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Abstract 
Consequences of an exceedingly strong electric field (E field) on the ground 
state energetics and transport properties of a 2D spinless electron gas in a 
perpendicular magnetic field (a Quantum Hall Effect (QHE) configuration) 
are investigated to all orders in the fields. For a conventional semiconductor, 
we find fractional values of the Hall conductivity and some magnetoelectric 
coefficients for certain values of E and B fields that do not result from interac-
tions or impurities, but are a pure consequence of a strong enough in-plane E 
field. We also determine analytically the ground state energy, and response 
properties such as magnetization and polarization as functions of the electro-
magnetic field in the strong E field limit. In the case of Graphene, we obtain 
more complex behaviors leading to the possibility of irrational Hall values. 
The results are also qualitatively discussed in connection to various mechan-
isms for the QHE-breakdown. 
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1. Introduction 

The Quantum Hall Effect (QHE), discovered by von Klitzing et al. in 1980, is the 
quantized response of a nearly 2D electronic system subjected to a perpendicular 
(to the 2D surface) magnetic field B when a small electric field E runs through 
the system in a longitudinal direction transverse to B. This quantized response, 
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transverse to the longitudinal direction and reflected via the plateau formation 
of the Hall conductivity (observed at room temperature in Graphene) has led to 
considerable work with the aim of exploring the underlying physical mechan-
isms that describe the universality of the quantization. In the usual theoretical 
formulations of QHE, the electric field is treated as a perturbation to the basic 
Physics that is mostly governed by the magnetic field. Thermodynamic proper-
ties have also been investigated for the 2D electronic gas in a perpendicular 
magnetic field alone, or in a combination of electric and magnetic fields, limited 
to the low electric field regime only. This paper follows a thermodynamic me-
thodology that tries to shed some light on both thermodynamic and transport 
properties of 2D conventional and quasi-relativistic electronic systems when 
placed inside a strong electric field that is transverse to the magnetic field; the 
electric field, when sufficiently strong, seems to cause energetic mixtures and 
seems to have the potential to lead to fractional quantization of the Hall conduc-
tivity. The paper is summarized as follows: In Section 2, the thermodynamic and 
transport properties of a conventional 2D non-interacting electron gas in the low 
E field regime are described in more quantitative detail than usual, these proper-
ties also being derived in the strong E field limit, while in Section 3, a 2D Gra-
phene sheet is investigated with respect both to low and strong E field limit. All 
thermodynamic properties are given with respect to global internal energy, mag- 
netization and polarization expressed as functions of the electromagnetic field 
when a thermodynamic equilibrium has been established. A corresponding cal-
culation of the Hall conductivity in the strong E field regime shows a possibility 
of fractional, stable values, in a certain range of B values. 

2. Conventional System (A Semiconductor) 
2.1. Low E-Field Strength 

Consider an ideal nonrelativistic two-dimensional spinless electron gas in a per-
pendicular and homogeneous magnetic field B  directed along the positive 
z-axis. The dimensions of the plane are taken to be macroscopically large  

( )x yL L× . In addition to B  there is also an in-plane, homogeneous electric 
field E  pointing in the y-direction that is very weak, i.e. it doesn’t cause any 
overlap of different Landau Levels (L.Ls). In this manner, the Fermi energy can 
always be situated in the interior of an energy gap (i.e. for certain areal density), 
causing, as is well-known, the universality of quantization of Hall conductance 

Hσ . If the electric field is further increased from its first critical value (to be de-
termined below) then the gap closes and the system is highly nonlinear, the gen-
eral consensus being that this results to destruction of the quantization of Hσ , 
although from what we will see below several refined behavioral patterns remain 
(in this strong electric field case), that can even lead to the survival or even a dif-
ferent type of integer quantization in the nonlinear regime. This strong electric 
field case will be separately studied in the next subsection. 

We choose to work in the Landau gauge xA By= − , 0y zA A= =  along with 
a scalar potential V eEy=  (we take the charge of the electron to be –e) result-
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ing in the following Hamiltonian: 
21

2
eH eEy

m c
 = + + 
 

p A , 

with energy spectrum [1] 

( )
2

01 2
2

DmVn eEYε ω= + + +                  (2.1) 

with eB mcω =  the cyclotron frequency, 0,1,2n =   the L.L. index,  
2

DV c B cE B= × =E B  the modulus of the drift velocity and 
2

0 2
xcp mc EY

eB eB
= −                       (2.2) 

the guiding center operator eigen value in the y-direction (restricted to the area 

02 2y yL Y L− ≤ ≤ ). Now, in specifying the electric field’s strength E, if we first 
want to avoid any overlap among different L.Ls, the single particle energy  

( )01, 2yn Y Lε − =  must be lower than (or equal to) ( )0, 2yn Y Lε = − , a crite-
rion which leads to the following inequality: 

y

E
eL
ω

≤
                          (2.3) 

Therefore, this case of no-overlap involves a limitation of drift velocity’s val-
ues that depends on both field strengths and is equivalent to either of two crite-
ria: (i) D ymV L ≤   (the angular momentum of an electron in one edge with re- 

spect to a point in the other edge is ≤  ), or (ii) 
2 2

22 2
D

y

mV
mL

≤
  (the drift ki- 

netic energy is a≤  a confinement energy along the y-direction (due to the un-
certainty principle)). 

In this case all L.Ls can be filled independently (such a case is later shown i.e. 
in Figure 3): according to the least energy principle, at zero temperature 0T = , 
all electrons occupy states labeled by small quantum numbers ( ),n l , (with n the 
above mentioned Landau Level index, a non-zero positive integer, and with l  
another integer specifying the eigenvalue of xp  due to periodic boundary con-
ditions along the x-direction, the eigenvalue being x xp hl L= ), starting from 
L.L 0n =  and varying all possible values of l , and then successively following 

1n = , 2n =  and so on. Each L.L (indexed by quantum number n ) may host 
up to 0Φ Φ  spinless electrons (which is the total number of distinct values of l  
in the thermodynamic limit) with X yBL LΦ =  being the magnetic flux across the 
2D plane and 0 hc eΦ =  the flux quantum, in order to be consistent with Pauli 
principle. This means that without loss of generality we always have, let us say, 
( )1,2,3ρ =   L.Ls that are occupied for fixed particle number N and for a cer-

tain value of B, and due to the minimal energy criterion, we must have ( 1ρ − ) 
fully occupied L.Ls and the last L.L. either partially or fully occupied. Of course, 
if N is fixed, the entire occupational procedure is uniquely determined only by 
the magnetic field strength B and it can be described naturally by the inequalities 

( ) 0 0 0 0
1 11 o

1
 r A AN n B nρ ρ

ρ ρ
− Φ Φ ≤ ≤ Φ Φ Φ ≤ ≤ Φ

−
,      (2.4) 
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with A x yn N L L=  the 2D areal density of electrons. The last L.L. is occupied by 
( ) 01N ρ− − Φ Φ  electrons allowing us to determine analytically the maximum 

0MAXY  of the last electron located at L.L. index value of 1n ρ= − : 

0MAX
1
2 y

x

chNY L
eBL

ρ = + − 
 

                  (2.5) 

which gives the expected results that when 
0

N ρ Φ
=

Φ
, 0MAX 2yY L=  and when 

( ) 01N ρ− − Φ Φ , 0MAX 2yY L= − . 

