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Abstract 
This study briefly reviews the application of Genetic Algorithm (GA) and Par-
ticle Swarm Optimization (PSO) in geotechnical engineering since GA and 
PSO are widely used in civil engineering. The application of GA and PSO is 
studied in three popular families of geotechnical problems including uncon-
fined seepage analysis, slope stability analysis, and foundation design. In each 
category the available results from different studies are reviewed and com-
pared. The comparison of results shows the desirable accuracy in the predict-
ing of optimal values in the process of analysis and design. The presented 
methods perform successfully in the reviewed problems. However, PSO pre-
dicts the optimum values in fewer numbers of iterations, which suggests higher 
performance in term of implementation/application. 
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1. Introduction 

In geotechnical engineering the optimization techniques can be categorized as: 
1) mathematical programming; 2) optimality criteria methods; and 3) heuristic 
search algorithms. In mathematical programming, the major characteristic in-
cludes the linear and nonlinear programming. In the linear programming, the 
objective function and the associated constraints are represented in a linear 
combination of design variables. The linearization of objective function or con-
straints is not always easy and if the linearization techniques are used, the error 
in the representation of linearized problem is inevitable [1] [2] [3]. On the other 
hand, the nonlinear programming is introduced which was developed for un-
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constrained nonlinear problems. The incidence of the optimal solution is shown 
by the proof of Kuhan-Tucker conditions (KT) [4] which are the necessary con-
ditions for the justification of the optimal solution. However, the application of 
KT conditions is enormously difficult for the most of engineering problems [5].  

The optimality criteria methods (OCM) are developed based on the combina-
tion of Kuhan-Tucker conditions from nonlinear mathematical programming 
and Lagrangian multipliers. In this approach, KT conditions support the neces-
sary desires for the optimal solution while Lagrangian multiplier guarantees the 
satisfaction of constrains in the optimization problem. OCMs are used vastly in 
engineering problems including the continuous and discontinuous design va-
riables [6] [7]. OCMs basically describe continuous design variables. However, 
by considering two major steps, this procedure is compatible for discrete va-
riables, as well. First, the optimization problem is defined based on the assump-
tion of continuous solution. Second, a set of discrete values are estimated based 
on the solution from first step [8]. However, two problems are associated with 
this approach; for instance, if OCMs are used in structural design while a single 
cross sectional property is chosen as a design variable and the other properties 
are expressed as a function of the design variable. First, the relationship between 
the design variable and cross sectional properties is not unique. Second, the se-
lected discrete variables may lead to a different structural response which does 
not fit the prescribed constraints [5]. 

The techniques of the third group in the optimization problems are heuristic 
search algorithms which are relatively new optimization methods in geotechnic-
al engineering. Evolutionary methods do not require an explicit relationship 
between the objective functions and constraints. Moreover, these methods are 
independent of objective function or constraint gradient. Instead, the set of ran-
dom values for objective function is adjusted thorough an evolutionary proce-
dure and subsequently, any violation of constraints is reflected in each iteration. 
Regarding the gradient based methods, considerable part of computational cost 
is served in sensitivity analysis phase whereas applications of evolutionary tech-
niques which are based on probabilistic searching algorithm save computational 
time [9]; this is because of evolutionary methods which do not require the gra-
dient information and avoid sensitivity analysis. This property enables engineers 
to implement these techniques in the problems including discontinuity in the 
design variables space. In general, evolutionary methods work concurrently with 
a population of design points in the space of design variables instead of a single 
design point. These methods also can be easily implemented in discrete, conti-
nuous, and mixed optimization problems with minor adaptations. In addition, 
the open format for constraint statements and the possibility of defining mul-
tiple scenarios in the optimization process fascinated many researchers to im-
plement heuristic search algorithms in engineering design optimization [10]. 

The safety in designs is highly respected in geotechnical engineering. On the 
other hand, contractors and private sectors prefer economical design whit min-
imum labor effort and construction cost. Subsequently, implementation of ro-
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bust optimization techniques which establish a trade-off between safety and total 
cost of geotechnical projects is necessary in practice.  

In this study, we reviewed the two most implemented evolutionary methods 
in geotechnical engineering, Genetic Algorithm (GA) and Particle Swarm Opti-
mization (PSO). The applications of GA and PSO in three common types of 
geotechnical problems including unconfined seepage analysis, slope stability 
analysis, and foundation designs are studied and subsequently, for each problem, 
the results from literature are regenerated, compared and discussed.  

