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Abstract 
In a survival analysis context, we suggest a new method to estimate the piece-
wise constant hazard rate model. The method provides an automatic proce-
dure to find the number and location of cut points and to estimate the hazard 
on each cut interval. Estimation is performed through a penalized likelihood 
using an adaptive ridge procedure. A bootstrap procedure is proposed in or-
der to derive valid statistical inference taking both into account the variability 
of the estimate and the variability in the choice of the cut points. The new 
method is applied both to simulated data and to the Mayo Clinic trial on pri-
mary biliary cirrhosis. The algorithm implementation is seen to work well and 
to be of practical relevance. 
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1. Introduction 

In survival analysis, when interest lies on the estimation of the hazard rate, an 
attractive and popular model is the piecewise constant hazard model. This model 
is easy to interpret as the hazard rate is supposed to be constant on some pre- 
defined time intervals and plotting the hazard rate gives a quick sense of the 
evolution of the event of interest through time. Many epidemiological studies 
use this model to represent the hazard rate function either because it provides an 
interesting way to fit the hazard function or because the data are not available on 
the individual level. See for instance Table 1 of [1] where the authors displayed 
the incidence of breast cancer on ten-year intervals for different subpopulations. 
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While this model can be used in a nonparametric setting, it is often used in 
combination with covariates effects. This is the case for instance for the popular 
Poisson regression model (see [2] [3]) which assumes a proportional effect on 
the covariates and a piecewise constant hazard model for the baseline hazard. 
This model is widely used in practice typically when dealing with register data. 
On one hand it allows to perform survival analysis with large computational 
savings (and save considerable data storage requirements) and, on the other 
hand, it allows to easily estimate the baseline hazard rate as a piecewise constant 
function and to give a very easy interpretation of the baseline hazard rate. 
Among many practical examples, we refer the reader to [4] [5] [6]. In practice, 
as noticed by [7] for Poisson regression, “the choice of time intervals should 
generally be guided by subject matter aspects, but the numbers of events and 
numbers at risk within intervals may also be considered when specifying the 
number and lengths of the intervals. A study of a rare event and/or a small 
exposure group may require longer intervals.” While this might be true, it is 
clear that in some situations there might be no a priori knowledge for the choice 
of the time intervals and then they are usually arbitrarily chosen. This is the case 
for example in [1] where the time intervals in Table 1 were arbitrarily chosen as 
ten years length. 

When modeling covariates effect through a proportional hazard model, [8] 
proposed an estimator that allows the baseline to stay unspecified. In this model, 
the baseline is taken as a function that only puts mass on the observed events  
and the likelihood simplifies into the Cox partial likelihood where the regression 
effect can be estimated separately from the baseline. While this is a very interesting 
aspect of the Cox model, this nice separation between baseline estimation and 
regression effect estimation does not hold anymore in many extensions of this 
model. For instance, in frailty models (see among many other authors [9] [10] 
[11] [12]) keeping a non-parametric baseline makes the estimation method 
much more complicated since baseline and regression parameters must be 
estimated simultaneously. As a consequence, the literature on estimation proce- 
dures in the frailty context is vast. As a matter of fact the estimation procedures 
in [13] [14] and [12] all lead to similar but still different estimates. Importantly, 
in [14] it is said that Poisson regression and Cox models give results that tend to 
be very similar, with or without frailties. 

In the joint modeling framework one wants to model the association between 
a longitudinal variable and a time to event response through a random effect 
(see [15] [16]). Only parametric baseline functions are implemented in the 
widely used jm R package (see [17]). As a matter of fact, the author in [16] 
recommends either to use the piecewise constant baseline hazard or a spline 
basis baseline hazard which he says “often work quite satisfactorily in practice” 
(see page 53 of the book). The R frailtypack package (see [18]) deals with more 
survival analysis situations involving a random effect such as nested frailty 
models (see [19]) or joint inference of recurrent and terminal events (see [20]). 
In this package, the possible baseline hazard functions are the piecewise constant 
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hazard, Weibull hazard and spline functions. In the last case, the authors 
introduce a penalized likelihood estimation method that allows to obtain smooth 
estimates of the baseline hazard function. However the use of spline baseline 
functions requires to specify in advance the number of knots used in the esti- 
mation and therefore can be seen as a smoothed version of the piecewise constant 
hazard functions where one must choose in advance the number of cuts. 

