

Or  
47.45log logP R A= −                 (6.3.5) 

If one plots the P-R graph (not shown here), the line of best fit has a very large 
positive slope(specified by angle λ ), in line with our theoretical result of tan 

47.45λ =  in our text above. We calculate, using experimental raw data from 
Table 3, the quantity A of (6.3.5) and plot it against the number of stars in this  
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Figure 9. Employing values in Table 3, theoretically deduced equatorial dipolar magnetic 

field B (eq, Gauss) against rotation period ( )P s  of twelve Low-to-Mid Mass main se-

quence stars. The power index is 0.769ε = − . 
 

 
Figure 10. The measured variation of mass M (kg) with respect to change of radius R of 
some members of the Low-to-Mid Mass main sequence stars (see Table 3). The power 
index is about 1.0985 here, as compared to the theoretical prediction value of 1.1; see de-
tails in Section (5). The maximum of the horizontal axis is 910  m . 

 
Table 3. Low-to-mid mass main sequence stars. Parameters mass M M



, period of rotation P are obtained from the data pub-
lished in [45] [46], with radius deduced using the equation in [44]. The intrinsic dipolar magnetic fields B(equatorial, theory, 
Gauss), the void radius ( )oR m  are calculated according to the theory presented in Section (4) of this paper under the condition 

of the Second Law of angular momentum, with 9several times of 10  KT  , and fE  is taken to be the rest mass of electron.  

Star M/M☉ R (108 m) P(s) R3 (m3) B-R3 (G-m3) Iω (J-s) 
B  

(eq, theory, G) 
D  

(103 kg/m3) 
Ro  

(106 m) 

Sun 1.0000 6.9550 2.1600 × 106 3.364 × 1026 5.9211 × 1026 1.120 × 1042 1.760 1.3880 0.8453 

KIC892376 0.4699 3.6112 1.3237 × 105 4.709 × 1025 1.0214 × 1027 2.300 × 1042 21.690 4.7400 1.0133 

1026474 0.5914 4.4878 1.3556 × 105 9.038 × 1025 1.6540 × 1027 4.394 × 1042 18.300 3.1090 1.1897 

1026146 0.6472 4.8869 1.2866 × 106 1.167 × 1026 3.7140 × 1026 6.008 × 1042 3.182 2.6344 0.7234 

1162635 0.4497 3.4643 1.3546 × 106 4.158 × 1025 1.6210 × 1026 1.993 × 1041 3.900 5.1385 0.5490 

1164102 0.5606 4.2220 2.7210 × 106 7.529 × 1025 1.5270 × 1026 1.837 × 1041 2.028 3.5400 0.5379 

1027110 0.6046 4.5824 1.4697 × 105 9.622 × 1025 1.6310 × 1027 4.320 × 1042 16.950 2.9850 1.1850 

1160684 0.5239 4.0021 3.6200 × 104 6.410 × 1025 3.4186 × 1027 1.159 × 1043 53.330 3.8826 1.5163 

1027277 0.6735 5.0744 5.1960 × 106 1.307 × 1026 1.4210 × 1026 1.669 × 1041 1.088 2.4488 0.5253 

IM VirB 0.6644 4.7363 1.1320 × 105 1.063 × 1026 2.2365 × 1027 6.585 × 1042 21.050 2.9710 1.3166 

GU BooA 0.6101 4.3608 4.2336 × 104 8.293 × 1025 3.8760 × 1027 1.371 × 1043 46.740 3.4950 1.5810 

UV PscB 0.7644 5.8074 6.9120 × 104 1.959 × 1026 4.8855 × 1027 1.865 × 1043 24.944 1.8540 1.7080 

YY GemA 0.5992 4.3079 7.5168 × 104 7.995 × 1025 2.4030 × 1027 7.399 × 1042 30.054 3.5600 1.3554 



P. C. W. Fung, K. W. Wong 
 

703 

group in the following Figure 11. The constant A for 12 stars with  
mass  is 404.83 sM<



. Thus, with the power index having the units of s/m, we 
have deduced an explicit relation between R and P for the Low-to-Mid mass 
main sequence stars: 

47.45log log 404.83 sR P− =               (6.3.6) 

With the establishment of (6.3.6), we also deduce that  

( )20 1.09854.0 10  SI unitsM R= ×             (6.3.7) 

Likewise, we obtain 

( ) ( )5 0.769,Gauss 1.633 10  SI unitsB eq P−= ×        (6.3.8) 

( ) ( )17 2.87,Gauss 6.0 10  SI unitsoB eq R−= ×         (6.3.9) 

The result of Equation (6.3.9) is shown in Figure 12. Note that as explained in 
Section (2.3), the void radius Ro and hence current loop size depends also the 
type of elements generated in the matter shell at the time of observation.  
 

 

Figure 11. According to our theory, ( )47.45log logR P A s− = , a constant. Using raw data 

from Table 3, we plot these values of ( )A s  for 12 Low-to-Mid Mass main sequence stars 

( )M M<


 and are found, in this figure, to be close to constant, with an average of 404.83 s. 

 

 
Figure 12. Employing values in Table 3, theoretically deduced equatorial dipolar magnetic 

field B (Gauss) against void radius ( )oR m  of twelve Low-to-Mid Mass main sequence stars, 

with relatively good correlation. 
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Among this group of stars, we cannot expect all the star samples are built of 
hydrogen only. Thus the correlation of 0.83 in Figure 12 refelects the stated 
variation, and in our opinion, such correlation is already high in astronomy 
studies. 

6.4. M34 Stars 

M34 stars are pre-dwarfs having mass density slightly greater than that discussed 
in the last sub-section. Basic data are taken from [47] and other relevant va-
riables are calculated and listed in Table 4. Taking M34 stars within a mass den-
sity range of 31.8 3.2 kg m−  from Table 4, we plot the B-P graph in Figure 
13. The slope is −0.915. Putting the equation log 0.915log constantB P= − +  
into Equation (6.1.1), we arrive at 

Log 9.09 log 4.54545log constantP R M= − +        (6.4.1) 

Using raw data from Table 4, the M-R relation is shown in Figure 14, giving a 
slope of 0.9169. Substituting equation log 0.9169 log constantM R= +  into 
Equation (6.4.1), we get 

Log 4.9222 log constantP R= =              (6.4.2) 

So far, we can say that Equation (6.4.2) is a consequence of the derived Equa-
tion (6.1.1) with input of raw data. The P-R plot in log scale (Figure not shown) 
from raw data shows a slope of ~5, supporting Equation (6.4.2) though the  
 

Table 4. Stars of the M34 group [47]. The equatorial magnetic fields B (Gauss) are calculated according to the theory of Section (5) 

of this paper. The deduced values of the magnetic parameter ( )3 3GaussBR m−  and the void radius oR , together with the mass 

density ( )3kg m  are calculated and entered into the table. Numerically, B and oR  can be found by using the following equa-

tions derived in this paper. 
( ) [ ]

( )

3 49 3 2 3 4 3 3 4

1 45 1 2 1 4 1 4

3.43476 10 .

3.27186 10  J s m

oB eq M P R J m s T R

M P R

− − −

− − −

= ×

= ×
. 

Star no. M/M☉ R/R☉ P (s) R3 (m3) BR3 (G-m3) Iω (J-s) B (Gauss) D (kg/m3) Ro (m) 

M34-1-304 0.90 0.87 5.250 × 105 2.2150 × 1026 1.2830 × 1027 3.1390 × 1042 5.792 1.930 × 103 1.0940 × 106 
M34-1-459 0.58 0.54 1.2476 × 105 5.2970 × 1025 1.326 × 1027 4.4820 × 1042 25.03 5.200 × 103 1.1060 × 106 

M34-1-654 0.82 0.77 8.0836 × 105 1.5360 × 1026 7.209 × 1026 1.4550 × 1042 4.694 2.540 × 103 9.0247 × 105 

M34-1-1015 0.53 0.49 9.5472 × 104 3.9580 × 1025 1.3094 × 1027 3.2250 × 1042 33.082 6.361 × 103 1.1010 × 106 

M34-1-1017 0.49 0.45 3.1389 × 105 3.0657 × 1025 4.4500 × 1026 2.4435 × 1042 14.52 7.593 × 103 7.6845 × 105 

M34-1-1054 0.53 0.49 *1.0637 × 106 3.9580 × 1025 2.1472 × 1026 3.9555 × 1041 5.425 6.361 × 103 6.0271 × 105 

M34-1-1178 0.74 0.69 9.3226 × 104 1.1050 × 1026 2.8605 × 1027 9.1428 × 1042 25.90 3.182 × 103 1.4290 × 106 

M34-1-1540 0.95 0.92 5.9072 × 105 2.6200 × 1026 1.3300 × 1027 3.2930 × 1042 5.078 1.850 × 103 1.1070 × 106 

M34-1-1719 0.45 0.41 7.5514 × 104 2.3190 × 1025 1.0570 × 1027 2.4235 × 1042 45.58 9.220 × 103 1.0253 × 106 

M34-1-1906 0.54 0.50 2.0805 × 105 4.2053 × 1025 7.6310 × 1026 1.5700 × 1042 18.145 6.100 × 103 9.1980 × 105 

M34-1-2324 0.36 0.34 5.3654 × 104 1.3220 × 1025 8.7230 × 1026 1.8760 × 1042 65.984 1.294 × 104 9.6164 × 105 

M34-1-2370 0.28 0.28 5.3309 × 104 7.3850 × 1024 5.4260 × 1026 9.9620 × 1041 73.47 1.800 × 104 8.2094 × 105 

M34-2-599 0.67 0.63 8.6400 × 105 8.4123 × 1025 4.3610 × 1026 7.4460 × 1041 5.185 3.784 × 103 5.1850 × 105 

M34-2-2676 0.47 0.43 3.9053 × 104 2.6750 × 1025 1.9230 × 1027 5.3840 × 1042 71.90 8.347 × 103 1.2510 × 106 

M34-2-3071 0.91 0.88 6.7262 × 105 2.2930 × 1026 1.0934 × 1027 3.4640 × 1042 4.768 1.885 × 103 1.0368 × 106 

*this datum was observed under poor condition. 
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Figure 13. The equatorial magnetic field B (eq, Gauss) vs ( )P s  for 12 examples of M34 

stars (within the density range of 31.93 9.22 kg m− ) using data in Table 4 [47]. The 
slope is-0.915 for these pre-dwarf stars. 
 

 
Figure 14. Mass vs radius of 12 pre-Dwarfs of the M34 group within a rather wide mass 
density of 31.93 9.22 kg m− . The slope is 0.9169. The limit of the horizontal axis is 

910  m . 
 
points are relatively scattered, due to large variation of the mass density among 
these samples. Just as that demonstrated in the last sub-section, if we have 
enough samples of narrow density range, the agreement between theory and 
measured result would be much better. Following, we plot the D-R graph in 
Figure 15. The negative slope indicates that the smaller the star, the higher the 
density, implying that in the star group more elements are formed in smaller 
sized stars, increasing the gravity force which leads to a smaller radius. This fea-
ture is characteristic of pre-Dwarfs and Dwarfs.  

6.5. Averages of 254 Stars in the NGC 2516 Group 

NGC 2516 is an open star cluster in the southern sky, also called Southern Bee-
hive [48]. Following the same method as in other groups, basic data are taken 
from [49] and other variables are calculated, listed in Table 5. The B-P graph in-
dicated in Figure 16 can be represented by the equation 

log 0.89 log constantB P= − +               (6.5.1) 
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Substituting Equation (6.5.1) into (6.1.1), we have, 

( ) ( )3 4 0.14 3 2
5 1F M P R−   =                  (6.5.2) 

This function F5 has been found numerically to be  
10 10 10 10 103.40 10 ,3.28 10 ,3.309 10 ,3.56 10 ,&3.32 10× × × × ×  (SI units) for the five 

sets of averages of totally 254 stars, and we assume F5 to be a constant in our 
rough estimation, so that 

( )3 40.14 1.5 ConstantP M R−  = +                (6.5.3) 

which becomes  

( ) ( )log 0.75 0.14 log 1.5 0.14 log constantP M R= − + +  

Or          
log 5.357 log 10.7143log constantP M R= − + +         (6.5.4) 

From (6.5.3) & (6.5.4), we obtain an equation relating M and P resulting from 
theory (with information from basic data only): 

( )log 10.7143 3.3721 5.357 log constant 1.37 log constantM P R= − + = +  (6.5.5) 

 

 
Figure 15. Mass density vs radius of the same 12 pre-dwarfs M34 (as in Figure 14) within 
a wide range of density. The maximum of the horizontal axis is 910  m . 

 
Table 5. Five data set representing 254 Low massstars in NGC 2516. M M



, R, P values are all taken from [49]. The equatorial 
magnetic fields B (Gauss) are calculated according to the theory of Section (5) of this paper. The deduced values of the magnetic 

parameter ( )3 3GaussBR m−  and the void radius oR , together with the mass density ( )3kg m  are calculated and entered into 

the table. Numerically, B and oR  can be found by using the following equations derived in this paper. 

( ) [ ]
( )

3 49 3 2 3 4 3 3 4

1 45 1 2 1 4 1 4

3.43476 10 .

3.27186 10  J s m

oB eq M P R J m s T R

M P R

− − −

− − −

= ×

= ×
. 