2. Genetic Algorithm (GA) 

Genetic Algorithm which is based on the process of natural evolution is one the 
best-known heuristic search algorithms. GA has received substantial attention in 
engineering design optimization in the recent decades. The first time that GA 
was introduced in computer science goes back to sixties when a team of biologist 
tried to implement the process of evolution in nature in a computer code [11]. 
GA refers to any population-based algorithm which uses selection, crossover, 
and mutation over chromosomes to find the optimal solution. In general, a 
member of the population is called chromosome/genotype which is binary or 
real valued string. Following Barricelli [11] several types of GA have been intro-
duced in optimization studies. However, one can simply define a given optimi-
zation problem in GA considering three main steps including [12]: 

Step 0: Initialization. 
Step 1: Selection. 
Step 2: Generation.  
Step 3: Stopping criteria. 
Generation of initial chromosomes in step 0 (genotypes) is the first step in GA 

algorithm. In the most practical problems genotypes are generated randomly 
and goodness of each chromosome is evaluated via objective function and asso-
ciated constraints.  

Step 1: the selection operator is introduced and applied to the current popula-
tion to create an intermediate one. The initial and intermediate populations are 
same in the first step (step 0). However, in the subsequent iterations, the imposi-
tion of selection operator forms the intermediate population.  

Step 2: crossover-mutation operators are implemented to the results from Step 
1 to create next population. The term crossover is used when the generator (op-
erator) forms a chromosome by combining the properties of each of two paren-
tal chromosomes. However, the term mutation is applicable when a new chro-
mosome is formed by introducing small alterations to the properties of single 
parent chromosome [13].  

There are many choices to design/encoding an optimization program based 
on the mentioned steps and the decision on design/encoding of GA depends on 
the nature of the problem [14]. The algorithm design depends on experience, the 
model specifications and associating the results from experiments with different 
heuristic search algorithms. However, a common design for GA with standard 
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genetic operators can be defined as [15]: 
1) Randomly generate an initial population including M chromosomes. 
2) Calculate the fitness, ( )F m , of all chromosomes in M. 
3) Create the evolved population based on: 
a) Using proportional fitness selection for selected two chromosomes, m1 and 

m2. 
b) Apply crossover function to m1 and m2 to produce a new chromosome 

(m3). 
c) Apply mutation function to m3 to produce m′ . 
d) Add m′  to the next population. 
4) Replace the new population with the old one. 
5) If the stopping criteria have not been met, repeat the procedure from step 2. 
Interested readers are encouraged to find more resources that are freely avail-

able online. For more details in GA, the Genetic Algorithm Archive by the US 
Navy Center for Applied Research in Artificial Intelligence  
(https://www.nrl.navy.mil/itd/aic/) or the available Toolboxes which provide in-
structive example for standard GA (https://sourceforge.net/projects/gatoolbox/) 
are introduced.  

3. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization is a metaheuristic search algorithm introduced by 
Eberhart and Kennedy [16] to find optimal solution in engineering design opti-
mization. PSO is based on the concept social models and swarm theories. The 
swarm consists of individual particles which mutually try to find the solution in 
the search space. In each iteration, individuals (particles) move toward the best 
solution which is experienced by them (Personal best) and concurrently to the 
best solution which is obtained by the other particles (Global best). PSO is estab-
lished based on few or even no assumption on the search space; this feature 
enables PSO to search the optimum solution in a wide search space. In addition, 
PSO can be used in the optimization problems which are irregular, noisy, or dy-
namic [17].  

Regarding the PSO algorithm, the swarm of particles walks through the 
n-dimensional search space of a problem including n degree of freedoms. Each 
particle (i) in the mth iteration is identified by its position ( m

ix ), velocity ( m
iv ), 

and memory ( m
iy ) vector. m

ix  indicates the potential solution in the mth itera-
tion, m

iv  changes the position to investigate the solution in the search space, 
and m

iy  stores the best personal solution for the ith particle. m
iy  is updated 

when a better solution is found by the ith particle in the search space. Subse-
quently, each particle shares the best solution with the other particles in its vi-
cinity and the Global best is updated ( mY ). Finally, the Personal and Global best 
solution is utilized simultaneously to update 1m

iv +  and 1m
ix + . The updated ve-

locity and position vector in 1m +  iteration are defined as: 

( ) ( )1
1 1 2 2

m m n m m n m m
i i i i i iv v c r pbest x c r gbest xω+ = + − + −           (1a) 

https://www.nrl.navy.mil/itd/aic/
https://sourceforge.net/projects/gatoolbox/
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1 1m n m
i i ix x v+ += +                          (2a) 

where 1c  and 2c  are constant values and defined as the acceleration factors, 

1r  and 2r  are randomly generated weights with values between 0 and 1, ω  is 
an inertia weight that controls the impact of velocity from the previous iteration 
on the newly computed velocity, and m

ipbest  and m
igbest  are the Personal 

and Global best solutions in the mth iteration [18]. In general, these parameters 
are determined based on tuning and trial-error observations.  