Other contexts where the partial likelihood approach does not work anymore 
include the cure models framework (see for instance [21] and [22]) and the 
analysis of interval-censoring data (see [23] for instance). In the latter case, the 
nonparametric maximum likelihood estimator for the cumulative hazard or the 
survival function is known to be slow with a convergence rate of order 1 3n−  
and the limiting distribution is not Gaussian (see [24] for current status data and 
[25] for case II intervals censored data). This problem pertains in the regression 
framework (see sections 5.2.3 and 6.2.2 in [23] for instance). On the other hand, 
using parametric baseline functions such as the piecewise hazard functions 
allows to obtain classical parametric rate of convergence and makes the estimation 
procedure much more stable. In this article, we only consider the nonparametric 
setting of estimating the baseline hazard function in a piecewise constant hazard 
model in the situation of right-censored data. We propose a new method to 
automatically find the appropriate number and location of the cuts used in this 
model. Our algorithm is based on the recent work from [26] where starting from 
a large set of possible cut points an L0 penalty on the likelihood of the model 
forces many successive cuts to be equal providing a parsimonious estimate of the 
hazard function. The procedure is data-driven and inference taking into account 
both the variability from the estimates and the cut points positions can be 
derived. 

In Section 2, the piecewise constant hazard model is recalled and the adaptive 
ridge estimator is applied to this model. Section 3 proposes two different pro- 
cedures to choose the penalty term involved in the estimation procedure. Section 
4 proposes a bootstrap based method to obtain valid inference for survival dis- 
tribution quantities such as the survival function. A simulation study is conduc- 
ted in Section 5, where the efficiency of the estimation method is evaluated and 
the two different procedures to choose the penalty term are compared. The 
method is applied to the Mayo Clinic trial on primary biliary cirrhosis in Section 
6 and a small discussion concludes the paper in Section 7. 

2. Model and Estimation Procedure 
2.1. The Piecewise Constant Hazard Rate Model 

Let T ∗  represent the survival time of interest. In practice T ∗  might be censored 
by a random variable C  so that we observe ( )( ),T T C I T C∗ ∗= ∧ ∆ = ≤ . The 
data consist of n  independent replications ( ) 1, ,

,i i i n
T

=
∆



. We aim at estimating 
the hazard function defined for 0t ≥  by:  

( )
0

lim
t

t T t t T t
t

t
λ

∗ ∗

∆ →

 ≤ < + ∆ ≥ = ⋅
∆


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In the following, this hazard function is assumed to be piecewise constant on 
L  cuts represented by 0 1, , , Lc c c , with the convention that 0 0c =  and  

Lc = +∞ . Let ( ) ( )1l l lI t I c t c−= < ≤ . We suppose that 

( ) ( )
1

,
L

l l
l

t I tλ α
=

= ∑  

for 0, 1, ,l l Lα ≥ =  . Note that the exponential baseline hazard is obtained  

from 1L =  in the piecewise constant hazard family. Let ( ) ( )
0

d
t

t s sλΛ = ∫  re-  

presents the cumulative hazard function and denote by ( )1, , Lα α=α   the 
model parameter we aim to estimate. 