Star no. M/M☉ Radius (m) P(s) R3 (m3) BR3 (G-m3) Iω(J-s) 
B 

(Gauss) 
D (kg/m3) Ro(m) 

N2516-1-1-784 0.20 0.24 5.61 × 104 4.6508 × 1024 3.220 × 1026 4.9700 × 1041 69.254 2.430 × 104 1.230 × 106 

N2516-1-1-351 0.44 0.41 2.00 × 105 2.3187 × 1025 5.000 × 1026 8.9345 × 1041 21.570 9.020 × 103 8.000 × 105 

N2516-1-1-958 0.49 0.45 5.44 × 105 3.0660 × 1025 2.950 × 1026 4.416 × 1041 9.615 7.593 × 103 6.700 × 105 

N2516-1-1-881 0.55 0.51 6.63 × 105 4.4630 × 1025 3.341 × 1026 5.2200 × 1041 7.487 5.855 × 103 6.980 × 105 

N2516-1-1-1470 0.56 0.52 7.61 × 105 4.7300 × 1025 3.147 × 1026 4.8166 × 1041 6.652 5.624 × 103 6.850 × 105 



P. C. W. Fung, K. W. Wong 
 

707 

 
Figure 16. 254 Low massstars in NGC 2516. The equatorial magnetic fields B (eq, Gauss) 

is plotted against the period of rotation ( )P s  using the data in Table 5 (from [49]). The 

slope is minus 0.89. 
 

We use the basic data from Table 5 to plot the P-R graph &M-R relation in 
Figure 17 and Figure 18 respectively; these graphs have power indices of 3.3721 
&1.349 respectively. The agreement of the M-R relation between theory and ex-
periment (1.37 vs 1.349) is amazingly close, noting that only three significant 
figures have been used in computation. 

In the following Figure 19, we show the dependence of B (eq, theory, Gauss) 
on void radius ( )oR m , showing a slope of 3.718 in the log-log plot. In Figure 
20 we show the oR D−  graph. Note that within this D range, when D increases 

oR  still increases with it, implying that gravity contraction has not been effective 
in these 254 stars. We also see that the power index in the M-R plot in  

Figure 18 is relatively large, being 1.3487, suggesting material is being added 
on the star with M& R increasing at the same time. It is interesting to note that 
the power index is only 0.4123. We expect for Dwarfs, such an index in the 

oR D−  would turn over to negative values. 

6.6. Brown Dwarfs with Effectively 1353 Star Data 

Nine sets of raw data, each representing an average of 150 stars are entered into 
Table 6. Effectively we have averages of 1350 brown dwarfs. In addition, we add 
another three sets of data for three brown dwarfs with relative fast rotation 
speeds according to ref [50] [51] [52] and [36]. 

As shown in Figure 21, the power index ε  is −0.96, and following the same 
procedure in analysis, we arrive at an equation for these brown dwarf samples: 

( ) ( )3 4 0.21 3 21 is a constantF M P R−   =             (6.6.1) 

This constant F is found to be about 82.5 10×  (SI units).Similarly, we write 
(6.6.1) as 

( )3 40.21 1.5 ConstantP M R−  = +              (6.6.2) 

which becomes  
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Figure 17. The period of rotation ( )P s  of the averages of 254 low mass stars in the 

NGC 2516 versus the radius ( )R m  in a log-log plot. The slope is 3.3721 and correlation 

is good. See Table 5 for other data values. The maximum value of the horizontal axis is 
84 10  m× . 

 

 

Figure 18. Mass ( )kgM  versus Radius ( )R m  of 254 low mass stars in the NGC 2516 

based on “raw data” listed in Table 5. The slope is 1.3487 with excellent correlation. The 
theoretically predicted value is 1.37 (see Equation (6.5.5)). 
 

 
Figure 19. 254 Low massstars in NGC 2516. The equatorial magnetic fields B (eq, Gauss) 

is plotted against the void radius ( )oR m  using the data in Table 5 (from [49]). The 

slope is about 3.72. The maximum of the horizontal axis is 2 × 106 m. 
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Figure 20. The void radius Ro is plotted against the mass density D for the 254 stars in 
NGC 2516, represented by five averaged sets. Note that within this D range, when D in-
creases Ro still increases with it, implying that gravity contraction has not been effective in 
these 254 stars. It is interesting to note that the power index is only 0.4123. We expect for 
Dwarfs, such an index in the oR D−  would turn over to negative values. The maximum 

of the horizontal axis is 4 33 10  kg m× . 

 

 
Figure 21. Employing values in Table 6, theoretically deduced equatorial dipolar mag-

netic field B (Gauss) against rotation period ( )P s  of 1350 Brown Dwarfs. Each of the set 

of 9 data points labelled BDL in Table 6 represents the average of 150 stars. The last three 
members in the same table, i.e. TVLM, J0036, J1835 are individual dwarfs as reported in 
[36]. B = 3.0 × 106 P−0.96… 

 
Table 6. Data of 1350 Brown dwarfs in the Pleiades [50] [51] [52]. The data of the last three brown dwarfs are taken from [36]. 
Parameters include mass M, radius R, period of rotation P, mass density D are entered into this table. Here, the radius is assumed 

to follow the Hamada-Salpeter model [41] for dwarfs. The intrinsic dipolar magnetic field along the equator ( ),GaussB eq  and 

the void radius oR  are deduced based on the theory of this paper. The magnetic parameter ( )3 3GaussBR m−  (based on our 

theory) and angular momentum ( )I J sω −  are also entered. Note that the log-log plot of these two variables follow a straight 

line. The dependent variables are deduced based on the Second Law of angular momentum [2] ( )cT T  taking the Fermi en-

ergy of the spinor pairs to be 0.5 MeV . We would also remark that each representative datum point from BPL102-BPL190 pub-
lished is the average of slightly over150 members. 

Star no. M/M☉ R/R☉ P (s) R3 (m3) Iω(J-s) BR3 (G-m3) B(eq, G) D (kg/m3) Ro (m) 
BPL102 0.25 0.26981 7.7040 × 104 6.608 × 1024 5.720 × 1041 3.577 × 1026 54.13 1.800 × 104 7.145 × 105 
BPL106 0.08 0.09744 1.4688 × 104 3.112 × 1023 1.250 × 1041 1.145 × 1026 367.8 1.220 × 105 4.887 × 105 
BPL115 0.10 0.12031 1.0476 × 104 5.859 × 1023 3.343 × 1041 2.392 × 1026 408.3 8.100 × 104 6.248 × 105 
BPL125 0.15 0.17649 6.9660 × 104 1.850 × 1024 1.623 × 1041 1.428 × 1026 77.22 3.850 × 104 5.216 × 105 
BPL129 0.13 0.15416 3.4700 × 104 1.233 × 1024 2.154 × 1041 1.721 × 1026 139.62 5.000 × 104 5.600 × 105 
BPL138 0.25 0.28600 9.2916 × 104 7.870 × 1024 5.324 × 1041 3.392 × 1026 43.1 5.970 × 104 7.020 × 105 
BPL150 0.18 0.20967 6.6456 × 104 3.100 × 1024 2.880 × 1041 2.140 × 1026 69.00 2.760 × 104 6.020 × 105 
BPL164 0.13 0.15416 7.2576 × 104 1.233 × 1024 1.030 × 1041 9.894 × 1025 80.27 5.000 × 104 4.641 × 105 
BPL190 0.15 0.17649 1.4497 × 105 1.850 × 1024 7.800 × 1040 8.030 × 1025 43.42 3.850 × 104 4.343 × 105 
TVLM 0.07 0.10300 7.0490 × 103 3.676 × 1023 2.550 × 1041 1.952 × 1026 530.94 9.047 × 104 5.840 × 105 
J0036 0.067 0.09500 1.1088 × 104 2.884 × 1023 1.320 × 1041 1.191 × 1026 413.0 1.104 × 105 4.952 × 105 
J1835 0.083 0.10700 1.0224 × 104 4.120 × 1023 2.250 × 1041 1.777 × 1026 431.13 9.568 × 104 5.659 × 105 
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( ) ( )log 0.75 0.21 log 1.5 0.21 log constantP M R= − + +     (6.6.3a) 

Or  

log 3.5714 log 7.143log constantP M R= − + +        (6.6.3b) 

Since the graph of log P against log R is linear with a slope of +2.4462 (see 
Figure 22), Equation (6.6.3b) can be expressed as 

log 3.5714 7.143log 4.762log
log 3.5714log 2.4462log

2.4462log 7.143log 4.762log

P M R F
P M R

R R F

= − + +
= − −
+ + +

       (6.6.4) 

under the constrain  

( )3.5714 log 7.143 24462 log 4.762 log constantM R F− + − + =   (6.6.5) 

Or  

( )log 7.143 2.4462 3.5714 log constant
1.315log constant

M P
R

= − +

= +
       (6.6.6) 

The log M versus log R plot in Figure 23 shows a slope of 1.185. The discre-
pancy is rather expected as the data points in the log logP R−  graphs are ra-
ther scattered, with only moderate correlation ( )2 0.74r = , implying the func-
tional dependence among (M, R, P) is rather complicated. A relatively slight in-
crease of the slope from 2.4462 to 2.91125 in the P—R graph would bring out a 
theoretical prediction of log 1.1849 logM R= , identical to that obtained from 
basic data. The B (eq, theory, G) vs Ro/R graph is shown in Figure 24, as an illu-
stration of the Law of Intrinsic Dipole Magnetic Field for Cool Stellar Objects, 
namely, expression (4.2.14). Note also that the theoretical pole field is twice the 
equatorial field, so the maximum surface field of Brown Dwarfs is within the 
kGauss range, as observed. 

 

 
Figure 22. Each of the set of 9 data points labelled BDL in Table 6 represents the average 
of 150 stars. Using these data, together with other three members in the same table, (i.e., 
TVLM, J0036, J1835) the ( )P s  vs radius ( )R m  graph in log scale is shown above. The 

slope of the Log LogB P−  plot is 2.4462. The maximum of the horizontal axis is 
82.0 10  m× . 
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Figure 23. Using data in Table 6, we show the ( ) ( )M kg R m−  relation for 1350 Brown 

Dwarfs (represented by averages of 9 groups) plus three other individual ones. The slope 
is 1.1849. 
 

 
Figure 24. Surface equatorial field B (eq, theory, Gauss) vs the normalized void radius 
Ro/R for averages of 1353 Brown Dwarfs thin a rather wide range mass density as speci-
fied. This is an illustration of the Law of Intrinsic Dipole Magnetic Field for Cool Stellar 
Objects. The maximum value on the horizontal axis is 10−2. The slope is 3.0 as depicted in 
expression (4.2.14). 

6.7. White Dwarfs 

Basic data for a number of White Dwarfs are obtained from [53] [54] [55]. Other 
variables are calculated and entered into Table 7. Using sets of (B, P) values, we 
show in the usual way the B-P graph in Figure 25, finding the slope to be by 

0.705ε = − , and expression (6.1.1) becomes 

( ) ( ) ( )3 4 0.75 0.7050.705 3 2Constant 1 1B eq M P P R−     =         (6.7.1) 

We have found that numerically, as in other star groups the LHS of the fol-
lowing equation is an approximate constant: 

( ) ( )3 4 0.045 3 21 constantM P R    =              (6.7.2a) 

leading to 

log 33.33log 16.67 log constantP R M= − + +         (6.7.2b) 

Equation (6.7.2b) indicates that our theory predicts a large negative slope  
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Table 7. White dwarfs. This table lists Mass M M


, radius R R


, period of rotation ( )P s  of some white dwarfs with low 

mass ( )0.6M M<


 based on [53] [54] [55]. Here, the radius is assumed to follow the Hamada-Salpeter model [41] for dwarfs. 

The intrinsic dipolar magnetic field along the equator ( ), theory,GaussB eq  and the void radius oR  are deduced based on the 

theory of this paper. The magnetic parameter ( )3 3GaussBR m−  and angular momentum ( )I J sω −  are also entered. Note that 

the log-log relation of these two variables follow a straight line. The dependent variables are deduced based on the Second Law of 

angular momentum [6] ( )cT T  taking the Fermi energy of the spinor pairs to be 0.5 MeV .  

Star no. M/M☉ R/R⊙ P (s) R3 (m3) BR3 (G.m3) Iω (J.s) 
B  

(eq, theory G) 
D  

(kg/m3) 
Ro (m) 

GD140 0.52 0.0132 1.037 × 103 7.738 × 1020 1.697 × 1026 2.114 × 1041 2.193 × 105 3.92 × 108 5.585 × 105 

Grw+73 8031 0.52 0.0132 1.296 × 103 7.738 × 1020 1.436 × 1026 1.691 × 1041 1.856 × 105 3.92 × 108 5.280 × 105 

WD1337+70 0.52 0.0132 1.728 × 103 7.738 × 1020 1.157 × 1026 1.269 × 1041 1.495 × 105 3.92 × 108 4.914 × 105 

LB253 0.52 0.0132 2.592 × 103 7.738 × 1020 8.535 × 1025 9.211 × 1040 1.103 × 105 3.92 × 108 4.440 × 105 

W1346 0.52 0.0132 5.184 × 103 7.738 × 1020 5.077 × 1025 4.230 × 1040 6.561 × 104 3.92 × 108 3.734 × 105 

G1423−B2B 0.52 0.0132 6.998 × 103 7.738 × 1020 4.054 × 1025 3.132 × 1040 5.239 × 104 3.92 × 108 3.464 × 105 

PG2131+066 0.62 0.0119 1.814 × 104 5.669 × 1020 1.937 × 1025 1.171 × 1040 3.417 × 104 5.95 × 108 2.707 × 105 

L19-2 0.60 0.0122 9.504 × 104 6.109 × 1020 5.663 × 1024 2.273 × 1039 9.270 × 103 4.65 × 108 1.798 × 105 

NGC1501 0.55 0.0128 1.011 × 105 7.0554 × 1020 5.447 × 1024 2.156 × 1039 7.720 × 103 3.03 × 108 1.775 × 105 

 

 
Figure 25. Employing values in Table 7, theoretically deduced surface equatorial dipolar 

magnetic field B (eq, theory, Gauss) against rotation period ( )P s  of nine white dwarfs is 

shown above. The slope of this log-log plot is −0.705, with excellent correlation. 
 