With respect to Equation [1] and aforementioned concepts, PSO algorithm 
covers the following steps to find the optimum solution: 

1) Random generation the initial position and velocity vector including 0
ix  

and 0
iv , respectively. 

2) Evaluate the objective function with respect to predefined constraints. 
3) Comparing the fitness value of each particle to its local best. If the current 

value is better than the previous one, then it is replaced with the new value. 
4) Comparing a particle’s fitness value to the population’s best. If the current 

value is better than the previous one, it is replaced as the global best. 
5) Changing the velocity and position vectors using Equations (1a) and (1b). 
6) Steps 2) - 5) are repeated until the stopping criteria are met or the number 

of iterations meets the predefined maximum number of iterations. 
In each iteration, the predefined maximum velocity and position control the 

changes in velocity and position of each particle.  

4. GA and PSO in Seepage Analysis 

Determination of the seepage path through the earth dams is one the most diffi-
cult problems in geotechnical engineering. This phenomenon is recognized as 
unconfined seepage problem since the location of phreatic line is not deter-
mined. Subsequently, it represents a boundary value problem where at least one 
of the boundaries is not determined. In order to find the location of phreatic line 
(free water surface) an iterative procedure is needed [19]. Varity of optimization 
techniques are used in unconfined seepage problems to find the phreatic line in 
the earth dams [14] [20] [21]).  

In the first step, the governing equation of unconfined seepage problems is 
briefly introduced and followed by the definition of the objective function and 
related constraints. Based on the continuity of mass, the governing equation of 
laminar steady state flow in porous media is introduced as Laplace’s equation 
and Darcy’s law presents the relationship between the total head, φ , and veloci-
ty of fluid. Regarding the unconfined seepage problems, four types of boundary 
conditions are introduced (see Figure 1) [22]: 

1) Impermeable boundaries: flow velocity is zero perpendicular to these  

boundaries and streamlines are tangential to these boundaries (i.e., 0
n
φ∂
=

∂
, n   

is the normal vector on the impermeable boundary). 
2) Equipotential lines: Hydrostatic pressure is applied on this boundaries and 

the total head is constant along these boundaries. uφ  and Dφ  are the total  
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Figure 1. Schematic illustration of seepage through the earth dams. 

 
head at the upstream and downstream boundaries respectively.  

3) Phreatic line ( )( )y xψ= : this boundary represents the upper streamline 
inside the earth dam. 

4) Seepage face ( )η : the pressure head is zero on this boundary and total 
head is equal to elevation. 

The location where streamline intersects the dam body at the downstream is 
called exit point. Precise determination of the exit point is a critical step in the 
design of earth dams. Exit point is a critical location at the downstream where 
erosion is possible. 

To summarize, the mathematical definition of governing equation and boun-
dary conditions for a 2D seepage problem is defined: 

2

2 0j
j

k
x
φ∂
=

∂
                             (2) 

( )1, Ux yφ φ=                            (3a) 

( ) ( )5 , sinDx yφ φ η β= +                       (3b) 

( )( ) ( ) 1 5,   x x x x x xφ ψ ψ= ≤ ≤                    (3c) 

( )( ) 1 5, 0  x x x x x
n
φ ψ∂

= ≤ ≤
∂

                    (3d) 

( ) 1 5,0 0  x x x x
n
φ∂

= ≤ ≤
∂

                      (3e) 

where jk  shows the hydraulic permeability in saturated porous media, 1x  and 

5x  are the first and last points on the phreatic line, respectively,  
The optimization procedure using evolutionary methods (GA or PSO) begins 

by generating randomly initial set of individuals which are chromosomes or par-
ticles regarding GA or PSO, respectively. The optimization scheme produces m 
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individuals where each individual includes ( ( ),x xψ ). Next, the phreatic line is 
formed based on ( ( ),x xψ ) for each individual. Then the governing equation 
(Equation [2]) is solved using conventional numerical methods (i.e. Finite ele-
ment method (FEM) or Finite Volume Method (FVM)). The pressure head is 
zero along the phreatic line and it represents that the difference between the to-
tal head and elevation of the points on the phreatic line is zero. Implementing 
the least square method and considering Equation (3c), the objective function 
can be defined as [23]: 

( ) ( )( )2

1Min ,n
i i iiGF x x yψ φ

=
= −∑                    (4) 

Subsequently, the mathematical constraints are introduced in the optimiza-
tion procedure as follow: 

( )
1

d 1
d tan

i

x

x
x

ψ
α

−
− =                        (5a) 

( )
5

d
tan

d
i

x

x
x

ψ
β− =                        (5b) 

( )d
0

d
ix

x
ψ

− <                           (5c) 