In order to make inference on the model parameter we will assume inde- 
pendent right censoring and non-informative censoring (see [27] for instance 
for a complete review of these assumptions). Estimation is then carried out using 
classical likelihood arguments. Let ( ) [ ]1log , ;n

n i iiL T
=

= ∆∏ α α  represents the 
log-likelihood of the model. We have: 

( ) ( )( ) ( ){ }0
1

log d ,i
n T

n i i
i

L T t tλ λ
=

= ∆ −∑ ∫α  

where the equality holds true up to a constant that does not depend on the 
model parameter α . For computational purpose, it is interesting to note that 
the log-likelihood can be written in a Poisson regression form. Introduce  

( ) ( ), 1 1i l i l l i lR I T c c T c− −= ≥ ∧ − , the total time individual i  is at risk in the l th 
interval ( ]1,l lc c− , ( ),i l l i iO I T= ∆ , the number of events for individual i  in the 
l th subinterval. Also ,1

n
l i liR R

=
= ∑  and ,1

n
l i liO O

=
= ∑  are sufficient statistics 

and estimation can be carried out using only these two statistics. The log- 
likelihood can then be written again as (see [3] p. 223-225 for more details):  

( ) ( )({ }
1

log .
L

n l l l l
l

L O Rα α
=

= −∑α                   (1) 

Since nL  is concave, the maximum likelihood estimator has an explicit solu- 
tion, obtained from derivation of the log-likelihood: for 1, ,l L=  ,  

ˆ .l
l

l

O
R

α =                              (2) 

2.2. The Adaptive Ridge Regression 

For computational purpose, introduce la  such that ( )expl laα =  and  
( )T

1, , La a=a   the vector parameter we aim to estimate. Using the L0 penalty 
from [26], we propose the following penalized likelihood:  

( ) ( ){ } ( )
1 2pen

1
1 1

pen, exp ,
2

L L

n l l l l l l l
l l

L O a a R w a a
−

+
= =

= − − −∑ ∑a w         (3) 

where ( )1 1, , Lw w −=w   are non-negative weights that will be iteratively updated 
in order for the weighted ridge penalty term to approximate the L0 penalty. 

The score vector is denoted ( ) ( )pen, ,nU L= ∂ ∂a w a w a  and its l th com- 
ponent, { }1, ,l L∈  , is equal to:  
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( ) ( )( )1 1 1 1exp pen,l l l l l l l l l lO R a w a w w a w a− − − +− + − + +  

with the convention 0 0 1 0L Lw w a a += = = = . Now introduce  
( ) ( ) T, ,I U= −∂ ∂a w a w a , the opposite of the Hessian matrix. ( ),I a w  is a 

L L×  non-negative definite band matrix whose bandwidth equals 1. Its diagonal 
elements are equal to  

( ) ( ) ( )1,, exp pen,l l l ll lI R a w w−= + +a w  

other elements next to the diagonal are defined for 1, , 1l L= −  by  

( ) ( ), 1 1,, , pen,ll l l lI I w
+ +
= = −a w a w  

and all other elements are equal to zero, that is for ,l l′  such that 2l l′− ≥ , 
( ) ,, 0l lI ′ =a w .  
The vector parameter a  is updated using the Newton-Raphson algorithm. 

For a given sequence of weights ( )1m−w  obtained at the ( )1m − th step, the m
th Newton Raphson iteration step is obtained from the equation  

( ) ( ) ( ) ( )( ) ( ) ( )( )11 1 1 1 1, , .m m m m m mI U
−− − − − −= +a a a w a w  

The inversion of the band matrix is performed through a fast (linear com- 
plexity) C++ implementation of the well-known LDL algorithm (variant of the 
LU decomposition for symmetric matrices). Initialization of the Newton Raph- 
son algorithm can be obtained from the classical unpenalised estimator of the 
piecewise constant hazard model, that is ( ) ( )0 argmaxa nL=a a . See [3] for de- 
tails about this estimator. 

On the other hand, following the recommendation from [26], the weights can 
be updated from the equation  

( ) ( ) ( )( )
12 2

1 ,m m m
l l lw a a δ

−

+
 = − + 
 

 

for 1, , 1l L= −  with 510δ −= . Briefly, this form of the weights is motivated 
by the fact that ( )2

1l l lw a a+ −  is close to 0 when 1l la a δ+ − <  and close to 1 
when 1l la a δ+ − > . Hence the penalty term tends to approximate the L0 norm. 
The weights are initialized by ( )0 1lw = , which gives the standard ridge estimate 
of a . 