2.1.1. Thermodynamic Properties 
The total internal energy of the system at 0T =  is a sum over all occupied 
quantum numbers n and 0Y : 

( )
0

2

01 2
2

D
n Y

mVE n eEYω
 

= + + + 
 

∑ ∑              (2.6) 

In the macroscopic (continuum) limit yL →∞  we may approximate the 
sum with respect to 0Y  with an integral: 

( ) ( ) ( )( )
0

22 max
0 0 0 02 min 2

0

dyy

y y

LL l x
Y L l l L

BL
f Y f Y f Y Y

− = −=
= →

Φ∑ ∑ ∫       (2.7) 

with ( )0f Y  an arbitrary function of 0Y , given that 0Y  is linearly related to 

xp , and xp  is defined through the quantum number l  as x xp hl L= . The 
above is valid because in the continuum infinite space limit the momentum in 
the x  direction becomes quasi-continuous (along with 0Y ). If we then use (2.2) 
with the restriction that: 2 2y O yL Y L− ≤ ≤ , we can find the available range of 
values for l :  

2 2
x y x yx xeBL L eBL LmcL E mcL E

l
hc Bh hc Bh

− + ≤ ≤ +  

or min maxl l l≤ ≤ .We then prove (2.7) as follows: 

( ) ( )

( ) ( )max

min

2max
0 0 0min 2

0

max
0 0min

0

lim d

d d ,

y

y y

x

x

Ll x
L l l L

p lx
xp l

BL
f Y Y f Y

BLc p f Y l f Y
eB

→∞ = −
=
Φ

= =
Φ

∑ ∫

∫ ∫
 

which implies that in the continuous limit the following holds:  
maxmax

min min
l dim

y

ll
L l l l

l→∞ =
=∑ ∫ , which completes our proof. We therefore have: 

( )

( )MAX

2
22

0 00 2
0

2

0 02
0

d 1 2
2

  d 1 2
2

y

y

O

y

Lx D
n L

Yx D
L

BL mVE Y n eEY

BL mVY eEY

ρ ω

ω ρ

−

= −

−

 
= + + + Φ  

 
+ − + + Φ  

∑ ∫

∫





, 

with eB mcω = , and after a number of algebraic manipulations we reach a 
closed analytical expression for the total minimal energy per electron, namely 
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( ) ( )

( )

2 2
0

2
0

2 2

2

11 1
2 2 24π

  1 2
2

A
y

AA

nE e B BeEL
N B nmc n

mc E eB
mc

ρρ ρ ρ ρ

ρ

 Φ  = − − + − − + −   Φ  

+ + −
Β



 

 (2.8) 

valid in the magnetic field range ( )0 0 1A An B nρ ρΦ ≤ ≤ Φ − , οr, in units of the 
Fermi energy 2 4π 2F An mε =   (the one defined for 2D spinless electron gas in 
the absence of E and B), 

( )

( )

2
0

2 2
00

2 2 2
0

2 2
0

11
2 22

1 1
2 24π

y A

F A FA

yA
y

F AF

eEL nE B
N n Bn

eELe n
eEL

B

E B
nB

ρ ρ ρ
ε ε

ρ ρ ρ
εε

Φ = − − + − + ΦΦ  
Φ − − + + −  Φ       

(2.9) 

Now, let B be equal to 0AB n k= Φ , with 1 kρ ρ− ≤ ≤ , so that from (2.3) we 
have 1y FeEL y kε ≡ ≤ . Rewriting then (2.8) in terms of y and 0Ax B n= Φ  
we obtain 

( )

( )

2

2

2 2

1 1
2 2 2
1 1 1

2 24π

F

A y

xE yx
N x

y yxy
n L x

ρ ρ
ρ

ε

ρ ρ ρ

−  = + − + 
 
 + − − + − 
 

 

In Figure 1, see the graphs of energy and magnetization per electron, for 
2 1A yn L =  (a good value so that the internal structure of these quantities are 

shown in sufficient detail 
Using the second thermodynamic law we can also determine analytically the 

equilibrium magnetization and polarization per electron, which turn out to be 

( ) ( )

( )

2
0

2 2
0

2 2

3

1 1
22π 2

  1 2

A
y

AA

E
nM e BN eEL

N B nmc n B
mc E e

mcB

ρρ ρ ρ

ρ

 ∂    Φ = − = − − − + − ∂ Φ 

+ − −


 

( )
2

0
2

0

1 1
2 2 2
A

y
A

E
nP B mc EN eL

N E B n B
ρρ ρ

 ∂    Φ   = − = − − − + − −  ∂ Φ  
  (2.10) 

These thermodynamic expressions demonstrate the effect of the electric field 
which is non-linear (with respect to the variable E), even for the case of relatively 

 

 
Figure 1. Energy and Magnetization per electron as functions of the magnetic field B. 
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weak electric field. Now we proceed by examining some limits: when all L.Ls are  

fully occupied, namely when 
0

N ρ Φ
=

Φ
, then we obtain: 

3 2
32 2

y H
H

A A

LM e mE E
N mc n c n C

σ
σ = − + + 

 



            
(2.11) 

2
2 H
A

P m E
N n

σ= −
                      

(2.12) 

with 2
H e hσ ρ=  the Hall conductivity (see below). It is interesting to note a 

characteristic half of the Hall conductance in the coefficient that connects the 
so-called magnetoelectric effects with the fields that cause them (that in a prob-
lem with chiral properties, usually in Topological Insulator materials, corres-
pond to an extra magnetization caused by a parallel electric field (as in (2.11) 
above) and an extra polarization caused by an extra magnetic field (see [2] and 
references therein); here we note such a trend even in a Quantum Hall system 
(which is not unexpected, and is actually justified based on general Physics ar-
guments [2]). One can actually see such a trend in the polarization as well, for a 
general B, in (2.10), where in the last linear term we can again see 2Hσ  ap-
pearing. [It should be added that all these behaviors originate from the final term 
of (2.9) that describes an EB-coupling, something that we will also see later for 
the relativistic case.] In addition to all this, note also that for / yE eLω=   the 
gap closes, and (2.8) becomes: 

( )
2

2

1 0, 0
2 2F

y

E E B
N mL

ε= = = +


               
(2.13) 

with ( ) 20, 0 4π 2F AE B n mε = = =   being the expected Fermi energy (in the 
absence of fields)—and when all L.Ls are fully occupied, with 0AB n ρ= Φ , and 
with any E (now less than its first critical value) (2.8) becomes: 

( )
2 2

2

1 0, 0
2 2F

E mc EE B
N B

ε= = = + , 

i.e. the total energy per electron reduces to 2D energy of free electron gas plus a 
drift kinetic term. These last simple results are not quite unexpected and may be 
justified with proper semiclassical considerations. 