Fenton and Griffiths [24] analyzed the unconfined seepage problem using 
mesh deforming method based on nonlinear FEM. Their study represents an 
iterative procedure which adjusts the height of the nodes in the mesh geometry. 
However, Ouria and Toufigh [23] used linear FEM associated with Nelder-Mead 
simplex method. They approximated the phreatic line with a 4th degree poly-
nomial and minimized the goal function based on the conditions on the phreatic 
line. Shahrokhabadi and Toufigh [25] used the same procedure but they used 
Natural Element Method (NEM) and GA in their solution procedure. In fact, 
they used a mesh deformation technique in NEM which is not sensitive to mesh 
geometry and GA to avoid the local optimum solution. Moreover, they showed 
that the average error in optimization and number of iterations are noticeably 
affected by the initial guess in gradient based optimization algorithms while GA 
is not sensitive to initial guess. Figure 2 represents the comparison among the 
results using gradient based optimization method and FEM [23], nonlinear FEM 
analysis [24], and NEM-GA [25]. It is shown that linear FEM with Nelder-Mead 
simplex and NEM-GA lead to similar results for the seepage path. However, the 
obtained exit point based on nonlinear FEM and NEM-GA is identical and it is 
reported as 3.63 m. 

Precise estimation of the Exit point (see Figure 1) is a challenging problem in 
unconfined seepage problems and considered as a significant criterion that de-
termines the privilege of a solution procedure to other solution algorithms. De-
termination of phreatic line in unconfined seepage problem in a rectangular 
domain is a benchmark problem which has been predominantly studied in lite-
rature (i.e. [26] [27] [28]). The geometry of problem is defined by a rectangular 
shape with the length of is 16(m) and height of 24 (m). With respect to Figure 1,  
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Figure 2. Phreatic line obtained from three different methods (nonlinear 
FEM, linear FEM Nelder-Mead simplex method, and NEM-GA). 

 
the upstream water level ( Uφ ) is 24 (m) and downstream water level is ( Dφ ) is 4 
(m). In this review, three different methods are investigated, in which evolutio-
nary optimization algorithms (GA and PSO) are used. 

First, the results from NEM-GA are studied. Then a 4th order polynomial 
which represents the phreatic line with respect to predefined constraints is esti-
mated. The outcome shows that the obtained phreatic line is acceptable and the 
exit point (C) is 12.99 (m). In the second study, the combination Method of 
Fundamental Solution (MFS) and PSO is investigated [29]. Similar to NEM-GA, 
a 4th order polynomial represents the phreatic line in this study and the obtained 
phreatic line intersects the downstream slope at 12.00 (m). The third study 
shows that MFS and PSO are implemented in determining the phreatic line but 
Thiele Continued Fractions (TCF) are used to represent phreatic line [30]. Exit 
point is reported in 12.682 (m) in this study and Figure 3 shows the results from 
above mentioned studies in the rectangular domain. 

In order to present more accurate study, Table 1 shows the exit points re-
ported by different numerical and analytical studies. It is observed that MFS- 
PSO-TCF represents closer results to analytical solution in comparison with 
other numerical-optimal solutions. Regarding the presented results in Table 1, 
MFS-PSO-TCF obtains the closest results to analytical solution introduced by 
Ozis [31]. 

In the last part of study on application of evolutionary methods in unconfined 
seepage problems, the comparison between results from MFS-PSO-TCF and ex-
perimental results is studied [32]. Fu and Jin [32] made a tank of armor plates  
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Figure 3. Phreatic line in rectangular domain obtained from: NEM-GA, 
MFS-PSO, and MFS-PSO-TCF. 

 
Table 1. Exit point (C) reposted from different studies. 

Method Exit point (m) 

FEM [26] Not presented 

BEM [27] 12.68 

MFS [28] 12.88 

Analytical [31] 12.707 

NEM-GA [25] 12.99 

MFS-PSO [29] 12.00 

MFS-PSO-TCF [30] 12.682 

 
and glass. The container included two armor plates, one base and two side pa-
nels. However, one side was made of glass to serve as observation window. In the 
container, an earth dam model was placed which was made of coarse sand and 
estimated porosity of 0.2. In order to protect the model from erosion, some 
small gravel was used to protect both side slopes. The dam was placed with na-
ture sedimentation and natural density. Subsequently, the saturated hydraulic  

conductivity is determined in the steady-state flow case as 4 m3.5 10
s

 k −= × . 

The comparison of experimental results and numerical-optimum results 
shows that the application of MFS-PSO-TCF is a successful algorithm to find 
phreatic line and exit point in unconfined seepage problems (See Figure 4). It is 
observed that NEM-GA, MFS-PSO, and MFS-PSO-TCF are three solution tech-
niques in which a meshfree scheme is used for solving the governing equation  
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Figure 4. Comparison the results for phreatic line in earth dam 
based on experimental studies and MFS-PSO-TCF. 

 
whereas an evolutionary optimization method is implemented to find the un-
known boundary (phreatic line). 