3. Choice of the Penalty Term 

In this section we propose two different ways to choose the correct penalty term. 
The first one is based on a standard cross-validation criterion while the second 
one is based on a BIC criterion. 

In order to choose the right penalty term, one must first define a large grid of 
penalty values such that the criterion (cross-validation or BIC) will be evaluated 
at each of these penalty terms. For that purpose, the algorithm can benefit from 
a warm start of the penalty weights. Indeed, instead of initializing the weights to 
1 for each penalty value, one can take the final weights of the previous (smaller) 
penalty as a starting point for the next (larger) penalty. In this way, full re- 
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gularization path similar to those of the LASSO can be generated very efficiently. 
Note, however, that this warm-starting is not necessary since it is always possible 
to initialize the algorithm with neutral weights of value 1. A preliminary set of 
cut positions must also be chosen. For simplicity we recommend to take a large 
set of equally spaced points including the range of the observed time point 
values. See Sections 5 and 6 to see how this works in practice. 

3.1. A Cross-Validation Criterion 

Split the data in k  pieces and define penˆ I−a  as the maximizer of the penalized 
likelihood in Equation (3) when part I  is left out from the data. Then the k - 
fold cross validated log-likelihood is defined by:  

( ) ( )penˆpen ,I
I

I
cv L −= ∑ a  

where IL  represents the unpenalized log-likelihood as in Equation (1) but 
computed only in part I  of the data. Maximizing this quantity with respect to 
pen  gives the optimal penalty term.  

Note that unlike the Cox regression framework where the baseline is left 
unspecified, this cross-validated criterion is well defined since in our case the 
hazard rate is constructed as a continuous function of time. Also, the relation  

( ) ( ) ( ){ }pen pen penˆ ˆ ˆI I I
I n I

I I
L L L− − −

−= −∑ ∑a a a  

holds such that our criterion is completely equivalent to the cross-validated 
criterion developed by [28] and [29] in the standard Cox regression framework. 

In order to improve efficiency and time speed in the computation programs, 
the 10-fold cross validation is recommended in practice. 

3.2. A BIC Criterion 

The following criterion can be used as an alternative to the choice of the penalty 
term. It is defined as a balance between good fit of the data and low complexity 
of the model parameters. It is fast to compute and has the following expression:  

( ) ( ) ( )penˆBIC pen 2 log .nL d n= − +a  

The parameter estimator penâ  is defined as the maximizer of the penalized 
likelihood in Equation (3) while d  represents the model complexity. It is equal 
to the number of distinct consecutive values of the la s in penâ :  

( )
1

1,pen ,pen
0

ˆ ˆ 0 ,
L

l l
l

d I a a
−

+
=

= − ≠∑  

with the convention 0 0a = . 
The performance in the choice of the penalty term by both criteria is inves- 

tigated in the simulation study in Section 5. 

4. Statistical Inference for the Time to Event Distribution 

In practice it is of interest to derive confidence intervals for marginal quantities 
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directly related to the time to event variable such as the cumulative hazard 
function or the survival function. Asymptotic properties of the piecewise-cons- 
tant hazard model for a given set of cut points is straightforward and has been 
already derived (see for instance [3]). However, the adaptive ridge estimator 
involves data driven choice of the cut points and using standard results to derive 
pointwise confidence intervals for the survival function for instance would lead 
to an overfitting of this function. This is of major concern and one should 
interpret such confidence intervals with caution. 

One way to take into account the uncertainty in the choice of the cut points is 
to use a resampling technique where for each sample a different penalty term is 
chosen from the cross-validated or BIC criterion. This will provide a new hazard 
estimate with a different set of cut points for each sample. Taking the adequate 
quantile at each time point allows us to obtain pointwise confidence intervals of 
the correct order for the quantity of interest. 