2.1.2. Hall Conductivity 
The Hall conductivity is defined as H Aen c Bσ = . The usual plot representing 
the QHE [3] shows Hσ  as a function of B, and in this we have plateau forma-
tion for certain values of B. For B varying in the range defined by the inequalti-
ties (2.4): 

( )0 0 1A An B nρ ρΦ ≤ ≤ Φ −                 (2.14), 

then Hσ  is quantized in units of 2e hρ  with ρ being an integer, which 
counts the number of fully occupied L.Ls. Note that each plateau has maximum 
width: 

( ) ( )
0 0

0
1

1 1
A

A
n

n
ρ ρ ρ ρ
Φ Φ

− = Φ
− −                

(2.15) 
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In the following we show that, in the very strong E-field case, fractional filling 
factors may also occur, by variation of electron number N with E and B fixed. 
[In that case, the analogous width of the corresponding plateau is expected to be 
reduced, although a serious consideration of plateau-observability should in-
clude a study in the presence of disorder, a subject that is beyond the scope of 
the present article, or in the presence of edge states (see Section 2.2.4 for a qua-
litative discussion). 

2.2. High E-Field Strength 

When the electric field exceeds its first critical value, yE eLω>  , inter L.L. 
overlap occurs. As E gets stronger, more and more L.Ls overlap and degenerate 
states that belong to different values of the quantum number n appear (in the 
previous case of a weak electric case, the standard Landau degeneracy had been 
completely lifted). Energy gap closes, and Fermi energy is always located on a 
single quantum state, with a significant number of available nearby states. Al-
though Fermi energy is no longer in an energy gap, it will make jumps from one 
L.L to another by varying the magnetic field (or the particle number N). There 
are some critical values of B (the transition points) where a jump occurs, at 
which the Hall conductivity takes fractional values, as we shall see. 

We now assume a general strength E field determined by 

yE z eLω=  ,                      (2.16) 

with z a continuous number that describes “overlap percentage”: 1j z j≤ < +  
with 0,1,2j =  . When 0j = , or 1z ≤ , overlap vanishes and L.Ls can be filled 
independently, with the usual energy gap restored. This is just the case discussed 
in previous section. Equation (2.16) can actually be derived for a certain electric 
field that obeys the following relation: 

( ) ( )
( )

0 0

0

, 2 0, 2

1, 2

y y

y

n j Y L n Y L

n j Y L

ε ε

ε

= = − ≤ = =

≤ = + = −
, 

i.e. the electric field has a strength such that the single particle energy of the last 
electron ( )0 2yY L=  in L.L. 0n =  is greater than single particle energy of the 
first particle ( )0 2yY L= −  in L.L. n j=  and lower than the single particle 
energy of the first particle in L.L. 1n j= + . Then, 

( ) ( )1 2 2 2 2 3 2 2y y yj eEL eEL j eELω ω ω+ − ≤ + ≤ + −    

that concludes in 

( )1
y y

j E j
eL eL
ω ω

≤ ≤ +
  , or 

y

E z
eL
ω

=
 , with 1j z j≤ < + , 

which is indeed (2.16).  
Now we proceed to occupancies: For a constant E and B field (i.e. a constant 

energetic configuration) varying electron number N results in variation of Fermi 
energy and a corresponding variation of occupied L.Ls. The goal here is to ex-
amine under what N-variations the Fermi level remains at a single (the topmost) 
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L.L level. To achieve this, we fix Fermi level at the highest occupied L.L,  
1,  1n ρ ρ= − ≥ , (see Figure 2) with energy 

( ) 21 2 2F D mmV eEYε ω ρ= − + + ,              (2.17) 

with mY  the guiding center position of the last electron (with highest single 
particle energy) located at 1n ρ= −  (see the isolated dot in Figure 3). In this 
way, we ensure that variations of N will result in moving mY  in the interval 

L m RY Y Y≤ ≤ , with 2L yY L= − , the left edge of 1n ρ= −  L.L. and RY  is a 
critical guiding center above which L.L. n ρ=  is occupied. This can be deter-
mined by equating the Fermi energy to the single particle energy  

( )0, 2yε n Y Lρ= = − : 

( ) ( )2 2  1 2 2 1 2 2 2D R D yω mV eEY ω mV eELρ ρ− + + = + + −  , 

resulting in: 2R yY L ω eE= − +  , or, using Equation (2.1): 2R y yY L L z= − + . 
Any number N that takes RY  above this critical value will result in a nonzero 
occupation of n ρ=  L.L. Therefore, to ensure that exactly ρ  L.Ls are occu-
pied, mY  must vary in the following window: 

2 2y m y yL Y L L z− ≤ ≤ − + ,                (2.18) 

guaranteeing that exactly ρ  L.Ls are occupied. Naturally this equation be-
comes pathological when z is smaller than unity—the weak electric field case—

RY  becomes infinite when 0z → . This of course happens because the above 
equation is not valid in this case, where no inter-L.L overlaps occur. Limitations 
must therefore be imposed here. The smallest value that z can take, must be 
above 1, with 1z =  defining the non-overlap limit. If 1z <  the above relation  

 

 
Figure 2. An example of different L.L mixture with 5j =  and 5.1z =  a possible posi-
tion of Fermi Level ( 6ρ = ), with only one full L.L. occupied and five L.Ls partially occu-
pied. Ground state demands that the chemical potential of each distinct L.L (highest sin-
gle-electron energy) must be equal, resulting in a purely horizontal Fermi energy. 
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Figure 3. A schematic representation of the energy states (L.Ls) when the electric field is 
weak: there is no inter-L.L. overlap. All L.Ls can be filled independently, and energy gaps 
between L.Ls can result in quantization of the Hall conductivity. 

 
just becomes: 

2 2y m yL Y L− ≤ ≤                     (2.19) 

as earlier. Having now defined the Fermi level’s exact location analytically, we 
proceed with our method by counting how many L.Ls are fully occupied and 
how many are partially occupied. An L.L. is completely filled with electrons only 
when the Fermi energy is greater than the single electron energy located at 

0 2yY L=  in each L.L. Using this information, we may write down the number 
of fully occupied L.Ls ( )Fi  as a sum of theta functions over all L.Ls: 

( )
0 0

1, , , 1  for 1
2 2

y m
F m F

n n y

L Y
i Y z n n z z

L
ρ θ ε ε θ ρ

+∞ +∞

= =

    
= − = − − + − >              
∑ ∑

 
(2.20) 

where [ ]xθ  is a step function, [ ] 1xθ =  if 0x ≥  and [ ] 0xθ =  otherwise. 
Variations of mY  (i.e. for fixed E and B) according to Equation (2.20) result in 
variations in Fi  as follows: 

( ) ( ) ( ), , , ,
m L m R

L R
F F m F

Y Y Y Y

i z i Y z i zρ ρ ρ
= =

≤ ≤
 

,              (2.21) 

with ( ) [ ]
0

, 1L
F

n
i z z nρ θ ρ

+∞

=

= − − −∑  and ( ) [ ]
0

,R
F

n
i z z nρ θ ρ

+∞

=

= − −∑  are the num-

bers of completely filled L.Ls calculated at the edges of Equation (2.21). Let’s see 
now some examples: 

In Figure 4, z is equal to unity, 1z =  and 2ρ = , then  

[ ] [ ]
0

0 1L
F

n
i nθ θ

+∞

=

= − = =∑ , and [ ] [ ] [ ]
0

1 1 0 2R
F

n
i nθ θ θ

+∞

=

= − = + =∑ . In Figure 5,  
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Figure 4. Example of 2 fully occupied Landau Levels with their slope having the highest 
value corresponding to no overlap (z = 1). 