( )tan 88.28 33.3= . Referring to Figure 26, the P-R plot based on “raw observa-
tional data” gives a very large magnitude of negative slope around −35. We have 
emphasized previously that the slopes of the P-R plot of some other star groups 
are positive. This “turning over” result is important in the stellar evolution 
process. When the mass density is high (in White dwarfs, 8 310  kg mD ∼ ), and 
the gravity force is much larger than those stars in all the groups discussed in 
Sections (6.1 - 6.6). Fusion proceeds slowly and the radius shrinks while rotation 
slows down with P increasing at a fast rate, like an aging organism, leading to a 
large negative slope in the P-R plot, as observed. Due to the inaccuracy of the 
measured values of R, the radius of a dwarf is usually calculated via the Hamada- 
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Figure 26. Refer to Table 7. The period of rotation ( )P s  versus the radius ( )R m  in 

the log-log plot gives a very large magnitude of negative slope using the data for the 9 
members collected. Note that the slopes of the P-R plot of some other star groups are 
positive. This “turning over” result is important in the stellar evolution process. When the 
mass density is high (such as in the White dwarfs, 8 310  kg mD ∼ , and the gravity force 
is much larger than those stars in all the groups discussed in Sections (6.1 - 6.6)). Fusion 
proceeds slowly and the radius shrinks while rotation slows down with P increasing at a 
fast rate, like an aging organism, leading to a large negative slope in the P-R plot, as ob-
served. Due to the inaccuracy of the measured values of R, it is difficult at this stage to 
obtain well defined power law relation. For stars at younger age, fusion processes bring in 
heavier elements, but the density is low so that the gravitation contraction cannot over-
come centrifugal force, and positive slopes should result in the P-R plots, as observed ex-
perimentally. More detailed discussion requires the analysis of the variation of mass den-
sity mathematically as a function of R. 
 
Salpeter relation for dwarfs for decades [41]. It is difficult at this stage to obtain 
well defined power law relation for the P-R relation with sample masses within a 
narrow range of 0.6M M<



. Equation (6.7.2b) gives the rough estimation that 
~M constant, which is quite true approximately (see Table 7). 

In other words, expression (6.7.2b) becomes 

log 33.33log constantP R= − +              (6.7.2c) 

For stars at younger age, fusion processes bring in heavier elements, but the 
density is low so that the gravitation contraction cannot overcome centrifugal 
force, and positive slopes should result in the P-R plots, as observed experimen-
tally. More detailed discussion requires the analysis of the variation of mass den-
sity mathematically as a function of R. 

Employing data values in Table 7, theoretically deduced equatorial dipolar 
magnetic field B (eq, theory, G) vs the void radius ( )oR m  under conditions 
governed by the Second law of Angular Momentum is shown in Figure 27. The 
slope is 2.81, with excellent correlation. oR  values are within a very narrow 
range. The magnetic dipole fields are within 3 59.3 10  to 2.2 10× ×  Gauss. The 
order of magnitude of white dwarfs’ surface field is much of a debate even up to  
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Figure 27 Employing data values in Table 7, theoretically deduced equatorial dipolar 

magnetic field B (Gauss) against the void radius ( )oR m  under conditions governed by 

the Second law of Angular Momentum. The slope is 2.81, with excellent correlation. We 
consider that the measured magnetic fields of white dwarfs are affected by the change in 
dynamics of the spinors inside the void during stellar evolution. The maximum of the ho-
rizontal axis is 56 10  m× .    
 
now. Some detect field~Tesla or more, and some measurements lead to the sug-
gestion that while there are two types of White Dwarfs-one with negligible mag-
netic field and another type with huge magnetic field. We have devoted one 
short section on the plausible origin of the sporadic fields, explained in terms of 
Chern-Simon potential in Secction (5) already. Equations 6.7.2(a) & 6.7.2 (c) 
might be considered to be the two laws consequential to the new Equation (6.7.1) 
for White Dwarfs of low masses as stated. 

6.8. Magnetic White Dwarfs 

Taking 7 Magnetic Whit Dwarf (MWD) samples [40] [55] [56] with close mass 
density values, we plot the B-P graph in Figure 28, using data in Table 8. Now 
the slope of Figure 28 is 0.712ε = − , and expression (6.1.1) becomes 

( ) ( ) ( )3 4 0.75 0.7120.712 3 2Constant 1 1B eq M P P R−     = ×          (6.8.1) 

Leading to; 

( ) ( )3 4 0.038 3 2
11M P R C    =                     (6.8.2) 

The function C1 for the seven members are respectively 319.864, 318.5664, 
319.917, 318.75, 319.635, 319.16, 319.40. The average K1 is about 319.33 (see 
Figure 29). 

Therefore (6.8.2) becomes 

( ) ( ) 1log 1.5 0.038 log 0.75 0.038 logP R M K= − + −       (6.8.3a) 

Or 

1log 39.474 log 19.74 logP R M K= − + −            (6.8.3b) 

Now the relation between Mass and radius is assumed to follow the model of 
Hamada and Salpeter. Using data in Table 8, we show the M-R graph in Figure 
30 giving a slope of −1.159. Substituting therefore the following equation 

Log 1.169 log constantM R= − +               (6.8.4) 
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Figure 28. Employing values in Table 8, theoretically deduced equatorial dipolar mag-

netic field B (eq, theory, Gauss) against rotation period ( )P s  of seven magnetic white 

dwarfs of close mass density values. The slope of this log-log plot is −0.712, with excellent 
correlation. 

 

 
Figure 29. The values of the function C1 in Equation (6.8.2) are very close to a constant 
with a mean of 319.33 (SI units). 
 

Table 8. Magnetic White Dwarfs. Parameters include mass M, radius R, period of rotation P, mass density D, the deduced void 

radius oR , intrinsic equatorial dipole magnetic field magnetic B (Gauss), magnetic parameter ( )3 3BR G m− , angular momen-

tum ( )I J sω −  are entered into the table. The basic parameters are taken from [55] [56] [40] and the star’s radius is assumed to 

follow the Hamada & Salpeter’s relation [41] for dwarfs. The theoretical results are calculated under the condition of the Second 

Law ( )cT T , taking the Fermi energy of the spinor pairs to be 0.5 MeV .  

MWD M/M☉ R/R⊙ P(s) R3 (1020m3) BR3 (G-m3) Iω (J-s ) 
B  

(eq, theory, Gauss) 
D  

(109 kg/m3) 
Ro  

(105 m) 

WD0533+053 0.71 0.0110 3.600 × 103 4.478 6.410 × 1025 5.773 × 1040 1.431 × 105 0.7532 4.028 

WD1031+234 0.93 0.0088 1.224 × 104 2.293 2.243 × 1025 1.42 × 1040 9.783 × 104 1.9270 2.839 

WD0548−001 0.69 0.0113 1.482 × 104 4.854 2.260 × 1025 1.438 × 1040 4.656 × 104 0.6752 2.846 

WD0009+501 0.74 0.0107 2.160 × 104 4.121 1.655 × 1025 9.489 × 1039 4.015 × 104 0.8530 2.564 

WD0011−134 0.71 0.0110 4.680 × 104 4.478 9.364 × 1024 4.441 × 1039 2.091 × 104 0.7530 2.121 

WD1533−057 0.94 0.0086 8.640 × 104 2.140 5.041 × 1024 1.947 × 1039 2.356 × 104 2.0870 1.726 

WD0912+536 0.75 0.0105 1.149 × 105 3.895 4.638 × 1024 1.741 × 1039 1.191 × 104 0.9150 1.678 

WD1953−011 0.74 0.0107 1.246 × 105 4.121 4.445 × 1024 1.645 × 1039 1.079 × 104 0.8530 1.655 

WD1829+547 0.90 0.0090 3.154 × 109 2.453 1.979 × 1021 5.593 × 1034 8.0693 × 10 1.7433 0.126 
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Into Equation (6.8.3b), we arrive at 

Log 62.35log constantP R= − +                (6.8.5) 

So far, we can consider that the theoretical Equation (6.8.1) leads to (6.8.5) 
using only the stated M-R relation, with input of “raw data”. When we plot 
( )P s  vs ( )R m  based on measured data (Figure not shown), the slope is nega-

tive and the magnitude is rather large, within a range −58 to −62, being consis-
tent to Equation (6.8.5), though the data points are rather scattered. 

We show the relation between the void radius oR  and mass density D in 
Figure 31. Clearly, we theorize that if the mass densities of some MWD are 
larger, the gravitation forces are larger in these stars, leading to smaller void siz-
es. 
 

 

Figure 30. Mass ( )M kg  vs radius ( )R m  for 7 magnetic white dwarfs. Linear scaling 

gives a better presentation, giving a power index of −1.159. 
 

 
Figure 31. The relation between the void radius oR  and mass density D. We theorize 
that if the mass densities of some MWD are larger, the gravitation forces are larger in 
these stars, leading to smaller void sizes. The slope of the graph is −3.547. The maximum 
of the horizontal axis is 9 32.0 10  kg m× .  
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7. General Discussion and Summary 
7.1. The Mystery of the Relationship between Surface  

Magnetic Field and Equatorial Rotational Speed of Stars 

It is well known that the three groups of Zeeman components, blue red,?σ σ , and 
π  of spectral lines (such as a Calcium line), are characterized by different 

magnetic moments, leading to three distinctive polarization states of these com-
ponents. The polarization states of electromagnetic waves can be determined by 
measuring all the four Stokes parameters I, Q, U, V of these waves received. 
Here Stokes parameter I represents the integrated light intensity (unpolarized 
light), Stokes parameters Q and U measure the two orthogonal directions of li- 
near polarization, and Stokes parameter V measures circular polarization(for 
practical detection of polarization of radio waves from a star, see [57]). The 
“longitudinal magnetic field lB ”or the “mean line-of-sight magnetic field” is a 
line intensity weighted average (over the visible hemisphere of a star) of the 
magnetic field component directed along the line of-sight. In practice, it is ob-
tained from measuring the separation between the positions of the spectral line 
profiles in the detected left and right circularly polarized light. However, the an-
gle i between the line of sight and the magnetic axis of a star is usually unknown 
unless under very special circumstances (see e.g. Techniques for stellar magnetic 
field measurements, [58] and [59]). Moreover, the polarization states (or the 
Stokes parameters) are transferred and are changed during the passage of the 
waves through the intervening plasma between the star and the point of observa-
tion [60] [61] [62]. The characteristics of the plasma are generally not known for 
a distant star and another source of errors can be introduced in the interpreta-
tion. 

On the other hand, measuring directly the features of Zeeman splitting in stellar 
spectral lines offers another method of detection of surface magnetic field strength of 
a star. However, such method, which in principle, should give more accurate surface 
magnetic fields, is limited to field strength greater than ~  kG, and rotation period 
smaller than 64.4 10  s∼ ×  based on discussion in [63] and our estimation. We 
would also remark that in addition to a dipole field, stars (such as the sun) could 
have flares which carry magnetic fields much stronger than the “intrinsic” dipole 
field, though the total area of the flare regions in the photosphere is much smaller 
than the surface of the visible disc. Thus during the quiescent time period, or in older 
stars, lB  or mean surface B has a value close to the equatorial dipole field of a star. 
During the magnetically active periods, or in younger stars which might have less 
magnetic activities, the measured average field might fall between the equatorial and 
the polar field (which is simply twice the equatorial field)or close to the polar field. 
Moreover, If cyclotron radiation is observed in the emission from a target star/stellar 
object (see e.g. application of such radiation mechanism, including the maser effect, 
to explain the radio emissions from the sun and planet Jupiter already half a century 
ago [64] [65]), and if the polarization is close to circular, one can calculate the mag-
netic field at the source readily. Such a method has been applied to estimate the sur-
face magnetic field of some Brown Dwarfs recently [36]. However, the maser effect 
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of such emissions does not tell us which harmonic(s) carries the dominant radiative 
power and there could be a difference of factor ( )2.3n =   in the estimation. Since 
the star is moving with respect to the observer, in general, there is error due to 
Doppler broadening. Therefore the “measured lB  value” or mean surface magnetic 
field can only be taken to be an order of magnetic field estimation when compared 
with the theory. In general, the measured field is larger than the predicted dipole 
field. Nevertheless, the measured magnetic fields reported in literature provide cer-
tain trends, relative variation among star groups which are important for our under-
standing of stellar evolution. Note that the rotational period of a star is commonly 
taken to be represented by [ ]2π sinP R v i= . 