Interestingly, this resampling technique also allows us to compute an alternative 
pointwise estimate of the survival function (or of any marginal distribution quan- 
tity) by taking the pointwise medians of each bootstrap sample. This provides a 
very smooth estimate function and, in that sense, this kind of estimate can be 
seen as a smooth non-parametric estimate of the survival function.  

This bootstrap procedure is illustrated in Sections 5 and 6 to derive con- 
fidence intervals and smooth estimates for the survival function.  

5. Simulation Study 
5.1. Simulations under a Piecewise Constant Hazard Model 

We illustrate the proposed method to estimate the following hazard function:  

( )

[ ]
( ]
( ]
( ]

2

2

2

2

0 for   0, 20 ,
0.5 10 for   20, 40 ,
1 10 for   40,50 ,
2 10 for   50,70 ,
4 10 for   70.

t
t

t t
t
t

λ

−

−

−

−

 ∈
 × ∈= × ∈
 × ∈
 × >

 

The censoring distribution is simulated as a uniform distribution over the 
time interval [70,90] which gives on average 62%  of observed failures. On 
average, 9.5%  of the observations fall into the interval (20,40], 8.5%  of the 
observations fall into the interval (40,50], 27%  of the observations fall into the 
interval (50,70] and 55%  of the observations fall into the interval ( )70,+∞ . 

We start with a single sample of size 100 generated from this model. Using the 
true cuts, the classical unpenalized hazard estimator derived from Equation (2) 
is computed on Figure 1. The estimation is quite accurate on each cut interval. 
Figure 2 presents the two extreme situations where the penalized hazard estimate 
is computed using a very small penalty term on the left panel and using a very 
large penalty term on the right panel. We see that in the left panel the hazard 
function is overfitted while the right panel corresponds to the exponential model. 
A good choice of the penalty term should provide a good compromise between  



O. Bouaziz, G. Nuel 
 

384 

 
Figure 1. True hazard rate function (dashed line) and unpenalized hazard rate estimate 
computed at the true cuts (solid line). 
 
these two situations. The set of all possible cuts was chosen as all the integer 
values ranging from 1 to 100 and the set of penalty terms was taken, on the log 
scale, as the set of 100 equally spaced values ranging from ( )log 0.1  to  

( )log 1000 . On this sample the BIC and cross-validation criteria respectively 
chose the penalty values equal to 0.95 and 1.15 which both gave the same 
estimate. Figure 3 shows the regularization path for the penalty term and the 
penalized estimated hazard obtained from the penalty equal to 0.95. We see that 
both criteria find only three cuts in the estimation of the hazard function, and 
the cut interval ( ]40,50  is not found by the method on this example. As an 
indicator of the estimation accuracy, the total variation distance between the 
true hazard and the penalized hazard estimate is computed on the time interval 
[ ]0,80 . On our data example, the total variation is approximately equal to 0.29. 
Finally, confidence intervals are derived for the survival function using the 
resampling technique presented in Section 4. The curves are plotted in Figure 4 
from 100 bootstrap samples. Our method shows very little difference from the 
classical Kaplan-Meier estimate and its pointwise confidence interval. Interesting- 
ly, our survival estimator and its pointwise confidence intervals have a smooth 
shape in contrast with the stepwise shape of the Kaplan-Meier estimator. 

In order to assess the good performance of our penalized estimator, we also 
conducted Monte-Carlo simulations from the model scenario presented in this 
section with 600 sample replications. We considered samples of size 100, 400 
and 1000 and in each case we computed the probability distribution of the 
number of cuts found by the BIC method and by the cross-validation method. 
The results are reported in Table 1. We also computed the total variation 
distance between true hazard and penalized hazard estimates in each case and 
reported the results in Table 2. We see that for 100n =  both methods tend to 
be overpenalized as they find a majority of three breakpoints instead of four. As 
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Figure 2. Penalized hazard rate estimates computed using a penalty equal to 0.1 (a) and a 
penalty equal to 1000 (b). Dashed line: true hazard rate. Solid lines: penalized hazard rate 
estimates. 
 

the sample size increases, the proportion of times the four breakpoints are found 
increases. Looking at the total-variation distance, we see that for both methods, 
the estimate becomes more and more accurate as the sample size increases. In 
general, the BIC criterion outperforms the cross-validation criterion both in 
terms of breakpoints detection and fitting of the hazard function. 