 

 
Figure 5. Example of 3 fully occupied Landau Levels with “overlap ratio” z = 2.2. 

 
2.2z =  and 3ρ = , 0L

Fi =  and 1R
Fi = . It is interesting to note that for any 

value of the variable z, L
Fi  and R

Fi  always differ by one, which means that va-
rying N or equivalently, mY , in the interval defined by (2.19), one full L.L. is 
added to the system. This resembles the 0E =  case, where variations of mY  in 
the same interval (but for 1z = ) the Fermi energy passes through all available 
states in the last L.L. until it reaches the next L.L., where an extra full L.L. in-
creases the number Fi  by 1 (see also Figure 6). [This is actually consistent with 
the well-known corresponding result in the case we fold the system (in the x- 
direction) into a cylinder, that is a key result in the Laughlin argument [4] that 
gives the integral quantization of the Hall conductivity from general gauge ar-
guments—or equivalently to the charge-pumping picture of Thouless [5] or a 
more general property of the so-called spectral flow [6] in topologically non-
trivial systems, such as topological insulators [7]. It is interesting to see that 
when z reaches its lowest possible value, 1z = , 1L

Fi ρ= − , meaning that the  
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Figure 6. For z = 0 case (identical to 1z ≤  case), with no E-field, 1L

Fi ρ= −  and 
R
Fi ρ= . Left figure shows 3ρ =  occupied L.Ls, with two of them fully occupied and the 

last one partially occupied. An addition of electrons will stimulate Fermi energy to pass 
through all available states in its right side until right end of L.L. 2n = , where a full L.L. 
will be added to Fi . 

 
maximum number of partially occupied L.Ls is always 1. Needless to say that z 
remains a constant only when E and B fields are constant too, (or in a special 
case that both fields vary in the exactly same rate) and the only variable is the 
electron number. This happens because of Equation (2.16), yE z eLω=  , 
which relates B to E through the variable z. For a constant electric field, varying 
B will result in a variation of z such that E remains a constant. The same prin-
ciple holds for keeping B constant and varying E.  

Generally, from definition of R
Fi  and L

Fi  we have that: [ ]IntR
Fi zρ δ= − +

and [ ]Int 1L
Fi zρ δ= − − + , where 1δ =  if z is an integer and 0δ =  otherwise. 

These equalities hold for [ ]Int zρ δ> − . If [ ]Int zρ δ= −  or lower, then 
0R

Fi =  and 0L
Fi = . 

Now, about partially filled L.Ls, these must intersect at certain 0Y  the Fermi 
energy. Optimal energy requires that states (per L.L.) starting with 0 2yY L= −  
until the intersection with the Fermi energy must be filled, while states with 
higher 0Y s must be empty. These intersections can be easily found at the fol-
lowing points: 

( ) ( ) 2
0

1 11 2
2F F DY l i l mV

eE
ε ω = − + + −  

 , with 0,1,2 1 Fl iρ= − − , (2.22) 

where Fiρ −  is the number of partially occupied L.Ls. 

2.2.1. Number of States under Fermi Energy 
Each L.L contains 0Φ Φ  available quantum states. Each state corresponds to a 
single spinless electron, in accordance to Pauli Exclusion Principle. The number 
of states under Fermi energy is a sum of Fi  full states and a sum term that 
counts all states in the partially occupied L.Ls from 2yL−  until the intersec-
tion with Fermi energy: 
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21

00 0

1#states
2π 2 2 2

Fi
x F x D x

F F
l

L B BL mV L B
i i l

Ehc cE Ehc

ρ ε ω− −

=

 Φ Φ = + − + + − +  Φ Φ  
∑   (2.23) 

This number, in a canonical ensemble, is exactly equal to the constant particle 
number N: 

( ) [ ]

( ) ( )

2

2
0

2

2
0

2 2 4π
or

1 1 ,
4π 2

yx x x xF
F F F

yx x x
F F F m

LBL L eBL LE eBN i i mc i
E ch h B ch mE c

LeB L BL eBL
N i i i eY

E ch chmc

ε
ρ ρ

ρ ρ

 Φ
= + − − + − + Φ  

 Φ
= + − − − + + Φ  

 (2.24) 

if one replaces the Fermi energy in (2.24) with the corresponding expression 
from (2.17), with ( ), ,F F Fi i E Bε=  also a function of Fε . This equation de-
termines particle number N when Fε  is also known. Unfortunately, it is rather 
difficult to solve directly with respect to Fε , but it can be easily determined 
numerically. Further simplification of (2.24) can be made using the window of 
values of Fε , given by Equations ((2.17) and (2.18)):  

2 21 1
2 2 2 2 2 2

y y yD D
F

L L LmV mVeE eE
z

ω ρ ε ω ρ
    − + − ≤ ≤ − + + − +    

     
  , (2.25) 

which results in the following window of values for N: 

( )

( ) ( )

2

2
0

2

2
0

1
4π

1
4π

L L Lx
F F F

R
FR R Rx

F F F

B L
e i i i

Emc

iB eL
N i i i

zEmc

ρ ρ

ρ
ρ ρ

Φ − − − +  Φ

 −Φ   ≤ ≤ − − − + +  Φ   

      (2.26) 

with ( ), ,L L
F Fi i E Bρ=  and ( ), ,R R

F Fi i E Bρ= . The above relation defines win-
dows of values for B (if it is considered as a variable) for constant E field, and 
constant electron number N. Equivalently, one may prepare an experiment, 
where electron number is not conserved (i.e. an electric circuit) and keep E and 
B fixed. Note that the above relation shrinks to Equation (2.14) when 1z = : 

( )
0 0

1Nρ ρΦ Φ
≥ ≥ −

Φ Φ                   
 (2.27) 

2.2.2. Thermodynamics 
We now proceed to ground state energy calculation, which is a sum over all sin-
gle electron states, until reaching the Fermi energy: 

( )

( )

( )
0

21
2

0 0
00 2

1
2

0 0
00 2

1d 1 2
2

1  d 1 2
2

yF

y

F

y

Li
x

D
n L

Y li
x

F D
l L

BL
E Y ω n mV eEY

Φ

BL
Y ω i l mV eEY

Φ

ρ

−

= −

− −

= −

 = + + +  

 + + + + +  

∑ ∫

∑ ∫





 