We have analyzed the B (equatorial, theory) –P relation for 8 groups of stars in the 
last section. Experimentally, it has long been discovered that the mean pro-
jected rotational velocity ( )sinv i  of main-sequence stars increases slowly 
with type, reaching a maximum of about 1200 km s−  in the late-B star class 
(see [66] or earlier works of Abt & Hunter). Reiners [67] found out that there 
was a linear relation between the averaged magnetic field and rotation speed in 
log scale (see Figure 21 of that paper). A rough estimation shows the slope to be 
around 2 16.9 10  G m s− − × −   Note that the inverse of the rotational speed v is 
proportional to the rotational period P. As demonstrated there, such a B-P relation is 
sensitive to change of mass density. We therefore attempt to compare the theoretical 
consequence and the measured magnetic field in one group of stars with relative 
larger star number (than we have employed in Section (6) for various stellar groups), 
particularly when age information is available. Before we do that, let us introduce 
some relevant background for further analysis. 

Blackett found a positive correlation between the magnetic moment mµ  and 
angular momentum of the Earth, Sun and an A2p star 78 Virgins, and proposed that 
such a relation might be a fundamental a law (see discussion in [68]). Later studies 
coined this correlation as the “Magnetic Bode’s Law” (see e.g. [69]). This law can be 
stated as log (magnetic moment as represented by 3B R− ) vs log (angular mo-
mentum Iω ) has an approximate linear relation for many stars; here B is the equa-
torial magnetic. Though we consider the application of this law to planets is uncon-
vincing, such investigation opens up an interesting and important issue. First we 
would note that a magnet experiences a torque mτ  in the presence of a magnetic 
field B and the magnetic moment mµ  is defined as the maximum torque mτ  ex-
perienced by the magnet, satisfying = ×m mτ μ B . The SI unit is 1N m T− . When a 
current I flows around a plane coil of (vector) area A, this coil also experiences a 
torque m I= ×A Bτ . The unit is Ampere 2m . In the study of stellar magnetism, 
consider the magnetic field to be produced by a current loop. Measured at a far dis-
tance r, as in our case, the magnetic moment of the star is related to the magnetic 
field by ( ) 34πo m rµ=   B µ . Thus the magnetic moment is [ ] 34π o Rµ B . 
Hence, 3BR  with a unit of 3Gauss meter−  or 3Tesla meter−  does not have the 
right unit as magnetic moment and might be mis-interpreted when physical concept 
is involved in our series of works. We would therefore call “ 3BR ” as a magnetic pa-
rameter in our analysis to follow. 
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Now if the “magnetic Bode’s Law” is established, two important issues emerge: (i) 
Since an electric current or permanent magnet must exist to generate a magnetic 
field, it is of fundamental interest in physics to know how the Maxwell equations are 
“hidden behind”/within the magnetic Bode’s law; (ii) On the application side, va-
riables in magnetism (magnetic field, flux) can be calculated from variables of me-
chanics (period of rotation, radius, mass) and vice versa if only one is unknown; (iii) 
Various models of dynamo theories have been proposed to explain the source of di-
polar field and sporadic fields of stars. We note that long ago, using over ten thou-
sand spot samples, it has been shown, using rather stringent statistics (the Maxi-
mum-likelihood analysis) that there is no statistical evidence that sunspots in the 
northern hemisphere and southern hemisphere are correlated [70]. This result sup-
ports the theory that the solar flare phenomenon is more likely to be associated with 
local variations. 

In 1996, Baliunas, et al. reported the values of measured magnetic fields of 112 low 
main sequence stars (type F to late K with one M) [71] by analyzing features of the 
spectral lines arising from Zeeman splitting mentioned earlier, carried over 25 years 
at Mount Wilson Observatory. The rotation periods of 80 stars were inferred from 
periodic fluctuations with the stated Ca II records; for the other 32 stars, rotation was 
computed from the close relation between Ca II flux and the Rossby number (see 
details of Rossby number in [72]) in order to reduce the errors due to the unknown 
values of the angle i between the magnetic axis of rotation and the line of sight. 
The authors employ a quantity RHK’ (called magnetic heating parameter) to ap-
proximate the magnetic moment µm and presented the  

{ } { }3 3log ' logHKR R MR P−  graph, indicating a linear relation with a slope of 
about 0.6 (see Figure 1 of [66]) with rather narrow spread in astronomical sale. 
Among the 112 stars under studied, the surface magnetic fields sB  of 13 mem-
bers were published in [73]. Defining 3

sB R  as magnetic moment of a star, it 
was reported that the { } { }3 3log logsB R MR P−  graph also shows a linear rela-
tionship with a slope of 0.54.The above review and analysis indicates that in or-
der to explain the Magnetic Bode’s Law, one has to assume that there is no need 
to have information about the current in the matter star; in that case one has to 
look for the “missing electric current” (or the hidden Maxwell equations) which 
generates the magnetic field. If one assumes dynamo models do exist in reality to 
explain the emergence of magnetic field, it is hard to believe that with so many 
variable conditions occurring in the matter structures of different stars, a rather 
general 3BR Iω−  and B-P relations in the log-log plot occurs for a large num-
ber of cool stars. In this paper, we have already derived an explicit expression for 
the dipolar magnetic field of stellar objects in terms of only the basic data set (M, 
R, P). 

It is therefore fruitful to compare our theoretical prediction with measured 
data within one main star type with more samples than in the last section.  

Incidentally, more recently, Marsden et al. [74] compiled a rather comprehen-
sive survey of the data of 170 sun-like stars, providing the measured “longitu-
dinal surface magnetic field lB ” as defined above, mass, radius, sinv i , age of 
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these stars. Though limited by the methodology of measurement as mentioned 
above in Stokes parameter analysis and the error involved in the angle of sight i 
(and hence the period of rotation P), so that the uncertainties of B(we will use 
the symbol B to replace lB ) field and P can be 100 % or more in practical cases, 
yet we can still take these data to investigate the ( )sinB v i−  relation based on 
our 5D theory and compared with the measured data, as a beginning step for 
comparison of theoretical result and experimental data. In Table 9, we list the 
data relevant to this study with examples taken from [74]. The mass density is 
calculated based on the simple model of 34π 3D M R =   . This is a rough es-
timation because in a sun-like star, most of the matter is in a plasma state, and at 
different depth, the rotation rates are different for any single star, so that the D is 
the average, and the angular momentum thus calculated, based on the “solid” 
model will inevitably introduce significant errors in magnitudes in the next step 
of our analysis. 

7.2. Comparison between Theoretical Deduced Surface Magnetic  
Fields and Measured Values for Sun-Like Stars with  
Age Smaller Than about 3 Gyr 

Since the magnetic field measured is the average surface “longitudinal” field, we 
use the polar magnetic field derived from our theory in Section (5), which is 
simply twice the equatorial field, and plot the dependent variable B (polar, 
theory, G) in Gauss against the measured sinv i  for two ranges of density 
(points in red are within the density range of 3 3 32.09 10 3.25 10  kg m× − × ; 
points in light red are within the density range of 900 to ~ 3 32.0 10  kg m× ) in 
Figure 32 below. We used polar rather than equatorial fields because we expect 
more extra-dipole magnetic activity in younger stars, as explained above in this 
section. The power indices are respectively 0.5506 & 0.5563 in this graph. Note 
that in Figure 21 of [74] the power index is around 1.0; the magnetic fields of 
those stars are in general one order of magnitude higher. We anticipate that 
those stars have higher mass densities than the ones in this diagram, and con-
clude that the slope of the log-log lot gradual increases as the mass density en-
larges. Putting the measured data (represented by triangles points in Table 9(a)) 
into Figure 32, we have Figure 33, demonstrating that the experimental and 
theoretical results are consistent within an order of magnitude. 

One can use the “raw data” and plot the mass vs radius graph, for sun-like 
stars with density in the range 3 32.09 to 3.25 10  kg m×  (deep blue) and in the 
range 3 3900 to 2.0 10  kg m×  (light blue). These stars are young ones with ages 

3 Gyr< . The relation is not simple- roughly power law for the higher density 
ones and a polynomial for the lower density stars. We do not show this graph 
but note that with changing density, the M-R relation varies. 

In Figure 34, the theoretically derived polar magnetic field is plotted against 
the period of rotation ( )P s  for a group of sun-like stars within the density 
range of ( ) 3 32.09 3.25 10  kg m− × , in red color. The other sub-group in light 
red represents those within the density range of 3 3900 to 2.0 10  kg m× . The 
power indices are respectively −0.741 and −0.716, close to the values deduced in  
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Table 9. (a) Young Sun-like stars. Entry numbers in columns 1, 2, 3, 4, 5, 7 are taken directly from [74] and entries of other col-
umns are deduced or calculated based on the present theory. When the age information is not available (N), raw data are still used 
if M M



 is greater than or around R R


; (b) Old sun-like stars. Entry numbers in columns 1, 2, 3, 4, 5, 7 are taken directly 
from [74] and entries of other columns are deduced or calculated based on the present theory. If the age information is not availa-
ble (N), raw data are still used (as transition stars) if M M



 is smaller than or around R R


. M M


 about equals to R R


 
is taken as the boundary between young and old sun-like stars.  

(a) 

HIP no. 
Age 

(Gyr) 
M/M⊙ R/R⊙ 

v sin i  
(m·s−1) 

P (s) 
B  

(measure, 
G) 

BR3 (G-m3, 
measure) 

Iω (J-s) 
B  

(eq, theory, G) 
D (kg/m3) Ro (m) 

42,333 1.88 1.038 0.98 4.00 × 103 1.0706 × 106 7.7 2.438 × 1027 2.253 × 1042 3.160 1.560 × 103 1.007 × 106 
42,403 1.04 1.189 1.17 6.30 × 103 8.1157 × 105 4.2 2.262 × 1027 4.850 × 1042 3.300 1.000 × 103 1.220 × 106 
43,410 1.88 1.211 1.24 9.00 × 103 6.021 × 105 8.1 5.196 × 1027 7.482 × 1042 3.840 8.970 × 102 1.359 × 106 
43,726 1.32 1.056 1.00 1.20 × 103 3.6416 × 106 3.7 1.245 × 1027 7.015 × 1041 1.240 1.490 × 103 7.520 × 105 
44,897 0.00 1.133 1.06 3.70 × 103 1.1877 × 106 6.6 2.645 × 1027 2.593 × 1042 2.775 1.340 × 103 1.043 × 106 
46,580 0.00 0.786 0.73 3.10 × 103 1.0291 × 106 13.5 1.767 × 1027 9.847 × 1041 4.110 2.850 × 103 8.186 × 105 
49,908 N 0.600 0.64 1.90 × 103 1.4715 × 106 3.4 2.996 × 1026 1.601 × 1041 3.128 3.240 × 103 6.551 × 105 
56,242 3.8 1.0069 1.00 3.30 × 103 1.4567 × 106 1.7 7.612 × 1026 2.024 × 1042 2.061 1.070 × 103 9.800 × 105 
56,997 N 0.850 0.90 2.40 × 103 1.6387 × 106 14.6 3.580 × 1027 1.016 × 1043 2.246 1.650 × 103 8.251 × 105 
57,939 N 0.661 0.66 5.00 × 102 5.7684 × 106 6.6 6.384 × 1026 1.208 × 1041 1.153 3.250 × 103 4.844  × 105 
62,523 1.40 1.004 0.93 2.8 × 103 1.4515 × 106 3.0 8.118 × 1026 1.4474 × 1042 2.653 1.763 × 103 9.013 × 105 
66,147 0.00 0.805 0.94 1.4 × 103 2.3098 × 105 7.3 9.952 × 1026 4.6173 × 1042 12.570 2.805 × 103 1.205 × 106 
66,275 1.64 1.341 1.46 1.5 × 104 4.2535 × 105 3.2 3.350 × 1027 1.6259 × 1043 4.210 2.549 × 103 1.650 × 106 
68,184 N 0.8 0.78 1.3 × 103 2.622 × 106 3.7 5.907 × 1026 4.491 × 1041 1.869 2.380 × 103 6.730 × 105 
71,181 1.96 0.78 0.74 1.8 × 103 1.7965 × 106 5.1 6.953 × 1026 5.752 × 1041 2.636 2.718 × 103 7.156 × 105 

113,829 1.20 1.066 1.01 3.2 × 103 1.3793 × 106 2.7 9.359 × 1026 1.9074 × 1042 2.548 1.461 × 103 9.656  × 105 
116,613 1.16 1.075 1.01 3.0 × 103 1.4712 × 106 5.2 1.802 × 1027 1.8033 × 1042 2.443 1.473 × 103 9.522 × 105 

544 0.0 0.977 0.88 4.1 × 103 8.4000 × 105 2.70 4.564 × 1026 1.763 × 1042 4.930 2.750 × 103 9.470 × 105 
3203 0.0 1.011 0.95 4.3 × 103 9.6546 × 105 7.2 2.077 × 1027 2.2864 × 1042 3.510 1.665 × 103 1.011 × 106 
3765 N 0.756 0.76 2.0 × 103 1.6606 × 106 3.6 5.317 × 1026 6.362 × 1041 2.625 2.432 × 103 9.339 × 105 
3979 0.76 0.939 0.88 1.8 × 103 1.9300 × 106 2.2 5.044 × 1026 9.115 × 1041 2.579 2.639 × 103 9.632 × 105 
7244 0.0 1.037 0.95 2.2 × 103 1.8870 × 106 3.5 1.010 × 1027 1.1999 × 1043 2.163 1.708 × 103 8.600 × 105 
7981 N 0.816 0.82 1.7 × 103 2.1079 × 106 3.3 6.122 × 1026 6.297 × 1041 2.074 2.090 × 103 7.320 × 105 