5. GA and PSO in Slope Stability Analysis 

Slope stability is a major problem in geotechnical engineering that estimates the 
failure potential of geo-materials (soil/rock) covering the slopes. The stability is 
considered as the balance between shear stress and shear strength which are due 
to soil mass movement and material resistance, respectively. The stability of soil 
mass covering a slope depends on both slope geometry (slope angle, back slope 
angle, pore water pressure and etc.) and loading conditions (climatic events, 
loading and lateral pressure, and etc.).  

Slope failure comes about in the failure zone (critical surface) in which the soil 
strength is less than shear stress. There are numerous techniques to determine 
the critical slope surface in the classical geotechnical engineering. In order to 
analyze and design slopes, there is a high demand to find either critical slip sur-
face or optimum configuration [33] [34] [35]. Figure 5 shows a schematic slope 
in two dimensions (2D) with three different circular slip surfaces. A given circu-
lar slip surface (i) can be determined by its center ( ),ic x y  and associate radius 

ir . 
For a given slip surface (i), the factor of safety ( )iFOS  is defined based on 

the overloading definition in which the shear stress ( fτ ) is compared with the 
shear strength (τ ) along the slip surface [36]: 

d
Min

d
fi

i

s

s

τ

τ
∫
∫

                           (6) 
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Figure 5. Schematic representation of failure surfaces in a given slope. 

 
where ds  is the differential length of a given slip surface. If the slip surface is 
divided into n  segments with discretized length js∆ , the evaluation of  
( )iFOS  is described as: 

1

1

Min
n

fj jj
n

j jj

s

s

τ

τ
=

=

∆

∆

∑
∑

                          (7) 

The combination of NEM-GA has been used to calculate FOS in slope stability 
analysis. In the proposed framework, GA is used to find the minimum FOS for 
circular slip surfaces while NEM is used to analyze the shear stress and strength 
on the given slip surface [37]. The critical slip surface which is defined by 

( ),ic x y  and ir  can be determined using the flowchart in Figure 6. 
In the illustrative example using NEM-GA, a homogenous slope with height 

(H) 10 m and slopping 45 degrees is analyzed. The shearing strength is calcu-
lated based on Mohr Colum criteria: 

tancτ σ φ= +                          (8) 

where c is cohesion, σ  is normal stress, and φ  is friction angle. 
The strength parameters for the illustrative example are: friction angle  

20φ =  degrees and 12.38 kPac = , the unit weight 3

kN20 
m

γ = , and the elastic 

parameters 3

kN20 
m

γ =  and the elastic parameters 3

kN20000 
m

E =  and Pois-  

son’s ratio 0.3v = . Zheng et al. [38] analyzed the same slope by considering 
elastic behavior of material and Mohr-Coulomb failure criteria while they used  
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Figure 6. Solution from work to find critical slip surface. 

 
Finite Element Method (FEM) to evaluate stress-strain behavior of the material. 
The minimum factor of safety reported from NEM-GA, FEM, and conventional 
methods based limit equilibrium (i.e. Bishop, Spencer etc.) is depicted in Table 
2.  

The results show FOS varies from 0.98 (Janbu simplified) to 1.09 (NEM-GA). 
In order to compare the results from classical limit equilibrium methods, FEM 
and NEM-GA, slip surface for above mentioned analysis is depicted in Figure 7. 
The proposed slip surface by FEM and NEM-GA are coarsely identical whereas 
the limit equilibrium methods find the critical slip surface in different coordi-
nates. The difference in the results could be due to the failure criteria that have 
been introduced in different methods. Further details will be developed and ex-
plained in Discussions and recommendations.  

The discussion in the previous methods is limited to circular slip surface while 
the heuristic algorithms can be expanded for finding the location of critical 
non-circular failure surfaces [39]. Zolfaghari et al. [40] introduced a simple ge-
netic algorithm search to determine non-circular failure surface in slope stability 
analysis. They used Morgenstern-Price technique [41] to analysis the slopes. 
Despite of conventional studies, they considered the effect of internal-slice forces 
of adjacent slopes. This assumption significantly increases the computational ef-
ficiency in finding non-circular failure surfaces. This study suggested a robust 
algorithm to solve problems including finite and infinite slopes with heteroge-
neous materials. 

In slope stability problems with heterogeneous geology the difference in the 
results between noncircular and circular slip surfaces is considerable. Figure 8  
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Table 2. Factor of safety obtained from different methods. 