The left term describes the energy due to fully occupied L.Ls, while the right 
term describes the energy of partially occupied L.Ls. After a number of algebraic 
manipulations, and using Equaitonk (2.22) we conclude to the following result 
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for the total energy per electron: 

( ) ( )

( ) ( )

( )( )( )

2 2

2

2 2 2

2

2 3

2 3

2 24π

 
2 22

 1 1
48π

y A
F F

FA

F F
y y

F F A

F F F
A y

L En chE e B e Bi i
N cm i Bmc n

i imc E eeEL L EB
i i hcnB

e B i i i
n m c EL

ρ ρ
ρ

ρ ρ
ρ ρ

ρ ρ ρ

= − + + +
−

   +
− + +    − −    

− − − − − +





     (2.28) 

that consists of a sum of several terms which are not all symmetric (with respect 
to E and B). The last term vanishes in weak E field limit ( 1Fi ρ= − ). Note the 
interesting fact that the presence of the coupling term EB  requires fully occu-
pied L.Ls, i.e. 0Fi ≠ . This is a probably expected pattern resulting from axionic 
considerations in an electromagnetic field where the coefficient of coupling term 
involves fully occupied L.Ls (for the weak E field case, the corresponding coeffi-
cient is related to the Hall conductivity, and it was briefly mentioned in the last 
section, originating from the EB-coupling term). 

When 0Fi = , i.e. when all L.Ls are partially occupied ( [ ]Int zρ δ≤ − ), we 
have (from (2.28)): 

( )
2 2 2 3

2
2 2 3 1

2 2 2 2 48π
y yA

A y

L eELEn chE e B mc E e B
N cm B B n m c EL

ρ ρ ρ
ρ

= + − + − −
   

and from (2.26): 

( ) ( )
2 2

2 2
0

1 1
4π 4π
x xB eL B eL

N
zEmc Emc
ρρ ρ ρ ρ Φ

− ≤ ≤ − +
Φ

 

Or, substituting yE z eLω=   we get 

( ) ( )
0 0

1 1
2 2

N
z z
ρ ρρ ρΦ Φ

− ≤ ≤ +
Φ Φ

              (2.29) 

i.e. there are no quadratic terms with respect to B appearing in the total energy, 
and there are no coupling terms either. Also, when the Fermi energy travels from 
one edge of n = ρ − 1 to the other, it passes exactly through 0 0zρΦ Φ < Φ Φ  
states. On the other hand, when [ ]Int zρ δ> − , i.e. 0Fi ≠ , the Fermi energy 
passes through exactly 0Φ Φ  states. 

Now, we want to plot Equation (2.28) by keeping E and B fixed and vary N in 
the interval given by (2.26). Using E as in (2.16) we rewrite (2.28) and (2.26) as 

( ) ( )

( )( )( )

2 22
20 0 0 0

2 2 2 2

24π
1 1 1

12

F
F F

F Fx y

F
F F F

F

N N iE zNi i z Nz
i ie B L L

mc
z i i i i

i z

ρ
ρ ρ

ρ ρ

ρ
ρ ρ ρ

ρ

 Φ Φ Φ Φ+
= − + + + − + Φ − Φ −Φ Φ 

+ − − − − − +
−

 

and 

( ) ( )01 11 1
2 2

L L L R R R
F F F F F Fi i i N i i i

z z
ρ ρ ρ ρ

Φ   − − − + ≤ ≤ − + − +   Φ  
and the corresponding Graphs of the total energy as function of 0y N= Φ Φ  
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for different z-values are shown in Figure 7 and Figure 8. 
A few remarks are in order about these figures: It is clear that when the E field 

is exceedingly strong, in contrast to the case of a weak E field, there appears a 
global minimum with respect to particle number variations. This minimum is a 
consequence of the E field effect on the thermodynamic properties; as E gets 
stronger, more and more states will gain negative energy, (see for example Fig-
ure 5). As these states get occupied by electrons, the total energy will become 
negative at first, then will rise up to positive values, because states with positive 
energy will begin to fill up. The result of this competition is this minimum, 
which can be fully controlled by examining the corresponding z-value. The 
greater z gets, the more negative-energy states will be occupied, and the mini-
mum will move to greater particle numbers (or larger particle densities). In 
comparison with the low E field case, where the positive states are more, in this 
case the total energy may be even lower.  

We now plot the total energy (see Figure 9) as a function of variable z, for a 
constant E field with y Fy eEL ε=  (a suitable measure for the E field in units 
of 2D Fermi energy in the 0,  0E B= =  case) and yB mcL E z=   from Equa-
tion (2.16): 

( ) ( )

( ) ( )( )( )

2

2

2 2 2

2 3

1
2 2 22

1 1 1
2 244π

F
F F

F F F

F
F F F

Fy A

iE y y z yi i
N z i iz

iz y y i i i
i zL n z

ρ
ρ ρ

ε ρ ρ
ρ

ρ ρ ρ
ρ

 +
= − + + + −  − − 

 
+ + − − − − − + 

−  
 

 

 

Figure 7. Total energy (in units of 2 2 24πx ye B L L mc ) as function of particle number (in 

units of 0 0,  y NΦ Φ = Φ Φ ) for 3z =  (Left), 1z =  (Right, low E field limit). 
 

 
Figure 8. Total energy (in units of 2 2 24πx ye B L L mc ) as function of particle number (in 

units of 0Φ Φ , 0y N= Φ Φ ) for 6.1z = . 



G. Konstantinou, K. Moulopoulos 
 

653 

 
Figure 9. Total energy per particle (in units of Fermi energy in the absence of E and B) as 
function of z (analogous to inverse B) for 3y =  (Left), 6.3y =  (Right, low E field lim-
it). 

 
where z lies in the following window: 

( ) ( )2 2

1 1 1 1 11 1
2 2

L L L R R R
F F F F F Fi i i i i i

z y zz z
ρ ρ ρ ρ   − − − + ≤ ≤ − + − +   

 

We should point out here that although the energy is periodic function with 
respect to inverse B (this is the de Haas-van Alphen effect [8]—see how this can 
be derived at T = 0 in various cases from rather elementary considerations in ref. 
[9]), the windows of values of z (or 1 B ) seem to be influenced by the presence 
of the electric field, namely ( )1 yB mcL Eδ =  or, by using y Fy eEL ε= we 
find that 

( ) 01 1F AB e ymc ynδ ε= = Φ                (2.30) 

which deviates from the standard semiclassical periodicities ( ) 01 1 AB nδ = Φ  
for a 2D system [9].  

In addition, it should be pointed out that the correctness of our results is wit-
nessed by the fact that the total energy turns out to be a smooth (continuous and 
differentiable) function of z for every z (i.e. the positions of the windows match 
with the corresponding expressions)—this smoothness of the figures (in their 
joining through different window-values) strictly testifying for the analytical 
correctness of the overall expressions that we derived for the total energy.  