10,339 0.0 0.957 0.89 6.0  × 103 6.4821 × 105 10.9 2.585 × 1027 2.829 × 1042 5.005 1.917 × 103 1.066 × 106 
12,114 0.54 0.809 0.76 2.9 × 103 1.1452 × 106 1.2 1.772 × 1026 9.871 × 1041 3.649 2.602 × 103 8.191 × 105 
15,457 0.0 1.034 0.95 5.2 × 103 7.9836 × 105 7.7 2.221 × 1027 2.828 × 1042 4.114 1.703 × 103 1.066 × 106 
16,537 0.0 0.856 0.77 2.4  × 103 1.4020 × 106 10.9 1.536 × 1026 8.758 × 1041 3.207 2.650 × 103 7.950 × 105 
71,631 0.0 1.044 0.97 1.68 × 104 2.5230 × 105 45.3 1.391 × 1028 9.419 × 1042 9.530 1.615 × 103 1.440 × 106 
72,848 0.0 0.926 0.84 4.5 × 103 8.1573 × 105 7.6 1.515 × 1027 1.9378 × 1042 4.482 2.200 × 103 9.696 × 105 
79,578 1.92 1.042 1.00 1.4 × 103 3.1214 × 106 3.4 1.144 × 1027 8.0778 × 1041 1.377 1.472 × 103 7.789 × 105 
81,300 0.0 0.892 0.82 2.2 × 103 1.6290 × 106 0.6 1.113 × 1026 8.9076 × 1041 2.690 1.280 × 103 7.983 × 105 
82,588 0.72 0.927 0.85 3.8 × 103 9.7749 × 105 8.5 1.7561 × 1027 1.6576 × 1042 3.847 2.130 × 103 9.324 × 105 
88,945 2.04 1.039 0.9 7.9 × 103 5.4763 × 105 11.2 3.656 × 1027 4.499 × 1042 5.149 1.510 × 103 1.197 × 106 
88,972 N 0.791 0.79 2.1 × 103 1.6439 × 106 1.5 2.488 × 1026 7.265 × 1041 2.580 2.270 × 103 7.586 × 105 
91,043 0.03 1.06 1.09 39.0 × 103 1.2214 × 105 89.7 3.908 × 1028 2.4947 × 1043 13.940 1.160 × 103 1.837 × 106 
92,984 2.72 1.058 1.06 1.23 × 104 3.7660 × 105 11.3 4.528 × 1027 7.637 × 1042 6.239 1.250 × 103 1.366 × 106 
96,085 0.0 0.831 0.77 3.0 × 103 1.1216 × 106 1.8 2.765 × 1026 1.063 × 1042 3.708 2.570 × 103 8.343  × 105 
98,921 1.76 1.065 1.01 4.3 × 103 1.0264 × 106 9.8 3.397 × 1027 2.561 × 1042 3.178 1.460 × 103 1.049 × 106 

107,350 0.0 1.103 1.04 1.06 × 104 4.2875 × 105 14.8 5.601 × 1027 6.732 × 1042 6.009 1.390 × 103 1.324 × 106 
109,572 2.44 1.51 2.52 1.16 × 104 9.4934 × 106 0.8 4.307 × 1027 2.444 × 1041 0.200 1.330 × 102 1.027 × 106 
113,829 1.2 1.066 1.01 3.2 × 103 1.3793 × 106 2.7 9.359 × 1026 1.962 × 1042 2.550 1.460 × 103 9.657 × 105 
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(b) 

HIP no. 
Age  

(Gyr) 
M/M⊙ R/R⊙ 

v sin i  
(m·s−1) 

P(s) 
B  

(measure, G) 
BR3 (G-m3, 
measure) 

Iω (J-s) 
B  

(eq, theory, G) 
D (kg/m3) Ro (m) 

49,081 9.52 0.960 1.06 3.4 × 103 1.362 × 106 0.8 3.2055 × 1026 1.915 × 1042 2.210 1.138 × 103 9.667 × 105 

9350 5.44 0.979 0.97 1.9 × 103 2.231 × 106 0.5 1.5352 × 1026 9.990 × 1041 1.770 1.515 × 103 8.215 × 105 

49,756 8.28 0.975 1.07 1.5 × 103 3.117 × 106 2.1 8.6550 × 1026 8.663 × 1041 1.186 1.972 × 103 7.928 × 105 

50,316 8.00 1.070 1,46 2.6 × 103 2.454 × 106 3.1 3.2460 × 1027 2.248 × 1042 0.954 4.855 × 102 1.006 × 106 

55,459 5.64 1.009 1.04 2.1 × 103 4.545 × 106 1.6 6.0550 × 1026 5.809 × 1041 0.957 1.270 × 103 7.174 × 105 

56,242 3.80 1.007 1.10 3.3 × 103 1.457 × 106 1.7 7.6123 × 1026 2.024 × 1042 2.061 1.125 × 103 9.800 × 105 

67,422 N 0.870 1.01 0.3 × 103 1.471 × 107 4.8 1.6640 × 1027 1.594 × 1041 0.371 1.192 × 103 5.078 × 105 

111,274 11.4 0.979 1.38 2.0 × 103 3.015 × 106 1.2 1.0610 × 1027 1.496 × 1042 0.833 5.260 × 102 9.509 × 105 

113,896 6.88 1.036 1.24 2.8 × 103 1.935 × 106 2.5 1.6040 × 1027 1.991 × 1042 1.422 7.673 × 102 9.760 × 105 

114,378 6.72 1.009 1.13 1.0 × 104 4.794 × 105 1.11 5.3880 × 1027 6.502 × 1042 4.564 9.875 × 102 1.312 × 106 

114,456 9.16 0.939 0.97 2.1 × 103 2.019 × 106 1.2 3.6846 × 1026 1.059 × 1042 1.850 1.453 × 103 8.336 × 105 

114,622 12.5 0.794 0.77 1.8 × 103 3.365 × 106 1.1 1.5350 × 1026 3.385 × 1041 1.572 2.456 × 103 6.268 × 105 

115,951 6.76 1.098 1.39 2.9 × 103 6.074 × 106 1.1 9.9387 × 1026 8.449 × 1041 0.531 5.773 × 102 7.880 × 105 

116,106 6.28 1.015 1.15 3.7 × 103 1.358 × 106 2.0 1.0233 × 1027 2.391 × 1042 2.045 9.424 × 102 1.022 × 106 

116,421 11.5 0.947 1.27 1.6 × 103 5.550 × 106 1.0 6.8913 × 1026 7.330 × 1041 0.582 6.530 × 102 7.423 × 105 

682 612 1.045 1.12 1.5 × 104 3.352 × 105 4.4 2.0797 × 1027 9.440 × 1042 0.621 1.050 × 103 1.441 × 106 

1499 7.12 1.026 1.11 1.6 × 103 3.032 × 106 6.6 3.0370 × 1027 1.009 × 1042 1.190 1.059 × 103 8.235 × 105 

1813 10.9 0.965 1.18 2.8 × 103 1.842 × 106 2.4 1.3266 × 1027 1.765 × 1042 1.510 8.294 × 102 9.472 × 105 

4127 6.64 1.108 1.60 4.1 × 103 1.705 × 106 3.5 4.8230 × 1027 4.018 × 1042 1.122 1.600 × 103 1.164 × 106 

5985 5.12 1.101 1.25 5.0 × 103 1.093 × 106 1.4 9.1991 × 1026 3.811 × 1042 2.250 7.960 × 102 1.148 × 106 

6405 5.88 0.953 0.98 1.6 × 103 2.677 × 106 0.8 2.5331 × 1026 8.273 × 1041 1.420 1.430 × 103 7.837 × 105 

7276 5.04 1.242 1.80 4.2 × 103 1.873 × 106 0.8 1.5696 × 1027 5.198 × 1042 0.955 3.007 × 102 1.241 × 106 

7513 3.12 1.310 1.64 9.6 × 103 7.465 × 105 2.5 3.7100 × 1027 1.142 × 1043 2.280 4.194 × 102 1.511 × 106 

7585 5.08 1.022 1.04 2.6 × 103 1.748 × 106 2.5 9.4610 × 1026 1.530 × 1042 1.980 1.283 × 103 9.139 × 105 

7734 3.76 1.010 0.98 2.4 × 103 1.784 × 106 6.6 2.0898 × 1027 1.315 × 1042 2.110 1.515 × 103 8.800 × 105 

8159 7.84 1.112 1.73 2.5 × 103 3.024 × 106 0.4 6.9680 × 1026 2.663 × 1042 0.651 3.033 × 102 1.050 × 106 

8362 10.1 0.836 0.85 1.3 × 103 2.857 × 106 0.9 1.8594 × 1026 5.175 × 1041 1.600 1.945 × 103 6.970 × 105 

9829 11.3 0.877 0.97 2.2 × 103 1.927 × 106 2.3 7.0622 × 1026 1.036 × 1042 1.820 1.357 × 103 8.291 × 105 

10,505 7.88 1.011 1.09 1.5 × 103 3.176 × 106 0.8 3.4854 × 1026 9.151 × 1041 1.170 1.102 × 103 8.037 × 105 

14,150 7.60 0.962 0.99 0.8 × 103 5.408 × 106 0.9 2.9380 × 1026 4.218 × 1041 0.873 1.400 × 103 6.622 × 105 

9911 7.16 1.080 1.36 2.7 × 103 2.201 × 106 0.8 6.7704 × 1026 2.196 × 1042 1.160 6.060 × 102 1.000 × 106 

12,048 8.68 1.052 1.39 1.9 × 103 3.197 × 106 1.0 9.0352 × 1026 1.538 × 1042 0.832 5.530 × 102 9.151 × 105 

113,357 6.76 1.054 1.15 2.6 × 103 1.933 × 106 0.6 3.0700 × 1026 1.745 × 1042 1.614 9.780 × 102 9.444 × 105 

11,548 6.76 1.101 1.81 4.3 × 103 1.839 × 106 0.3 5.9850 × 1026 4.744 × 1042 0.877 2.620 × 102 1.213 × 106 

60,353 3.28 1.163 1.23 6.0 × 103 8.530 × 105 0.7 1.8168 × 1027 4.976 × 1042 2.902 8.810 × 102 1.228 × 106 

74,432 10.2 0.992 1.19 1.8 × 103 2.889 × 106 0.7 3.9740 × 1026 1.176 × 1042 1.082 8.280 × 102 8.555 × 105 

76,114 8.44 0.957 1.05 1.0 × 103 4.589 × 106 1.9 2.7230 × 1026 2.553 × 1042 0.899 1.660 × 103 7.091 × 105 

79,672 5.84 1.005 1.04 2.6 × 103 1.748 × 106 2.3 8.6924 × 1026 1.504 × 1042 1.608 1.260 × 103 9.705 × 105 

109,378 10.6 0.986 1.06 1.8 × 103 2.563 × 106 0.9 3.2055 × 1026 1.046 × 1042 1.404 1.169 × 103 8.310 × 105 
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Figure 32. The surface dipole field at the pole vs the parameter ( )sinv i ; here v is the 

speed of rotation of the equator and i the angle between the magnetic axis and the line of 
sight. The density of this groups of stars in red ranges from 3 32.09 to 3.25 10 kg m×  
(power index = 0.5506). The other group of stars in light red have densities in the range 
of 3 3900 2.0 10  kg m− ×  (power index = 0.5563, practically the same as the other one). 
The age of all the stars in this diagram are below about 3.0 Gyr. 

 

 
Figure 33. Putting the measured data based on Table 9(a) into Figure 32, we have Fig-
ure 33 above, showing that the experimental result (triangles; the deep/light blue ones 
pertain to the higher/lower density groups respective) and theoretical prediction (circles) 
are rather close in astronomical estimation. The power indices of the two straight lines 
are respectively 0.5506(deep reed) & 0.5563 (light red). The correlation coefficients are 
already specified in Figure 32. 
 

 

Figure 34. The theoretically derived polar magnetic field vs the period of rotation ( )P s  

for a group of sun-like stars within the density range of ( ) 3 32.09 3.25 10  kg m− × , in red 

color. The other sub-group of circles in light red indicates those within the density range 
of 900 to 3 32.0 10  kg m× . The power indices are respectively −0.741 and −0.716. The 
ages of these stars are below ~3 Gyr. 
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the last section for other star groups. Putting the measured data listed in Table 
9(a) into Figure 34, we arrive at Figure 35, and we observe that both the meas-
ured (triangles) and theoretical (circles) magnetic fields decrease with increasing 
P with the same general trend. 

The only parameter value we have assumed, based on the argument explained 
twice before, is the Fermi energy of the spinor to be equal to the rest mass of electron. 
The cool stars considered in this sub-section and the next is similar to the regime of 
the Second Law of angular momentum we derived in [2] and this paper.  

Now we proceed to analyze the relation between the magnetic parameter 3B R−  
and the angular momentum. In Figure 36 we present the graph with the magnetic 
parameter ( )3 3GaussBR m−  vs the angular momentum of a group of sun-like 
stars with age around and below 3 Gyr. The triangles are the measured values (dee-
per blue for density greater than 3 32.0 10  kg m× , and light blue ones pertain to 
density below 3 32 10  kg m× . The circles represent points that are derived and 
calculated from the theory of Section (4), using the measured values of (M, R, P). 
Deep red ones have densities in the range 3 32.09 to 3.25 10  kg m×  and the light 
red ones have densities between 3 3900 to 2.0 10  kg m× , as in other figures. The 
straight line threads through the theoretical equatorial field “calculated points”, and 
the upper circular points pertain to the polar fields of the same stars. From the graph, 
the average of the measured data falls in between these two trends, having about the 
same slope of 0.75. 
 