Method xc(m) yc(m) rc(m) FOS 

Bishop simplified 33.36 27.58 17.82 1.01 

Janbu simplified 33.36 27.58 17.82 0.98 

Spencer 33.36 27.58 17.82 1.01 

FEM [38] 31.41 25.26 15.26 1.06 

NEM-GA [37] 32 27 17.02 1.09 

 

 
Figure 7. Critical slip surface proposed by classical limit equilibrium 
methods, FEM, and NEM-GA. 

 
depicts the stability analysis in a finite slope including four different soil layers. 
Zolfaghari et al. [40] showed that the FOS in the circular slip surface analysis 
based circular slip surface using Bishop and Morgenstern methods are 1.475 and 
1.5 respectively. However, the analysis with noncircular failure surface shows 
that FOS is 1.24. Moreover, it shows that failure surface mostly includes the 
weaker layers which are expected in real problems. They extended this idea in 
infinite slope stability and Figure 9 represents the results regarding an infinite 
slope stability analysis. The problem includes three infinite layers with different 
material properties. In this problem the seismic load is applied to the problem in 
pseudo-static conditions while the coefficient of quake is 0.1 which is applied 
horizontally. Regarding the proposed framework, the FOS is different in static 
and seismic conditions from 1.14 to 0.95, respectively. However, the location of 
slip surface is identical under both conditions.  

In the abovementioned study the control variables were defined within static 
bounds. However, Cheng [42] introduced the dynamic bounds which are con-
trolled by the kinematic requirement of failure. This idea later followed by  
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Figure 8. Comparison of failure surface with a noncircular and circu-
lar method. 

 

 
Figure 9. Results of infinite slope analysis by Zolfaghari et al. (2005). 

 
Cheng et al. [43]. They introduced a Modified PSO procedure in coupling with 
slip surface generator introduced by Greco [44], Malkawi et al. [45], and Cheng 
[42]. The MPSO procedure allows obtaining the optimized solution with fewer 
evaluations in comparison with standard PSO. Since particles with better objec-
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tive function evaluation are permitted to search (fly) more within the given ite-
ration step, subsequently MPSO suggested a faster approach in solution proce-
dure. Moreover, in MPSO, the number of flies within the whole group of par-
ticles is limited. Figure 10 briefly depicts the MPSO algorithm by adding few 
simple steps to standard PSO algorithm.  

In order to compare the results of presented methods, a natural slope with 
four soil layer that has been studied by Zolfaghari [40] is considered which im-
plemented Spencer method within genetic algorithm to analyze the proposed 
slope under 4 loading conditions:  

Case I: No water pressure and no earthquake loading in the system. 
Case II: Water pressure and no earthquake loading. 
Case III: No water pressure but earthquake loading.  
Case IV: Water pressure and earthquake loading. 
Cheng et al. [43] used the same number of slices in order to establish a fair 

comparison between GA, PSO, and MPSO. In all cases the minimum FOS is re-
ported which is considerably lower than GA solution (reported by Zolfaghari et 
al. [40]). Moreover, in all cases, the portion of slip surface which passes through  

 

 
Figure 10. Proposed MPSO algorithm for non-linear optimization prob-
lems (Cheng, 2007). 
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the weakest layer is more than the solution by Zolfaghari et al. [40]. Table 3 
shows the summary of the results from GA, PSO, MPSO under 4 loading cases.  

For illustration intentions, the slope stability analysis results are shown for 
Case I in Figure 11. It is shown that MPSO suggests more critical conditions in 
comparison with standard PSO and GA. In order to compare the results for oth-
er cases (II, III, IV), interested readers are referred to Cheng et al. [43].  

6. GA and PSO in Foundation Design  

The last part of this study introduces a brief overview on application of evolu-
tionary optimization techniques (GA and PSO) in foundation design. Recently, 
in the concepts of foundation design a new idea which is called Robust Geotech-
nical Design (RGD) is the matter of interest [46] [47] [48]. RGD is interested for 
obtaining a certain level of design robustness in addition to safety satisfaction 
and cost requirements. Subsequently, a single best design does not exist anymore 
and a trade-off among multi objectives may be required. In these conditions, 
Juang et al. [49] implemented GA in a multi objective optimization program to  

 
Table 3. Comparison of FOS, resulted from GA, PSO, MPSO. 

Loading Case GA PSO MPSO 

I 1.48 1.3323 1.3490 

II 1.36 1.1985 1.2203 

III 1.37 1.0465 1.0592 

IV 0.98 0.9225 0.9441 

 

 
Figure 11. Critical slip surfaces obtained from MPSO, PSO, and GA. 
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find a Pareto Frontier which describes a trade-off between cost and robustness at 
a given safety level. Following Juang et al. [49], reliability-based RGD approach 
using GA is shown in six steps: 

Step 1: Classify the design parameters and noise factors in the system (foun-
dation). The dimension of system (B: width; L: Length; and D: Depth) are the 
design parameters. Subsequently, the design space is finite including M finite 
designs. On the other hand, uncertain soil parameters (φ : Friction angle; c : 
cohesion) could be remarked as noise factors.  