2.2.3. Hall Conductivity 
The Hall conductivity is defined as: 

H Aen c Bσ =                        (2.31) 

and is usually plotted as a function of magnetic field B. For convenience we will 
make here use of Equation (2.26) and examine Hσ  as a function of electron 
number N instead of B. Starting therefore from 

( )

( ) ( )

2

2
0

2

2
0

1
4π

1
4π

L L Lx
F F F

R
FR R Rx

F F F

B L
e i i i

Emc

iB eL
N i i i

zEmc

ρ ρ

ρ
ρ ρ

Φ − − − +  Φ

 −Φ   ≤ ≤ − − − + +  Φ   

       (2.32) 

we will show that by varying N, fractional filling factors appear, with no interac-
tions and no impurities taken into account. E and B fields are considered as con-
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stants (and therefore so is z) throughout all N (and ρ) variations. Substituting 
Equation (2.16) into Equation (2.32) we may eliminate E: 

( )( ) ( )( )
0 0

1 11 1
2 2

L L L R R R
F F F F F Fi i i N i i i

z z
ρ ρ ρ ρΦ Φ   − − − + ≤ ≤ − − + +   Φ Φ   

 

Because for all numbers ρ  and R
Fi  the two edges of (2.17) differ by 

0

Φ
Φ

, 

we choose to calculate Hσ  only at the special values of electron number N given 
by the maximum edge of (2.32): 

( )( )
0

1 1
2

R R R
F F FN i i i

z
ρ ρΦ  = − − + + Φ  

, 

and Hσ  is then:  

( )( )
2 1 1

2
R R RA

H F F F
en c e i i i

B h z
σ ρ ρ = = − − + +  

 with ( ) [ ]
0

,R
F

n
i z z nρ θ ρ

+∞

=

= − −∑  

Let’s examine now some cases regarding z-values: 
i) z is an integer: 

1) 
2

1: :R
F H

ez i
h
ρρ σ= ⇒ = =   

2) ( )
2 2 2 2 21 1 3 6 10: 0 : 1 , , ,

2
R
F H

e e e e ez i
h z h z h z h z h z

ρ σ ρ ρ > ⇒ = = + =  
   

3) ( )
2 1: 1: 1 1 .

2
R
F H

ez i z
h

ρ σ  = ⇒ = = − +  
 

4) ( )
2 1: 1: 1 1 .

2
R
F H

ez i z z
h

ρ ρ σ  < ⇒ = − + = − +  

( ) [ ] [ ] [ ]
2 2 2 21 1 3 , 5 , 7

2 2 2 2H
e e e ez z z z
h h h h

σ ρ = − − = + + +  
  

More compactly, for a fixed integer z, varying ρ will result in the following 
values for Hσ : 

( ) [ ] [ ] [ ]
2 2 2 2 2 2 2 2

1Terms

1 3 6 10 1, , , 1 1 , 3 , 5 , 7
2 2 2 2

z

e e e e e e e ez z z z
h z h z h z h z h h h h

σΗ

−

 = − + + + +  
 



 (2.33) 

where, for 1z =  we get the known results: 
2 2 2 22 3 4, , ,H

e e e e
h h h h

σ =   

ii) z is not an integer: 
For a non-integer z we have: 

( ) ( )
2 2 2 2 2 2

Terms

3 6 10, , , , 1 1 , 2 1
2 2H

j

e e e e e j e jj j
zh zh zh zh h z h z

σ    = + + + +      
 



,   (2.34) 

where ( )Intj z= . 
We re-emphasize here that the above fractional values in Hall conductivity do 

not result from any interactions (i.e. they are not related to the Physics of the 
Fractional Quantum Hall Effect) but are a genuine consequence of a high E-field 
strength that causes the L.L overlaps. 
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2.2.4. Plateaux Formation  
When the external E field is relatively small, i.e. given by Equation (2.3), the Hall 
conductance has a plateau-like structure. To see this, imagine that we vary in a 
continuous matter the particle number, keeping B fixed. As a result, the Fermi 
energy is continuously moved from the beginning of a Landau Level to the right 
end, after passing through all states in that L.L. And when Fermi energy is in the 
interior of a L.L., Hall conductivity remains a constant and it only changes at the 
critical N values ( 0N ρ= Φ Φ ), namely when Fermi energy has a transition be-
tween adjacent L.Ls.  

In the strong E field case however, this is not the case. When Fermi energy lies 
in the interior of the thρ  L.L, plateaux are destroyed, because the energy spec-
trum is no longer discretized. It is as if one has a single L.L. band (all L.Ls form a 
single band), with an infinite number of neighboring states to accommodate all 
electrons (a metallic character) and Hall conductivity is more likely to behave as 
in the classical case, with an eternal increasing (or decreasing) character by va-
rying either N or B.  

Inclusion of impurity potentials [10] however may change this expectation in 
the sense that, there might be a case where Fermi energy will lie in a mobility gap 
(which is the true criterion for the existence of QHE), and some of the extended 
states per L.L might be occupied, resulting in a blurred quantization of Hall 
conductance. This is a matter that needs to be investigated more carefully. In 
this case, the previous Hσ  values will correspond to certain plateaux by vary-
ing B or N. 

2.2.5. Inclusion of Edge States 
In real-life samples, however, electronic systems are confined, and the confine-
ment and impurity potential must be seriously taken into account. QHE manife-
station is accomplished by considering both effects on transport properties (the 
confinement and disorder). In this case, a thermodynamic approach may be of 
low importance and insufficient to explain the robust quantization of Hall con-
ductivity. Here, we will try to visualize a special case, where the electric field is 
strong enough, so that it causes an inter-L.L overlap and the system is at the 
same time confined in y-direction. The key to solve this problem lies in the 
range of influence of the confinement potential. As one starts from 0y = , and 
moving towards lets say, the right end ( 2yL ) he will experience the confine-
ment potential influence only on a certain distance from the end (a few multiples 
of magnetic length Bl ). From that point on, L.Ls will start to rise abruptly.  

Now, if the electric field is low enough (Figure 10(a)) there is no inter-L.L 
overlap and the Fermi energy will always intersect the same number of edge 
states at the left end and right end respectively. But in the case of a strong E field 
(Figure 10(b)), things may change dramatically; if (for a certain E field) the 
overlap starts at a point before the confinement potential influence, there might 
be a case where the Fermi energy intersects two points (two L.Ls) at the left end 
and only one point (L.L) at the right end (where the edge states are located). 
This is possible only if there is an additional intersection in the bulk of a L.L. (see  
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Figure 10. Impact of the edges on Landau Levels. (a) low-E field, (b) strong-E field case. 

 
the middle L.L at Figure 10(b)). Varying then the Fermi energy will not change 
the number of intersections, until the Fermi energy reaches the bottom of the 
top L.L. and so on. In other words, the occupations of edge states will remain the 
same, until another L.L will be occupied. Therefore, there might be some ro-
bustness of the Hall values (found above) before this crossover occurs. 