 
Figure 35. Putting the measured data as listed in Table 9(a) into Figure 34, we obtain 

the above graph, showing that both the measured (triangles; the deep/light blue ones per-

tain to the higher/lower density groups respective) and theoretical polar magnetic fields 

(circles) decrease with increasing P. The power indices of the two straight lines are re-

spectively-0.741 (deep reed) &−0.716 (light red). The correlation coefficients are already 

specified in Figure 34. 



P. C. W. Fung, K. W. Wong 
 

725 

 

Figure 36. The magnetic parameter ( )3 3GaussBR m−  vs the angular momentum of a 

group of sun-like stars with age around and below 3 Gyr. The triangles are the measured 
values (deeper blue for density greater than 3 32.0 10  kg m× , and light blue ones pertain 

to density below 3 32 10  kg m× ). The circles represent points that are derived and calcu-
lated from the theory of Section (4), using the measured values of (M, R, P). Deep red 
ones have densities in the range 3 32.09 to 3.25 10  kg m×  and the light red ones have 

densities between 3 3900 to 2.0 10  kg m× , as in other figures. Many light red and deep 
red circles overlap; the light ones cover up the deep red ones. The straight line threads 
through the theoretically predicted equatorial magnetic field data, and the upper points 
(follow a straight line), pertain to the polar fields. From the graph, the average of the 
measured data falls in between these two trends, having about the same slope of ~0.75. 

7.3. Comparison between Theoretical Deduced Surface  
Magnetic Fields and Measured Values for Old Sun-Like  
Stars with Age Greater Than about 3 Gyr 

We will not take too much space to indicate all graphs above for the older sun- 
like stars, because there is high similarity in some. Based on data listed in Table 
9(b), in Figure 37, we present the relevant graphs that are related to our discus-
sion--Mass vs radius of sun-like stars with age between ~3 and 13 Gyr. The red 
triangles represent those with mass density between 1.0 to 2.5 times 3 310  kg m  
and the purple ones have densities below 31000 kg m . The definition of young 
and old is arbitrary; therefore there is one star appearing both the old and young 
graphs for the transition. The data are all experimentally measured with various 
methodologies for different variables of the data set (M,R,P).The power index is 
0.4649 for the high density ones, where it is 0.3391 for the low density ones; the 
correlation is not excellent, but good enough to show an important natural as-
pect in stellar evolution: as this group of stars ages, the mass does not decrease, 
implying that matter is being continuously generated, with increase in size of the 
star, but keeping a lower mass density. Note that the sun has been predicted to 
become a red giant. 
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Figure 37. Mass vs radius of sun-like stars with age between ~3 and 13 Gyr. The red tri-
angles represent those with mass density between 1.0 to 2.5 times 3 310  kg m  and the 

purple ones have densities below 31000 kg m . The definition of young and old is arbi-
trary; therefore there is one star appearing in both the old and young graphs for the tran-
sition. The data are all experimental measured with various methodologies for different 
variables of the data set (M, R, P). The power index is 0.4649 for the high density ones, 
where it is 0.3391 for the low density ones; the correlation is not excellent, but good 
enough to show an important natural aspect in stellar evolution: as this group of stars 
ages, the mass does not decrease, implying matter is being continuously generated, with 
increase in size of star, but keeping a lower mass density. We cannot follow the stellar 
evolution as the data are associated with different groups in location. There are forty star 
samples there, but many are overlapping in the middle. The trend is obvious from Phys-
ics, because the mass is around one solar mass, below the Chandrasekhar limit, and the 
gravitational attraction cannot overcome the centrifugal force, though the rotation speed 
is slowing down. The upper limit of the vertical axis is 303.0 10  kg× . 
 

The variation of the theoretical equatorial fields of old sun-like stars with 
changing P is demonstrated in Figure 38(a). The red circles represent those 
stars with mass density in the range 3 310  kg m  and 3 32.5 10  kg m× . The 
pink ones pertain to density in the range from several hundred 3kg m  to 

31000 kg m . Notice that for the young star group, the slopes are very close, but 
the slopes for the old stars are sensitive to change in density. This is expected as 
there is a significant change in star radius as a star evolves in its old age, in this 
sun-like group. Having identified the slopes for the relatively high and low den-
sity subgroups of the old stars, we can put the theoretical equatorial fields to-
gether in Figure 38(b). The pink circles now represent the old stars with mass 
density in the whole range from several hundred 3kg m  to 3 32.5 10  kg m× . 
The averaged slope obtained here is in line with the B-P plots of other groups 
such as NGC 6819, low-to-mid mass main sequence stars plus others, showing 
slopes around −0.75, as analyzed earlier in the previous section. 
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(a) 

 
(b) 

Figure 38. (a) The theoretical equatorial fields of old sun-like stars change with variation 
of rotation period P. The red circles represent those stars with mass density in the range 

3 3 3 310  kg m  to 2.5 10  kg m× . The pink ones pertain to densities in the range from 

several hundred 3 3kg m  to 1000 kg m . Notice that for the young star group, the slopes 
are very close, but the slopes for the old stars are sensitive to change in density. This is 
expected as there is a significant change in star radius as a star evolves in its old age, in 
this sun-like group; (b) The theoretical equatorial fields of old sun-like stars change with 
variation of rotation period P. These pink circles represent those stars with mass density 
in the whole range from several hundred 

3 3 3kg m  to 2.5 10  kg m× . The averaged slope 
obtained here is in line with the B-P plots of other groups such as NGC 6819, low-to-mid 
mass main sequence stars plus others, showing slopes around–0.75, as analyzed earlier. 
The relative low correlation is due to the presence of samples with very low mass density 
~ several hundred kg/m3 only. 
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Using raw data in [74], the magnetic parameter 3B R−  and angular mo-
mentum relations of the old star samples are shown in Figure 39, with triangle 
representing the measured values and the circles representing the theoretical 
equatorial magnetic fields, with no distinction between density ranges here. 

7.4. Explanation of the Magnetic Bode’s Law and the Law of  
Intrinsic Dipolar Field for Stellar Objects 

We have provided names “young” & “old” for sun-like stars. The separation is 
not arbitrary. If we go through the data in Table 9(a) and Table 9(b), we will 
notice that most of the young stars have masses and radii satisfying roughly 
M M R R>

 

. The reverse is true for old stars. In other words, we may 
roughly take a critical value of 212.86 10  kg mM R = ×  (i.e. the value M R

 

) 
as an age boundary, which is gradual. The magnetic fields of the young ones are 
larger by almost an order of magnitude. Before we explain the magnetic Bode’s 
Law, let us put the measured surface fields for the young and old stars together 
in the 3BR Iω−  graph, covering a mass density range of several hundred to 

3 33.25 10  kg m×  (Figure 40). Triangles (darker ones are young, and the ligh-
ter blue ones are young) are data reported by measurement.  

Now let us recollect that we have derived an explicit expression for the equa-
torial field, represented by 

( )3 4 3 2constant B x M P R=                (7.1) 

And the magnetic parameter is 

( )3 43 3 2
1BR C x M P R=                 (7.2a) 

( )3 4
2C x Iω=                      (7.2b) 

 

 
Figure 39. The magnetic parameter 3B R−  vs angular momentum of the solid star 
model for sun-like stars with age between around 3 Gyr and 13 Gyr, as density ranging 
from several hundred to about 2.5 × 103 kg/m3.. Triangles are the measured data, and cir-
cles are equatorial dipolar fields predicted from the theory of Section (4) using raw data 
in [74]. The line of best fit for the measured points is roughly estimated to be between the 
lines pertaining to the equatorial and polar fields respectively. 
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Figure 40. The magnetic parameter 3BR  (B is the equatorial field) is plotted against the 
angular momentum Iω  for both young and old sun-like stars within the range of 0.0 to 
13 Gyr and mass density ranging from several hundred to 3 33.25 10  kg m× . Triangles 
(darker ones are young, and the lighter blue ones are old stars) are measured data re-
ported, and the red and pink ones are results of theoretical prediction according to the 
derivation in Section (4). Many pink-red ones overlap. In fact the red/pink circles 
represent the result of proving one is equal to one, because the linear relationship of the 
above two variables satisfy an equation (derived in this paper) which precisely states such 
relation. The limit of the vertical scale is 28 34.0 10 G m× − . 
 
where C1, C2 are constants. So our theoretical derivation tells us that if we plot 

( )3log BR  against ( )log Iω , we should see a straight line with slope 0.75. The 
red & pink circles are points using the “raw data” from [74], as listed in Table 
9(a) and Table 9(b). The line of best does give a slope of 0.75 with perfect cor-
relation. Many pink-red ones overlap. In fact, the red/pink circles represent the 
result of proving one is equal to one, because the linear relationship of the above 
two variables satisfy an equation which precisely state such relation. Note that 
Maxwell equation does not explicitly appear in our equation. According to the 
5D projection theory, it is the structure of the spinors inside the void core that 
provides the origin (i.e. the electric current) of the magnetic field. Therefore, the 
mystery of the “hidden Maxwell equation” or the Magnetic Bode’s Relation/Law 
in astronomy can be explained by this model. We would remark also that such a 
law is satisfied by cool stars only-- precisely the condition of our Second Law of 
angular momentum [2]. The solid sphere model is very rough for a lump of 
plasma, as explained before. Therefore, we should expect there are some devia-
tions in the slope of 0.75 in experimental findings. 

Let us finally proceed to obtain demonstration of the Law of Intrinsic Dipolar 
Magnetic Field for Stellar Objects. When the equatorial field ( )B eq  is plotted 
against oR R , the relation is strictly linear in the log-log plot, as demonstrated 
by the track of the pink circles for old stars in Figure 41. The power index is 
about 3.0 according to our theory. In other words, this general Law of Intrinsic 
Magnetic Dipole Field for stellar objects derived in this paper can simply be 
stated as 
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Figure 41. The theoretically deduced equatorial magnetic fields of sun-like stars with age 
> about 3 Gyr vs the normalized void radius oR R , using the “raw data” from [74]. The 
power index is 3.0 according to our theory. This is the general Law of Intrinsic Magnetic 
Dipole Field for stellar objects derived in this paper. For comparison, the measured sur-
face magnetic fields published in [74] are plotted against oR R  also in the same figure, 
with blue triangles as data points. We have shown only samples of one star group as an 
illustration. Other measured data points of the young stars behave in the same way. This 
law has been applied to analyze all the 8 star groups in Sections (6) & (7). Incidentally, 
there are 40 (circles) stars along the linear line here, with lots of overlapping of star 
points. As in other graphs, the theoretical line goes through the midst of the experimental 
data; in this case, Ro is deduced from theory and the range of Ro for each star group is ra-
ther narrow. The upper limit of the vertical scale is 20 Gauss. The measured surface fields 
of the old sun-like stars fall into the range of a fraction of a Gauss to about ten Gauss. The 
maximum of the horizontal axis is 33 10−× . 
 

( )3Dipolar magnetic fields of stellar objects constant oR R=        (7.3) 

For comparison, the measured surface magnetic fields published in [74] are 
plotted against oR R  also in the same figure, with blue triangles as data points. 

We have shown only samples of one star group as an illustration. Other 
measured data points of the young stars behave in the same way. This law has 
been applied to analyze all the 8 star groups in Sections (6) & (7). We shall not 
repeat to show such similar graphs for other star groups. The reader can test this 
law readily. Such results show that once the “mechanical” data set (M, R, P) is 
obtained, the magnetic field can be calculated, without the explicit use of the 
Maxwell equations. This law is in line with the Law specified in Equation (7.2b) 
and the linear relation of log logB P−  studied in details in Section (6). Inci-
dentally, there are 40 (circles) stars along the linear line in Figure 41, with lots of 
overlapping of star points. As in other graphs, the theoretical line goes through 
the midst of the experimental data; in this case, oR  is deduced from theory and 
the range of oR  for each star group is rather narrow. The upper limit of the 
vertical scale is 20 Gauss. The measured surface fields of the old sun-like stars 
fall into the range of a fraction of a Gauss to about ten Gauss. 
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7.5. On Dipolar Magnetic Fields of the Solar Planets and the  
Planets of the Trappist-1 System 

There are some mysteries in the properties of the magnetic fields of our planets. 
Before we analyze them, let us list the relevant data/variables in Table 10 based 
on data from [75] [76] [77]. We plot the ( ) ( ), theory,B eq G P s−  graph, treat-
ing them like stars. The densities of the 9 planets known have averaged densities 
ranging from 3 30.687 10  kg m×  (Saturn) to 3 35.51 10  kg m×  (Earth), not 
too wide a range, and we show the B-P relation (dark green circles) as one group 
in Figure 42. The power index is −0.871. The circle in the middle of the figure 
indicates the B-P data set of the Pluto-binary. 