Step 2: This step includes an inner loop (Figure 12) which is used to compute 
variation of system response. In addition, coefficient of variation (COV) of noise  

 

 
Figure 12. Flowchart representing reliability-based RGD approach using GA. 
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factors for each design is considered in this step. Note: The mean value of each 
noise is fixed while its COV is allocated based on point estimate method.  

Step 3: It includes the reliability analysis for each design in the design space. 
The deterministic model for ultimate limit state (ULS) and serviceability limit 
state (SLS) for the system can be counted for probabilistic analysis. ULS and SLS 
probability may be calculated based on first order reliability method (FORM 
[48]).  

Step 4: This step accomplishes the reliability analysis for N times and uses the 
results to calculate the mean and standard deviation of probability of failure. 

Step 5: The outer loop in Figure 12 that using point estimation method (PEM 
[48]) for M times is accomplished in this step. Subsequently, the mean and 
standard deviation of the failure probability are obtained for all designs. 

Step 6: The best design is determined in this step. Regarding the RGD, the 
multi-objective functions are defined as cost and robustness whereas safety is 
defined as a constraint. The cost of each design may be computed based on pro-
cedure introduced by Wang and Kulhawy [50] and the multi-objective optimiza-
tion is done using non-dominated sorting genetic algorithm version II (NSGA- 
II) introduced by Pratp et al. [51]. 

RGD is based on satisfying three major factors: Safety, cost, and robustness. 
Therefore, one can cast an optimization problem including robustness and cost 
as two objective functions which are subjected to safety as a constraint [49]. In 
order to find the Pareto Frontier, first we need to generate a random “parent 
population” in the design space which is similar to step 0 in standard GA (See 
Section 2). Here, we consider the number of initial “optimal” designs as n in the 
design space. Subsequently, a series of GA steps including selection, crossover, 
and mutation are executed to obtain the new “offspring population” (Step 1 in 
Section 2). Then the refinement of parent population is accomplished through 
an iterative process (Step 2 in Section 2). For a given generation, the new popu-
lation is formed through the combination of parent and offspring population. 
Next, the non-dominant sorting is applied over new population and produces 
different sets of design points based on the non-dominant ranking. For instance, 
the best class is recognized as F1; the next is F2 and so on. Subsequently, the best 
n points are nominated for next generation. Crowding distance technique can be 
used in the generation on new population with respect to keep diversity in the 
selected design points when the number of points in 1 2,F F   exceed n [51]. 
This procedure continues until the convergence criterion is satisfied and stable 
solution obtained. Subsequently, the final solution in the proposed optimization 
process is determined as Pareto Frontier. Figure 13 shows the converged solu-
tion (Pareto Frontier) for a spread footing using NSGA-II optimization.  

Pareto Frontier includes an optimal set of possible designs in RGD approach. 
This set plays a trade-off role in relationship between cost and robustness against 
uncertainty factors. The designer may opt for a greater robustness at a higher 
cost or vice versa. On the other hand, if a threshold is predefined for cost then 
the designer could decide on the most robust design from the Pareto Frontier. In  
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Figure 13. The Pareto frontier for the design of spread footing obtained using 
NSGA-II. 

 
addition, based on feasibility robustness one can refine the decision for design 
objectives (Figure 14). For further information regarding feasibility robustness, 
interested readers are encouraged to study was done by Juang et al. [49].  

Application of evolutionary methods in foundation design is not limited just 
to spread footings. For instance, Lei [52] implemented PSO on the settlement 
fitting prediction of highway foundations. The settlement of highway founda-
tions plays a major role in the deformation and stability of the roads. In general, 
there are three approaches to calculate settlement fittings:  

1) Implementation of soil constitutive models to calculate the final settlement 
of road bases, this type of analysis is based on consolidation theories [53]. 

2) Application of numerical methods (i.e. finite element method/finite differ-
ence method) using soil creep constitutive models [54]. 

3) Employment of direct methods which are based on actual measured data 
(settlement) and presenting a mathematical model to predict settlement in road 
bases [55] [56] [57].  

Lei et al. [52] used the direct method which is based PSO and time series 
analysis to present a subgrade settlement model for Nanjing-Hangzhou highway. 
Since settlement in foundation follows a time dependent trend, one can re- 
present the settlement via a polynomial based time series. Time series analysis 
has been successfully applied in dynamic data processing phenomena (i.e. Pre-
diction of dynamic deformation of landslides [58]: 

1
1 1

qm
q

t m jk t j
j k

S a S+ + +
= =

= ∑∑                         (9) 
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Figure 14. Cost versus feasibility robustness for all designs on the Pareto 
Frontier. 