3. Generalization to Relativistic Systems 
3.1. Graphene—Low E-Field Strength 

Our results can also be applied to Relativistic solid state systems that obey a Di-
rac-type of equation, such as Graphene [11] and topological insulators [7]. In 
this Section we give a first analytical study of strong electric field effects in the 
ground state energetics and also in transport properties of Graphene, i.e. Hall 
conductivity. We find again that, when the E-field is strong enough, L.Ls with 
different quantum numbers overlap, and the Hall conductivity becomes electric 
and magnetic field-dependent, indicating the non-linearity of Hall conductivity 
in relativistic systems, this having more refined consequences compared to the 
previous nonrelativistic case; we obtain, for example, the possibility of irrational 
values (the observability of which is of course up to the uncertainties related to 
the lack of disorder, already mentioned in the last section). 

We start with Graphene’s energy spectrum when placed in homogeneous 
crossed electric ˆEx=E  and magnetic ˆBz=B  fields, considering only the po- 
sitive branch [12] (we continue in this section with SI units): 

( )3 42
, 2 1

yn k F F yn eBu u kε β β= − +  ,             (3.1) 

where FE u Bβ =  is a dimensionless parameter smaller than unity and  

( )
( )

2
0 1 42

2
sgn

1

B
B y

n l
X l k n

β

β
= −

−
                

 (3.2) 

is the guiding center eigenvalue, and Bl eB=   is the magnetic length. Each 
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L.L (indexed by n) has 0Φ Φ  available states (independent of E strength) and 
may host up to 04Φ Φ  electrons, due to spin (a factor of two) and valley de-
generacy (another factor of two) except for n = 0 L.L., which has capacity 

02Φ Φ , because it is equally shared with holes.  
Using (3.2) we may rewrite (3.1) as: 

( ), 01 42

2
,  0,1, 2

1
y

F
n k

n eBu eEX nε
β

= + =
−



               (3.3) 

with the restriction 02 2x xL X L− ≤ ≤ . Using (3.3), we determine the inter-L.L. 
energy gap as: 

( ), 1 42

2
1

1
y

F
n k

eBu n nδε
β

 = + − 
−



                (3.4) 

This energy gap depends on E-field, in contrast to conventional semiconduc-
tor systems (of last section); in addition, the greater L.L. index, the smaller the 
gap. This means that in some L.L. range there will be unavoidable overlap ac-
companied with a zero energy gap (and the system is then metallic). This is ex-
actly the case we will examine later. Now, for adjacent L.Ls, no overlap is ob-
served only when the following condition holds: 

( ) ( ), 2 1, 2x xn L n Lε ε≤ + −                   (3.5) 

which leads to: 

( )1 42

2
1

1
F

x
e Bu n n eEL
β

 + − ≥ 
−



                (3.6) 

For small enough indexes n, and small enough E-fields, inequality (3.6) will be 
satisfied. But, for a given E-field, there will be a critical L.L. index Fi  above 
which (i.e.   1Fn i= + ) the inequality (3.6) changes sign:  

( )1 42

2
2 1

1
F

F F x
e Bu i i eEL
β

 + − + ≤ 
−



              (3.7) 

This Fi  describes the topmost L.L. that does not overlap with other L.Ls, 
while all remaining L.Ls indexed by 1,  2F Fn i i= + +   become continuous, 
without any energy gap and with always available neighboring states for an elec-
tron to be scattered in. It is useful to define a new continuous number z, which 
obeys: 

1 2 1F F F Fi i z i i+ − ≥ ≥ + − +                (3.8) 

This number, when put in (3.7), results in the following equality: 

( )1 42

2

1
F x

e B u z eEL
β

=
−

                     (3.9) 

which will be used later below. We now proceed to our calculation of thermo-
dynamic properties by considering that Fermi energy is always located at an L.L. 
whose index ( 1n ρ= − , with 1, 2,3ρ =  ) always obeys Equation (3.6), i.e. 
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1 Fiρ − ≤ . In this manner, all L.Ls are occupied independently, and when we 
have full occupations, Fermi energy will surely lie in an energy gap.  

We make the assumption that electron number is such that ρ  L.Ls are oc-
cupied, with the last L.L. ( 1n ρ= − ) partially occupied. Extra care must be taken 
in the counting of states, recalling the special case of the lowest L.L. 0n = , 
which has capacity 02Φ Φ  electrons, while all other L.Ls may accommodate 
up to 04Φ Φ  electrons. Considering this, we find that the electron number lies 
in the following window of values (for a constant electromagnetic field): 

( ) ( )
0 0

22 3 2 1 2Nρ ρΦ Φ
− ≤ ≤ −

Φ Φ               
 (3.10) 

(Note that when 1ρ = , Equation (3.10) becomes: 00 2N≤ ≤ Φ Φ ). For a 
constant electron number N, we can solve (3.10) with respect to B: 

( ) ( )0 0
1 1

2 2 3 2 2 1A An B n
ρ ρ

Φ ≥ ≥ Φ
− −             

 (3.11) 

What this inequality means is that when B lies in the above range, the first 
1ρ −  ( 0,1,2 2n ρ= − ) L.Ls are fully occupied and the final L.L. ( 1n ρ= − ) is 

partially occupied (it is filled with ( ) 02 3 2N ρ− − Φ Φ electrons). Equation 
(3.11) also describes the well-known unconventional Hall effect in graphene: 

( ) ( )
2 2

0

1 42 1 2 2 1 2
2

A
H

x y

n e e ee
B L L B h h

σ ρ ρ ρΦ  = = − = − = − Φ  
    (3.12) 

where the Hall conductivity is quantized in half integer multiples of the quantity 
24e h . 
We now calculate the total internal energy of the system, which has to be mi-

nimalized when the temperature is zero ( 0T = ): 

( )0 0

, 01 42, ,

2

1
y

F
n k

n X n X

n eBuE eEXε
β

= = +
−

∑ ∑ 

             (3.13) 

Considering the following transformations: 

0 0

2 2

0 0
0 02 2

4 2
d  for  0  and  d  for  0

x x

x x

L L
y y

X XL L

BL BL
X n X n

− −

→ > → =
Φ Φ∑ ∑∫ ∫  L.L. (3.14) 

we can write:  

FULL PARTE E E= + ,                    (3.15) 

where FULLE  is the energy of the fully occupied L.Ls and PARTE  is the energy 
of the last partially occupied L.L. 