One should note that the simulation scenario presented here makes it difficult 
to estimate the hazard function due to the low value of the hazard rates for 

70t < . For a moderate sample size, 100n =  for instance, very few observations 
will fall in each cut interval (only 8.5%  in the interval ( ]40,50  for example) 
and therefore the method has difficulties to find all the cuts. The problem  
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Figure 3. Regularization for the choice of the penalty term using either the BIC or 
cross-validation criterion (a). Dashed line: penalty term obtained from both criteria. 
Penalized hazard rate estimate (b). 
 
disappears as we increase the sample size. We considered other simulation 
settings where the proportion of observations falling into each cut interval was 
more balanced. This resulted in a very good performance of the estimator for 
small samples, both to detect the true number of cuts and to accurately fit the 
hazard function. 

5.2. Simulations under a Weibull Hazard Model 

We now consider the following Weibull model, where this time, the true hazard 
is a continuous function of time: ( ) ( ) 1at a t b bλ −=  where 5a =  is the shape  
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Figure 4. Estimates of the survival function for the piecewise constant hazard scenario. 
Dashed line: Kaplan Meier estimator along with its 95% pointwise confidence interval 
(dotted lines). Solid line: bootstrapped adaptive ridge estimator along with its 95% 
pointwise confidence interval (dot dash lines). 

 
Table 1. Proportions of the number of cuts found by the BIC (a) and cross-validation (b) 
criteria for different sample sizes. 

(a) 

Number Proportions found for: 

of cuts 100n =  400n =  1000n =  

0 0.000 0.000 0.000 

1 0.000 0.000 0.000 

2 0.202 0.005 0.000 

3 0.363 0.328 0.038 

4 0.202 0.375 0.737 

5+ 0.233 0.292 0.225 

(b) 

Number Proportions found for: 

of cuts 100n =  400n =  1000n =  

0 0.000 0.000 0.000 

1 0.075 0.000 0.000 

2 0.338 0.032 0.000 

3 0.323 0.280 0.045 

4 0.105 0.352 0.615 

5+ 0.158 0.337 0.340 
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Table 2. Mean total variation distance between true hazard and penalized estimated 
hazard obtained from the BIC and cross-validation (CV) criteria for different sample 
sizes in the piecewise constant hazard scenario. 

 100n =  400n =  1000n =  

BIC 0.362 0.176 0.085 

CV 0.370 0.184 0.092 

 
parameter and 60b =  is the scale parameter. This gives an average time value 
of 55 and a time standard deviation of 12.6. The censoring distribution is also 
simulated as a Weibull variable but with shape parameter equal to 30 and a scale 
parameter equal to 60. This gives the same average percentage of observed 
failures ( )62%  as in the previous simulation setting. 