 
If m and jka  are determined with PSO, the above model turned to a predic-

tive model which can be used to predict the future deformation prediction [52]. 
In the proposed study, parameters in the model are generally determined by 

empirical methods. In the process of finding fitting parameters for the model, 
the measured data has a considerable effect on the predictive model. Lei et al. 
[52] used measured data from a part of Nanjing-Hangzhou highway settlement 
from October 2001 until November 2002 and the parameters of the algorithm 
are determined in the process of solving fitting model using PSO. The parame-
ters for the optimal model are finally determined as: 

2 3
1 1 1 2
2 3 2

2 2 3 3
3 2 3

3 4 4 4

0.619117 0.574071 0.396936 0.558567

 0.609107 0.318928 0.305011 0.220289

 0.806629 0.123115 0.26552 0.255204

t t t t t

t t t t

t t t t

S S S S S

S S S S

S S S S

− − − −

− − − −

− − − −

= + − +

− + − −

+ + + −

    (10) 

Regarding the predictive model presented in Equation [10], the learning value, 
predictive values are compared with the measured data in Figure 15. The com-
parison shows a good agreement in the analysis of measured data and predicted 
values. 

7. Discussions and Recommendations  

Seepage through earth dams or ground water flow represents a problem with an 
unknown boundary. In order to find a reasonable solution, this study suggests 
the simultaneous application of a robust technique for solving the governing  



S. G. Andrabi et al. 
 

174 

 
Figure 15. Settlement with time of the monitoring data. 

 
equation while an optimization technique is required for finding the location of 
unknown boundary. Although the application of MFS-PSO-TCF in finding 
phreatic line/exit point in unconfined seepage problems shows privilege in 
comparison with presented methods in this study, it is limited only to saturated 
conditions. However, many studies show the location of phreatic line is a 
trade-off between unsaturated and saturated conditions [59]. Subsequently, im-
plementation of evolutionary methods and adequate numerical techniques is 
suggested for future studies.  

Slope stability analysis is a challenging problem in geotechnical engineering 
and it needs the application of constitutive models which include elasto-plastic- 
ity [60]. In NEM-GA framework only elastic behavior of material is considered 
which can result in error in slope stability analysis. However, it is encouraged to 
extend the proposed framework to elasto-plastic materials. In addition, it may be 
useful if the proposed studies could be implemented to retaining structures, MSE 
walls, and Concave Geosynthetic-Reinforced Soil Structures (CGRSS) [61]. The 
third part of this study briefly reviewed the implementation of GA/PSO in the 
foundation designs. The presented studies suggest the application GA/PSO in 
spread footings while there are numerous studies dealing with deep foundation 
and group piles [62] [63] [64]. Moreover, soil reinforcement and soil stabiliza-
tion are considerably interested in foundation designs [65] [66] [67] [68] [69]. 
Subsequently, the application of evolutionary methods in the optimum design of 
deep foundations and soil reinforcements is strongly suggested for future stu-
dies.  
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8. Conclusions 

In the presented review, we briefly introduced two well-known evolutionary 
methods (GA/PSO) and their application in geotechnical engineering. The im-
plementation of GA/PSO in three major geotechnical problems is considered: 1) 
Unconfined seepage problems; 2) Slope stability analysis; and 3) Spread footing 
designs.  

Regarding the unconfined seepage problems, at least one of the boundaries 
(phreatic line) is not determined and it is substantial to predict the location of 
phreatic line and exit point within the solution procedure. Three methods using 
GA/PSO in their solution procedure are studied in this review: NEM-GA, MFS- 
PSO, and MFS-PSO-TCF. In the comparison of results from above mentioned 
solution techniques, it is obtained those MFS-PSO-TCF results in more accurate 
solution, especially, in the determining exit point location.  

In slope stability analysis, determination of the failure surface location is a 
challenging problem in geotechnical engineering. In this study, we found that 
GA, PSO, and Modified PSO are successful in finding critical slip surface and 
subsequently estimation of FOS. In real life scenario, usually critical slip surface 
is not a semi-circular, especially in problems including heterogeneous soil layers. 
In the presented study, MPSO performs adequately in the determination of crit-
ical slip surface with respect to number of iterations and computational cost. 

In the last part of study, the application of GA/PSO in foundation design is 
investigated. It is shown that the combination of GA and RGD leads to find the 
trade-off between cost, safety, and design robustness. This criterion is depicted 
by a Pareto Frontier. Finally, the application of PSO in prediction of settlement 
in shallow foundations is presented by studying the spread footings in highways. 
It depicts that PSO is successful to predict the settlement trend based on ob-
served data.  

The safety in designs is highly respected in geotechnical engineering. On the 
other hand, contractors and private sectors prefer economical design with min-
imum labor effort and construction cost. Subsequently, implementation of ro-
bust optimization techniques which establish a trade-off between safety and total 
cost of geotechnical projects is necessary in practice.  
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