The reported measured equatorial fields of 7 planets are indicated by the 
orange triangles. According to rotation periods and their distances from the sun, 
it appears that five pairs appear-(i) Mercury ( 65.067 10  s× , large; 105.79 10  m× ) 
& Venus ( )7 112.0995 10  s, large;1.082 10  m× × ; (ii) Earth  

( )4 118.64 10  s;1.496 10  m× ×  & Mars ( )4 118.864 10  s; 2.279 10  m× × ; (iii)  
Jupiter ( )4 113.573 10  s;7.783 10  m× ×  & Saturn ( )4 123.836 10  s;1.427 10  m× × ; 
(iv) Uranus ( )4 126.12 10  s; 2.871 10  m× ×  & Neptune  

( )4 125.80 10  s; 4.4971 10  m× × ; (v) Pluto as a binary system  

( )5 125.52 10  s;5.913 10  m× × . 
In our model, the conformal projection of 4x  generates the SU (3) quarks. A 

proton is composed of a set of u, u, d quarks, due to gauge confinement. The 
bare total mass of these three quarks is , 34 MeVp qm = . Upon complete gener-
ation of electrons, we have a certain void radius .oR . We have derived, based on 
the uncertainty principle, when equal number of electrons and protons (i.e. hy-
drogen atoms) are generated, the size of the current loop in the 5D void is fixed: 

( )1 68ox R′ = . The types and number of the quarks generated by P1 are deter-
mined by the principle of charge conservation and uni-direction nature of time. 
Since negative charges are generated by Po, only massive particles with positive 
or zero charges (forming hadrons), which satisfy gauge invariance in Lorentz 
space-time, can come to exist from this conformal projection P1. The lowest  

 
Table 10. The solar system. Parameters include mass M, radius R, period of rotation P, mass density D and the deduced void ra-

dius oR  governed by the Second Law ( )cT T  taking the Fermi energy of the spinor pairs to be 0.5 MeV . The angular mo-

mentum ( )I J sω −  and the magnetic parameter ( ) 3 3equatorial, theory,  in units of GaussB G R m− , mass density are also en-

tered (see [75] [76] [77] [78]). 

Planet Mass (kg) Radius (m) P(s) R3 (m3) BR3 (G-m3) Iω (J-s) B (eq, theory, G) D (kg/m3) Ro (m) 
Sun 1.990 × 1030 6.955 × 108 2.160 × 106 3.364 × 1026 5.921 × 1026 1.100 × 1042 1.7600 1.410 × 103 8.453 × 105 

Mercury 3.300 × 1023 2.440 × 106 5.067 × 106 1.453 × 1019 5.343 × 1017 9.745 × 1029 0.0368 5.427 × 103 8.164 × 102 
Venus 4.867 × 1024 6.050 × 106 2.100 × 107 2.214 × 1020 5.400 × 1018 2.133 × 1031 0.0244 5.204 × 103 1.766 × 103 
Earth 5.972 × 1024 6.370 × 106 8.640 × 104 2.585 × 1020 4.136 × 1020 6.800 × 1033 1.6000 5.510 × 103 7.530 × 103 
Mars 6.417 × 1023 3.390 × 106 8.864 × 104 3.894 × 1019 2.992 × 1019 2.087 × 1032 0.7680 3.940 × 103 3.124 × 103 

Jupiter 1.898 × 1027 6.991 × 107 3.573 × 104 3.417 × 1023 2.224 × 1024 6.780 × 1038 6.5100 1.330 × 103 1.313 × 105 
Saturn 5.684 × 1026 5.823 × 107 3.836 × 104 1.975 × 1023 6.481 × 1023 1.374 × 1038 3.2820 0.687 × 103 8.714 × 104 
Uranus 8.682 × 1025 2.540 × 107 6.120 × 104 1.639 × 1022 3.214 × 1022 2.300 × 1036 1.9610 1.270 × 103 3.200 × 104 

Neptune 1.024 × 1026 2.460 × 107 5.800 × 104 1.489 × 1022 3.610 × 1022 2.400 × 1036 2.4250 1.638 × 103 3.327 × 104 
Pluto 1.471 × 1022 1.184 × 106 5.520 × 105 1.660 × 1018 9.225 × 1016 9.380 × 1028 0.0556 1.880 × 103 4.550 × 102 
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Figure 42. Theoretical equatorial magnetic fields of the 9 planets, treating them as stars, 
are indicated by the deep green circles. Taking into the consideration of the planets being 
appearing as 5 pairs and theoretically from Perelman entropy mapping as discussed in 
Section (7.5), B (eq, theory, G)/5 for the 9 planets are represented by the bright green cir-
cles—the B-P plot shows good correlation with a power index of −0.871. The reported 
measured fields are represented by orange triangles, and appear to be much closer to the 
bright green circles. 
 
energy and thus rest mass of hadrons are the protons (composed of (u, u, d) 
quarks) and neutrons (composed of (u, d, d) quarks), meaning that the Lorentz 
mass shell contains only u and d quarks of charges (2/3)e, and -(1.3)e. To create 
a proton (u, u, d) and a neutron (u, d, d) from P1, it requires 2 e massless spi-
nors states, but just 1-e massless spinor state. When all the possible elec-
tron-proton pairs are created, the system can only generate neutrons, or the sets 
of (u, d, d) quarks. The quark mass for neutron is ( )0.5

, ,2 3 0.8165p q p qm m⋅ = . 
Hence, the reduced quark mass for a (p, n) pair is ( ) , ,0.8165 1 2 0.908p q p qm m+ = , 
and the loop radius r′  increases by about 10%. As more matter is effectively 
“deposited” on the matter surface, R increases essentially, and there is a decrease 
of oR R . Thus, according to Equations (4.2.5) & (4.2.6), ( )3constant oB x R R=  
and it could decrease, despite there is increase of r′ . 

We plot the average surface temperature against distance from the sun in log- 
log scale (Figure 43), showing a straight line with power index of −0.593. If the 
planets were “materials” thrown out from the sun whose age is 4.6 Gyr, the heat 
energy of the planets would have been dissipated as thermal radiation, and the 
slope would be much steeper. We speculate that the solar system evolved from a 
Perelman entropy mapping. The angular momenta of the planets and the sun  
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Figure 43. Average surface temperature ( )T K  vs distance from the sun for the planets 

starting with mercury on the left, ending with Pluto on the right. 
 
contribute to the total angular momentum of the Milky Way during the initial 
epoch. The rotation rate could have been deduced from the temperature if one 
were to observe these objects passed through a wide temperature range. Now 
these objects are already in the “cool range”, i.e. under the Second Law regime. 
Due to different processes of evolution and the fact that these stellar objects have 
very small masses as compared to the sun, the cooling process is very effective 
(so that the core temperature of the sun is >> than of the planets), and the mass 
density is in general much larger than that of the sun for the inner two pairs of 
planets. 

In deriving the angular momentum of the e-trinos states in [2], the norma-
lized void radius oR R  is a function of T and even on cooling down to the 
Second Law region with 910  KT < , we have assumed that the temperature of 
the core is much greater than that on the surface, so that a large T gradient is es-
tablished. Hence, the spinor state energy of the in-phase e-trinos depends on the 
core temperature and these spin states generate a certain amount of angular 
momentum. Such angular momentum is balanced by the angular momentum of 
the stellar object as we observe it. This balance is true for stars and most planets. 
However, the said T gradient is greatly reduced in Mercury and Venus because 
they are close to the solar surface, and their surface temperatures are high on re-
ceiving photons from the sun. Thus the spin state energies of the voids of Mer-
cury and Venus are much lower than those of other planets. Moreover, there is 
coupling between the planet’s spin and its orbital angular momentum around 
the Sun. These two factors lead to the observed large P values of the Mercury 
and Venus (the same argument applies to the moon).If there were a planet ex-
isting almost on the solar surface, that planet would have practically zero spin 
(i.e. P →∞ ) and an observer on the Sun sees only one half of the surface. 
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Thus, we consider that the generation of planets via the existence of the star 
sun is represented by the same group symmetry, and the 9 planets can be 
counted as 5 twins (with Pluto with its binary as a pair, but lying in the asteroid 
zone of the solar system). The arrangement of these planets shows Lie Group 
symmetry, due to SU(3) symmetry. There are two parity of choices in each ele-
ment of the five (pairs) representation. In other words, there is a(p, n) duplet at 
the mass level, and the stellar object would split into two in view of, effectively, 
the SU(3) symmetry. Since the observed data suggests there are 5 pairs, similar 
to correct for spin multiplicity in a Fermi gas, the possible quantum states need 
to be divided by 5 when we do the averaging process for the loop current in cal-
culating the dipole magnetic field. Thus we divide the dipole field strength by 5, 
and show the B-P graph in Figure 42 also (bright green circles). It is interesting 
to note that the measured values are then close to the theorized ones; the theo-
retical and measured values of the Earth overlap. Field of Mars is far off. We will 
provide an explanation of this abnormality below. 

Let us first come back to the process of generation of mass in an individual 
planet, after splitting into pairs. Normally the ec current states of different ener-
gy E, and opposite charge and velocity signs, are statistically random, and there-
fore the parity bias in surface mass creation by P1, is not favored, but non-zero. 
If such abnormal distribution occurs, the equal number of states within each 
hemisphere can then be broken. Let us propose a simple scenario for P1 projec-
tion in Mars. Suppose the 2 e states came from Northern hemisphere, while the 
-e state, came from 1 loop in the Southern hemisphere. If that had happened, 
then the remaining e spinors in the north loop was less than the remaining -e 
spinors in the south. Such a repeated P1 projection, during Mars cooling (note 
that there are many volcanoes detected), will result in the magnetic field strength 
at the South Pole much greater than that at the North Pole [78]. For a similar 
reason but to a less degree in the stated parity bias property during the P1 pro-
jection, Venus could have a very weak magnetic field. 

The dipolar planetary magnetic field shields the stellar particles radiation 
from impacting the planet’s surface without much energy lost; the magnetic field 
also serves to sustain the planetary atmosphere and to reduce possible material 
ejection from the planet’s surface. Thus Mars with an uneven dipole field and a 
thin atmosphere is known to have sent rocks that hit the earth. 

In passing, we would remark that projection Po of the in-phase spinor states 
on the 3D surface of the void generate electrons in the Lorentz manifold, but 
leaving behind net positive massless spinor states on the void surface. A net cur-
rent resulting from such states would generate magnetic field. Similarly, projec-
tion P1 of the out- of-phase spinor states in the 1D loops of the void generate 
quarks in the Lorentz manifold, but leaving behind net negative massless spinor 
states in the current loops of the void surface. Both events would lead to varia-
tion of the surface magnetic fields. Whether this model could explain the rever-
sal of dipole polarity is outside the scope of this paper. We would also emphasize 
that most quarks and electrons were created when Perelman mappings were be-
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ing implemented. The number of in-phase and anti-phase spinor states left over 
within the 3 1D D⊗  structure represents only a very small amount of the 
original number at the initial instant when there is infinite amount of energy in 
the universe. 

According to [79], the basic data sets of the six planets nearest to the newly 
discovered Trappist-1 system are  

( )0.85 , 1.09 , 1.51 daysE EM M R R P= = =   

( )1.38 , 1.06 , 2.42 daysE EM M R R P= = =   

( )0.41 , 0.77 , 4.05 daysE EM M R R P= = =   

( )0.62 , 0.92 , 6.10 daysE EM M R R P= = =   

( )0.68 , 1.04 , 9.21 daysE EM M R R P= = =   

( )1.34 , 1.13 , 12.35 daysE EM M R R P= = =  

where &E EM R  are respectively the mass and radius of the Earth. The equa-
torial dipole magnetic fields of these planets according to Equation (4.2.12) are 
respectively 0.925 Gauss; 0.974 Gauss; 0.43 Gauss; 0.33 Gauss; 0.216 Gauss; 0.255 
Gauss, and the Trappist-1 star has a equatorial field of 59.8 Gauss. These planets 
have dipole fields of the same order of magnitude as that of Earth, while the 
star’s dipole field is many times that of the Sun. In our solar system, the solar 
wind, magnetic fields associated with sun’s spots are however much greater than 
the dipole field and causes deformation of the field line patterns creating the 
radiation belts in the magneto-spheres of the earth. As the planets in the Trap-
pist-1 system are closer to their star than earth to the Sun, we need to know 
more about the sporadic fields, if any, from Trappist-1 before we can tell wheth-
er the dipole fields of these 6/7 planets can provide enough shielding from the 
star high energy particles radiation (for living organisms to survive). If oceans 
are present on these planets, at least deep water living organisms may have 
chance to survive even if the stated shielding is not strong enough, because the 
radiation energy released from this cool dwarf star is much weaker than that of 
the Sun. Thus knowledge of the magnetic fields is one decisive factor for us to 
consider in our search for living organisms there, and in what form. Before we 
get more information on such research, we show the B-P relation in Figure 44. 
Moreover, the magnetic parameter B-R3 is plotted vs angular momentum Iω  
in Figure 45. The good correlations indicate that these planets, like cool stars sa-
tisfy the linear B-P relation (log-log plot) and the Magnetic Bode’s law. 

7.6. Summary of the Discoveries Reported in This Paper 

We have sketched the steps that during the mapping from 5D to 4D manifold, the 4th 
spatial variable in the 5D space-time structure would become the (non- zero) current 
loop with radius x’ at the 5D-4D boundary (one around each magnetic pole). In the 
unified 5D theories of Kaluza-Klein and Einstein, this space variable is compacted to 
zero, leading to gravitational singularity and hence black holes. Our deduction shows 
that such gravitational singularity does not exist, and the conclusion is well sup- 
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Figure 44. The theoretical equatorial dipole magnetic field of the six planets nearest to 

the newly discovered Trappist-1 system against the period of rotation ( )P s . The slope 

is –0.764; values of the magnetic fields are stated in the text. 
 

 
Figure 45. Change of 3BR  with respect to variation of angular momentum is indicated, 
giving a power index of 0.86 for the 6 planets of the Trappist-1 system. 
 
ported by the numerous detections of stars with masses > 100 M⊙ (the largest one 
reported so far has a mass of 365M



) during the past two years. 
Comparing the time intervals after the Big Bang when the lightest lepton 

(electron) is generated and that when the three quarks (building up a proton) 
join to form a proton, we obtain the radius of the loop current x’ in terms of 
the void radius Ro:  

,   where  1 68ox Rη η′ = =                  (7.6.1) 

for all stellar objects with hydrogen as fuel. The modification on x’ when the 
next heavier element (Helium) becomes the fuel of the star is also derived. 