As before we start with a single sample of size 100 generated from this model 
and we compute our adaptive ridge estimator using the same grid of cut points 
and the same grid of penalty values as in the previous scenario. The penalty 
value was chosen equal to 0.95 from the BIC criterion. Since we are estimating a 
continuous function of time it seems of interest to see how a smoother estimate 
would perform on this Weibull distribution. Our penalized likelihood can be 
easily modified to get a ridge estimate of the hazard by putting all the weights 
w  equal to 1 in Equation (3). This gives a simpler algorithm where the weights 
do not need to be updated and only a Newton-Raphson agolrithm is performed 
on the parameter vector a . However no simple criterion can be proposed to 
choose the penalty value in this setting and we arbitrarily chose a large value 
equal to 40 in order to force the estimator to be smooth. Plots of our adaptive 
ridge estimator, our ridge estimator and the true Weibull hazard are displayed in 
Figure 5. It is seen that two cuts are chosen for the adaptive ridge estimator 
which gives a fairly good fit of the true curve. However, as one would expect, the 
ridge estimator captures much more accurately the fluctuations of the curve. The 
resampling technique was used as before (100 samples) to compute the survival 
function along with its 95%  confidence interval in Figure 6. The time range 
for the figure was deliberately set to [ ]0,100  even though no times were 
observed beyond 60 due to censoring. The fit of the survival estimate is very 
accurate for the whole time range. After time 60 the piecewise constant 
modeling allows to interpolate the estimate which provides a good fit of the 
Weibull distribution with slightly larger confidence intervals. The Kaplan-Meier 
estimator is not shown on this figure because it gives similar result as for the 
piecewise constant hazard simulation scenario: a very similar fit to the curve and 
almost identical confidence intervals on the restricted time range [ ]0,60 . One 
should note however that our resampled estimator provides a much smoother fit 
than the stepwise shape of the Kaplan-Meier estimator and no interpolations can 
be provided after time 60 for the Kaplan-Meier estimator. 

Finally, Monte-Carlo experiments were conducted to assess the quality of fit 
of our estimators for the Weibull hazard function. This was measured as before  
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Figure 5. Penalized hazard rate estimates for the Weibull scenario. Dashed line: true 
hazard. Solid line: adaptive ridge estimator. Dotted lines: ridge estimator. 

 

 
Figure 6. Estimates of the survival function for the Weibull scenario. Dashed line: true 
hazard. Solid line: bootstrapped adaptive ridge estimator along with its 95% pointwise 
confidence interval (dot dash lines). 

 
in terms of total variation distance between the true hazard and the adaptive 
ridge or the ridge estimator on the time interval [ ]0,60 . As an illustration, on 
the sample example of size 100 of Figure 5, the total variation distance equals 
0.37 for the adaptive ridge estimate and 0.13 for the ridge estimate. It is 
important to note that a fixed penalty was used for every sample for the ridge 
estimator (equal to 40 as before) while the penalty was adaptively chosen from 
the BIC criterion as described in Section 3 for the adaptive ridge estimator. In 
terms of comparison this gives an initial advantage to the adaptive ridge esti- 
mator. Nevertheless the results reported in Table 3 show a clear advantage for 
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the ridge estimator for every sample size. For 100n =  the total variation error 
is 1.7 times bigger for the adaptive ridge estimator and for larger sample sizes it 
gets approximately 2 times bigger. These results indicate that if one aims at 
deriving smooth and accurate estimates of the hazard function, for prediction 
purposes for instance, one should favor the ridge version of our hazard esti- 
mator. 

6. A Real Data Analysis 

We consider here the dataset from the Mayo Clinic trial in primary biliary 
cirrhosis (pbc) presented in [30]. This dataset is available through the survival 
package of the R software. We focus our interest on time to death for the 424 
patients of the dataset. The time variable was measured in days from inclusion 
until either death or liver transplantation or lost to follow-up. Only 38.5%  of 
deaths are observed such that 61.5%  of the observations are censored. The 
time variable ranges from 41 to 4795 days, so we decided to take as the set of all 
possible cuts the sequence of values going from 1 to 4800 by step of 10. As in the 
simulation study, the set of penalty terms was taken on the log scale, as the set of 
100 equally spaced values ranging from ( )log 0.1  to ( )log 1000 . The penalty 
terms chosen from the BIC and cross-validation criteria are respectively equal to 
1.23 and 1.63. This leads to one cut point for the BIC criterion and no cut point 
for the cross-validation criterion. Following the results from the simulation 
study, we decided to choose the former criterion. The corresponding estimate 
has one cut point at time 3050 such that the hazard estimate equals 41.89 10−×  
for ( ]0,3050t∈  and equals 43.84 10−×  for 3050t > . The estimate and the 
regulation path for the penalty term are displayed on Figure 7. 

Finally, the boostrap procedure is used to derive the survival estimate with its 
95%  pointwise confidence interval for the time to death. The curves are 
displayed on Figure 8 along with the Kaplan-Meier estimator and its 95%  
pointwise confidence interval. As in Section 5, the result from our estimator 
shows very little difference with the Kaplan-Meier estimator. With our bootstrap 
estimator, the median death time is estimated to approximately 3390 days and 
the 95%  confidence interval for the survival at this time is approximately 
[ ]0.43,0.56 . The 25th percentile is estimated to approximately 1501 days and 
the 95%  confidence interval for the survival at this time is approximately 
[ ]0.70,0.78 . With the Kaplan-Meier estimator the median is estimated at 3395 
and the 95%  confidence interval for the survival at this time is approximately 
[ ]0.43,0.57 , the 25th percentile is estimated to approximately 1462 days and the  
 
Table 3. Mean total variation distance between true hazard and penalized estimated 
hazard obtained from the adaptive ridge estimator and the ridge estimator for different 
sample sizes in the Weibull scenario. 

 100n =  400n =  1000n =  

Adaptive Ridge 0.347 0.228 0.172 

Ridge 0.204 0.115 0.086 
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Figure 7. Regularization for the choice of the penalty term using the BIC criterion on the 
pbc data (a). Dashed line: penalty term obtained from this criterion. Penalized hazard rate 
estimate of death on the pbc data (b). 
 
95%  confidence interval for the survival at this time is approximately  
[ ]0.71,0.79 . 

7. Concluding Remarks and Extensions 
In this article, we proposed an innovative method to estimate the hazard rate in 
a piecewise constant model. The estimator is defined as the maximum of a 
penalized likelihood and allows to automatically detect the number and cuts 
location of the model and to estimate the hazard on each cut interval. A boot- 
strap procedure was also proposed in order to derive valid statistical inference  
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Figure 8. Estimates of the survival function on the pbc data. Dashed line: Kaplan Meier 
estimator along with its 95% pointwise confidence interval (dotted lines). Solid line: 
bootstrapped adaptive ridge estimator along with its 95% pointwise confidence interval 
(dot dash lines). 
 
taking both into account the variability of the estimate and the variability in the 
choice of the cut points. In order to select the penalty term we recommend using 
the BIC criterion as it seems to outperform the cross-validation criterion and it 
is also very fast to compute. Finally if one is interested in obtaining a smooth 
estimate of the hazard function, a small modification of the original estimator 
allows to derive a ridge version which has been shown to provide a very good fit 
to continuous survival distributions.  

This work was established in the nonparametric setting of right censored data 
but many extensions can be considered. Including covariates in the model through 
a Poisson regression modeling for instance should be straightforward. As a 
matter of fact, since the method uses a penalized likelihood approach, no explicit 
estimators are available and even in the nonparametric setting the estimator is 
derived from the Newton-Raphson algorithm. In the nonparametric and regres- 
sion settings, by modifying the likelihood formula, the method should also 
readily extend to truncation and to other types of censoring such as interval 
censoring. More difficultly it would be interesting to see how the penalized like- 
lihood approach works in a frailty, joint modeling or cure model context. Using 
the L0 approach in these contexts amounts to fit a penalized parametric model 
which makes our method very appealing due to the nice properties of parametric 
models. Besides, our resampling method allows to derive smooth estimates of 
time dependent quantities of interest. As a result it is seen that our method 
nicely combines both the advantages of a parametric implementation and non- 
parametric fit of survival quantities. 

The L0 approach was used to constrain two consecutive cuts in the piecewise 
constant hazard model to be equal. Interestingly, a different model could be pro- 
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posed where straight lines connect the consecutive cuts. In that model, the L0 
approach could be derived by constraining two consecutive slopes of lines to be 
equal. In the same idea, spline hazard functions could also be constructed by 
penalizing further order derivatives of polynomial functions. All these extensions 
are left to future research.  
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