Analyzing the early stage of formation of a galaxy based on the 5D projection 
theory, we have provided an answer to the detection of unexpected gamma 
ray bubbles, one above, and one below a galaxy. 

Since Maxwell equations are classical and valid in both the 5D and 4D mani-
folds, we have derived an explicit expression of the number density of the spinor 
pairs (which satisfies the Fermi-Dirac distribution but also form the current loop 
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with radius x’ in the classical sense) at the 4D-5D boundary, with quantum sig-
nature based on (i) the uncertainty principle & (ii) quantum statistics. Viewed in 
a 4D Lorentz manifold, this current loop must produce a magnetic field in the 
classical sense. Therefore we simply apply the Biot-Savart law, with quantum 
nature incorporated in the number density of the e-trinos, to derive the expres-
sion of a distant magnetic field as observed on the matter surface of a stellar ob-
ject. The surface magnetic field is found to be 

{ } ( ){ }
{ } ( ){ }       

  
 

  
 

∫

∫

3 43 3
0

3 42
0

constant 1 d . exp 1

d . exp 1

f

f

B R E E E E

MR P E E E E

∞ ∗ ∗

∞ ∗ ∗

= − +

− +

η
     (7.6.2) 

The variables are only M, R, P as the Fermi energy fE  is taken to be the rest 
mass of electron because it is the lightest lepton generated, as explained in details 
in [2] and this paper. We call (7.6.2) as the Law of Intrinsic Dipole Magnetic 
Field (for stellar objects). 

Expanding ( )3
0

d . exp 1fE E E E
∞ ∗ ∗  − + ∫  and ( )0

d . exp 1fE E E E
∞ ∗ ∗  − + ∫   

as convergent series, we discover that the approximate expression for B can be 
separated into three regions in temperature domain. In the high temperature 
domain where fkT E , 

[ ] ( )3 4 3 21 1 = ×    B M P R kTconstant            (7.6.3) 

We call Equation (7.6.3) the Law of Intrinsic Dipole Magnetic Field for Hot 
Stars. This law is applicable to fast rotating pulsars at very high temperature. 

On the other hand, if fkT E , Equation (7.6.2) becomes approximately 

( ) [ ]3 3 43 3 21o  = × = ×  B  R R   M P Rconstant constantη     (7.6.4) 

Thus under the low temperature domain, B is independent of T. We call Equ-
ation (7.6.4) as the Law of Intrinsic Dipole Magnetic Field for Cool Stellar 
Objects. Such an interesting result is obvious because the angular momen-
tum of the object is a function of the void radius Ro and the amount of cur-
rent generated (hence the dipole field strength) near the magnetic poles in 
the 4D-5D boundary is also a function of Ro. The current density, which 
usually appears in Maxwell equations, is illuminated, giving the “un-ex- 
pected result” as specified in Equation (7.6.4). The transition temperature 
between the two domains is 9several times 10  KcT = , which is > the Bethe fu-
sion temperature as discovered for angular momentum in [2]. We call such a 
temperature domain as the Law of Transition between Hot and Cool Stars. 

Taking a cool star as a solid sphere as an approximation, it is elementary to 
show from Equation (7.6.4) that 

( ) ( )3 = +BR Iωlog log constant                (7.6.5) 

which is simply the “mysterious Magnetic Bode’s Law” found experimentally for 
cool stars. 

We have found that for samples within a range of mass density, the log logB P−  
plot is a straight line. Since for a star, P is inversely proportional to the rotation 
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speed of the equator v, our analysis of nine star groups in Sections (6) & (7) ex-
plains why experimentally the relation between log (B) and log (v) (or log P) 
is found to be linear for many stars. Such a graph for all the star samples in-
volved in this paper is presented in Figure 46. 

Moreover, based on the numerical analysis in Sections (6) & (7) for nine star 
groups, we have found that once the power index of the ( ) ( )log logB P−  for a 
number of samples is determined in graphing, we can write down explicit ex-
pression relating the variables (M, R, P) of this star group. We can use that ex-
pression to find out other crucial properties of that star group theoretically (such 
as M-R relation); such properties can be compared with experimental data di-
rectly. This (novel) method is useful to study stellar evolution, as experienced 
in our study on the young and old sun-like stars in Section (7.2) & (7.3). 

We have proposed that electrons of the elements (atoms), starting with hy-
drogen could form 2D Semion states, with pinning of magnetic flux. Due to 
pressure wave or, in fact fluctuations during the natural cooling process, Semion 
state can be formed on/near the stellar surface when the gravitational force is  
 

 
Figure 46. Predicted equatorial magnetic fields against period of rotation P for the fol-
lowing star groups: (1) Pre-main sequences stars of the Orion (light purple); (2) NGC 
6819(orange); (3) Low-to Mid-Mass main sequence stars (bright red); (4) Sun-like young 
stars (red slightly deeper than that of group (3)) & sun-like old stars (deep red). Notice 
that the young ones are close to groups (2) & (3), whereas the old ones are close group (1) 
instead.(5) Pre-dwarfs M34 (bright green); (6) NGC 2516 (pink); (7) Brown Dwarfs 
(brown); (8) White Dwarfs (blue); (9) Magnetic White Dwarfs (light bright blue). Note 
that the line of best fit is drawn through each group except the sun-like group (4). Since 
each group covers a relatively wide mass density, the slopes of the 8 lines above are 
slightly different from the values analyzed in Section (6). Many points of stars are over-
lapping. As data for some stars are averaged over a much larger number of stars, the total 
effective number of stars analyzed is well over 2000. Power indices and correlation coeffi-
cients have already been specified in the analysis of each star group. 
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very large and the void radius oR  is relatively small. The Semion quasi-particles 
could get back to the 3D states due to fluctuation in thermo dynamical balance, 
releasing huge magnetic field, such as that observed in slowly rotating, high den-
sity White Dwarfs. Thus, we have provided a plausible explanation for the 
emergence of huge magnetic field in many stars, including very old ones. 

We have provided an explanation of the asymmetry of magnetic field on the 
Martian surface and compared the measured and theoretically deduced dipolar 
magnetic fields of the planets. For the different star groups we studied in Section 
(6), we cannot compare directly the theoretical magnetic field values with all the 
stars because we it is difficult to find the published complete set of data for most 
of these stars. Group comparison (such as Brown Dwarfs group) indicates that 
our predicted results are in line, in fact, within the same order of magnitude, 
with observational data and in general trends. For the sun-like group where the 
whole set of data (B, M, R, P) are available, theoretical predicted values agrees 
quite well with data (within an order of magnitude), considering the uncertainty 
and limitation in measurements discussed in details in Section (7.1). 

We predict the equatorial fields B of the newly discovered Trappist-1 star and 
the 6 nearest planets. The B − P graph, and the B R3 – Iω graph in the log-log 
plots for the 6 planets are both linear. 

7.7. Conclusion 

Based on the homogeneous 5D model of the universe, we have developed expli-
cit expressions to explain quite a number of unanswered queries or mysteries in 
astrophysics, as outlined in Section (7.6). One step further, we hope that similar 
study can serve someway in building a part of the bridge to embrace Maxwell 
electro-magnetism and quantum mechanics in the future. 
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Appendix A: Explicit Expression of the Void Radius 

To calculate the void radius oR , we need to review a few steps of angular mo-
mentum of the in-phase spinor pairs inside the void 

( ) ( )2 3 316π sin , d d d dz sL h g r p F p T r p zθ θ ϕ∗= ∫        (A.1) 

where ( )2πh h∗ = , sg  is the spin degeneracy, p the momentum, ( ),F p T  is 
the Fermi-Dirac distribution and the other symbols are standard polar coordi-
nate variables. 

If we treat s pair of in-phase spinors of opposite charge as a bound state, the 
energy is taken to be the additive energy in the pair. We have already noted in [6] 
that e,-e are two different types of Fermi particles, and the total angular mo-
mentum is then twice of that pertains to either one type—the above expression is 
then multiplied by a factor of two. The resulting total angular momentum de-
duced from these two types of treatment different by a numerical constant of 
several times only. For astronomical estimation, we have considered the loop 
current based on the Biot-Savart Law to be the additive sum of two currents due 
to oppositely rotating spinor charges in section (4). Here we also take that the 
total angular momentum of the system to be twice that in the above equation. 
Integrating over d ,d ,drϕ θ , with the spin degeneracy to be 4, the total angular 
momentum  

( )4 3
2 0

d . exp 1z o fL DR E E E E
∞ ∗ ∗  = − + ∫             (A.2) 

( ) ( )Where , , f fE pc E E kT E E kT∗ ∗= = =  

The constant D is found to be: 

( )6 3 4512πD h c=                     (A.3) 

Under the region satisfied by the Second Law of Angular Momentum, it has 
been shown in [2] that 

( ) ( )3 4
0

d . exp 1 1 4f fE E E E E
∞ ∗ ∗  − + = ∫  approximately.    (A.4) 

Considering a stellar object to be a solid sphere with mass M, radius R, period 
of rotation P, conservation of angular momentum among the 5D void and the 
4D matter shell requires that 

( ) ( )4 3 2
0

d . exp 1 4π 5fDRo E E E E MR P
∞ ∗ ∗  − + = ∫  

Giving  

( )( ){ } [ ]
1 4

1 43 1 2
0

4π 5 d . exp 1o fR D E E E E M P R
∞ ∗ ∗  = − +  ∫    (A.5) 

Numerically,  

( )36 70

66

71 3 4

512 π 6.626 81 10

512 961.4026825 2.356347367 10

2.08899 10  J s m

D −

−

− −

= × × ×

= × ×

= ×

. 
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( ) 1 4 1 43 71

18

5 1 4 1 4

4π 5 4.81243 10

2.63385 10

3.27186 10  J s m

f

f

D E E

E

−

−

− − −

   = ×  
= ×

= ×

 

The dimension of ( )1 4 1 2 1 4 1 4 1 2 is kg s mM P R − , thus the dimension of R.H.S. 
of (A.5) is m. Therefore, 

( )1 45 1 2 1 4 1 43.27186 10  J s moR M P R− − −= ×            (A.6) 

Appendix B: Converging Series of the Integral I  

1 2I I I= +                          (B1) 

where 

( )1 d . exp 1
Ef

fo
I E E E E∗ ∗  = − + ∫               (B.2) 

( )2 d . exp 1fEf
I E E E E

∞ ∗ ∗  = − + ∫               (B.3) 

With ( ) ( ), f fE E kT E E kT∗ ∗= = , and  
13Fermi energy rest mass of electron 0.805 10  JoulefE −= = = × , k = Boltzmann 

constant and T is the temperature. In 1I , the Fermi-Dirac distribution function  

( )1 exp 1fF E E∗ ∗  = − +   

is bounded for a wide range of fE  in our study, and F varies between ⋍ 1/2 
and 1.0. We can therefore expand ( )1 exp 1fE E∗ ∗  − +   as a series:  

( ) ( ) ( ) ( ){ }
( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

1 exp exp 2

       exp 3

       exp 4 exp 5

f f

f

f f

F E E kT E E kT

E E kT

E E kT E E kT

   = − − + −   

 − − 

   + − − −    

  (B.4) 

Now 1 10 11 12 13 14 15I I I I I I I= + + + + +             (B.5) 

Integration by parts gives,  

( ) 2
10 10 1 2 fI I E∗= =                     (B.6) 

( )11 1 expf fI E E∗ ∗= − − −                  (B.7) 

( )12 1 4 2 exp 2 4f fI E E∗ ∗ = − + + −              (B.8) 

( )13 1 9 3 exp 3 9f fI E E∗ ∗ = − − −               (B.9) 

( )14 1 16 4 exp 4 16f fI E E∗ ∗ = − + + −            (B.10) 

( )15 1 25 5 exp 5 25f fI E E∗ ∗ = − − −             (B.11) 

Summing all the series, we arrive at 

( ) ( ) ( ) ( ){
( ) ( ) }

2 12 2
1 1

2
1

1 2 1 ln 2

                   1 exp

n
f fn

n
fn

I kT E n E

n nE

+∞∗ ∗
=

∞ ∗
=

= + − −

   + − −  

∑

∑
     (B.12) 
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Transforming fE y E∗ ∗= + , Equation (B.3) becomes the sum of two definite 
integrals with explicit forms: 

( )
( ) { }
( ) ( ){ }

2

2

0

2 2

0

π 12 ln 2

d . exp 1

d . 1 d . 1

fEf

f

y y
f

I E E E E

kT y y e y

E

E

kT

e

∞

∞

∗

∗

∗

∞

∗

 = − + 

   = + + +

= +

  

∫

∫ ∫     (B.13) 

From (B.1), (B.12),(B.13), 

( ) ( ) ( ){
( ) ( ) }

2 12 2 2
1

2
1

1 2 π 12 1

                    1 exp

n
f n

n
fn

I kT E n

n nE

+∞∗
=

∞ ∗
=

= + + −

   + − −  

∑

∑
     (B.14) 

When 0fE∗ ≈ , the two converging series cancel, and 

( ) { }2 2π 12I kT=                 (B.15) 

When 1fE∗
 ,  

( ) ( ){ }2 21 2 fI kT E∗=               (B.16) 
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