( )

( )

2 22 2

FULL 0 0 01 421 10 02 2

2

1 42 00

4 42
d d

1

24

1

x x

x x

L L
y yF

n nL L

F

n

BL BL eEn eBuE X X X

eBu n

ρ ρ

ρ

β

β

− −

= =− −

−

=

= +
Φ Φ−

Φ
=
Φ −

∑ ∑∫ ∫

∑





   

 (3.16) 

To calculate PARTE , it is necessary to determine the last electron’s guiding 
center position in L.L 1n ρ= − . 
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( )
( )

2
0 1 42

2 12π

1

B
B

y

llX l
L

ρ β

β

−
= −

−
                 (3.17) 

The index l, appearing in yk , has a starting value 0l  that needs to be deter-
mined by the condition 0 2xX L= − , (left edge): 

( )
( ) 01 420

2 1
2 2π 1

y

B

L
l

l
ρ β

β

−Φ
− + =

Φ −
                (3.18) 

But the last L.L hosts ( )
0

22 3 4N ρ
 Φ

− − Φ 
 states for the remaining elec-

trons to be placed inside, so we conclude that the last electron in 1n ρ= −  L.L. 
has a guiding center position: 

2
0MAX

0 0

2π
4B

y

NX l
L

ρ
 Φ Φ

= − + Φ Φ 
               (3.19) 

For consistency reasons we check Equation (3.19) for certain values of particle 
number, i.e. when ( ) 02 3 2N ρ= − Φ Φ  then 0 2xX L= −  and when  

( ) 02 1 2N ρ= − Φ Φ  we have 0 2xX L= . So far we are correct. The energy of 
the electrons located at the Fermi L.L. PARTE  is: 

( )
( )

( )
( )

[ ]

0MAX 0MAX

PART 0 0 01 420 02 2

2 2
0MAX

0MAX1 420 0

2 14 4
d d

1

2 14 4
2

2 41

x x

X X
Fy y

L L

Fy y x
x

eBuBL BL
E X eE X X

eBuBL BL X L
X L eE

ρ

β

ρ

β

− −

−
= +

Φ Φ−

−  
= + + − Φ Φ  −

∫ ∫




 (3.20) 

Substituting Equation (3.19) in Equation (3.20) we get: 

( )
( )

( )

( )

PART 1 42 0

2
2 2 2

2 1
2 2 3

1

2 1 1 2
8 2

F

y
x x

y

eBu
E N

BLhN E eEN L e E L
BL h

ρ
ρ

β

ρ ρ ρ

−  Φ
= − − Φ −

 + − − + − +  



    

 (3.21) 

From Equation (3.16) and (3.21) we obtain the final result for the total energy 
per electron of the system:  

( )
( ) ( ) ( )

( )

3 2 1 22
TOT

1 42 10 0

20

0

4 2 2 3 1 2 1
1

2 1 1 2
8 2

F

nA A

A x x
x

A

E B Bn
N n n

n eEL BL
eE L eE

B n

ρε
ρ ρ ρ

β

ρ ρ ρ

−

=

      = − − − + −    Φ Φ     −  

Φ  + − − + − + Φ  

∑
 (3.22) 

with 
2

1

3
1 2, 1
2 4πn

n
ρ ζ

ζ ρ
−

=

 
    = − − − − 

 
∑ , where ( )1 2, 1ζ ρ− −  is the Hurwitz  

zeta function and ( )3 2ζ  is the Riemann function. Note that the term propor-
tional to the E field appearing in (3.22) when expressed per electron,  
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2 22 12
2 8x

A y

B hNEe E L
n h BL

ρ ρ − + +  
,              (3.23) 

gives the following magnetization (which is also proportional to E): 

2 2
2

2 12
2 8x

A y

hNEe E L
n h B L

ρ ρ − − + +  
              (3.24) 

When all ρ  L.Ls are fully occupied, then ( )0 2 2 1AB n ρ= Φ − , and this 
term becomes: 

[ ]
2

4 1
2 2 2

x x H

A A

L Le E E
n h n

σ
ρ

 
− 

 
                (3.25) 

which is in accordance to the non-relativistic case (see corresponding term of 
(1.11)). Although this [ ] 24 1H e hσ ρ= −  differs from Equation (3.12) where 

( ) 22 1 2H e hσ ρ= −  this point needing further clarification. Let us then check 
some limits: When the electric field is absent, E = 0, the total energy per electron 
becomes (in units of Fermi energy in the absence of B, πF F Au nε =  ): 

( ) ( ) ( )
3 2 1 22

TOT

10 0

4 2 2 3 1 2 1F
nA A

E B Bn
N n n

ρ

ε ρ ρ ρ
−

=

      = − − − + −    Φ Φ      
∑  (3.26) 

This is the result we would have gotten had we solved the problem from the 
beginning without the E-field.  

When B is at a critical value, ( )0 2 2 1AB n ρ= Φ − , (all ρ  L.Ls fully occu-
pied) then: 

( ) ( ) ( )

( )
( )

( )

2

TOT
1

2

3 3
1

2π12 1
2 1 2 1

2π 12π
2 2

2 1 2 1

A
F

n

AA
F F

n

nE N u n

nnN u n N u

ρ

ρ

ρ
ρ ρ

ρ

ρ ρ

−

=

−

=

 
= + − − −  

−
= +

− −

∑

∑



 

     (3.27) 

If 1ρ =  then TOT 0E = , as one would expected, because all electrons are 
placed at the lowest L.L. having zero energy. 

If 2ρ =  TOT
0

2 4FE eBu
 Φ

=  Φ 
  and so on. In all cases, we can clearly see  

the difference between the case of 2DEG in conventional semiconductors (note, 
for example, that at the critical values of B the total energy is no longer equal to 
the Fermi energy but keeps rising up—see Figure 11 and its differences with 
Figure 1). 

3.2. Stronger E-Field  

The inequality 

( )1 42

2
1

1
F

F F x
e Bu i i eEL
β

 + − ≥ 
−



, 

is the criterion where no overlap occurs, as long as 1 Fiρ − ≤ . Νοw, if we have 
‘more’ electrons and have to place them in available states, we will finally reach  
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Figure 11. Energy in units of Fε  and Magnetization in units of Bohr magneton Bµ  as 
functions of magnetic field in the absence of an electric field.  

 
the condition 1Fiρ > + . In this case, states indexed by 2 1Fn i ρ= + − , over-
lap, and the energy gap closes at Fermi energy. This means that graphene gains a 
metallic E-field induced character and Hall conductivity is modified (analogous 
to the non-relativistic case) by a term containing both electric and magnetic 
field.  

Recall from previous work [13] that the following relation also holds: 

1 1 F
F

E E u B
u B

β < ⇒ < ⇒ < , 

(so that no collapse of L.Ls occurs), which can always be made true as long as we 
treat particle number as our variable, and keep E and B-fields constant. Or, 
equivalently, we may keep N and B fixed and treat E as our main variable, start-
ing from zero until reaching maximum value MAX FE u B= . We remind here the 
reader of the limitations of this problem regarding also the magnetic field, which 
has to be such that the magnetic length is much greater than lattice constant (i.e. 
we will not study any Hofstadter effects in this work). Either way, our results and 
predictions can be obtained by satisfying all possible limitations. For example, we 
may prepare an experiment where E is strong enough for inter L.L. overlap to oc-
cur, and at the same time B is also strong enough to satisfy the above inequality.  

We examine now the case appearing in Figure 12. Landau levels n = 0, 1 and 
2 can be occupied independently, while further occupations above 2n =  L.L. 
leads to the unavoidable mixing of states; this makes the problem interesting, in 
the sense that peculiarities may arise both in thermodynamic and transport 
properties. We fix Fermi energy Fε  at L.L 1n ρ= − : 

( )
( ) 01 42

2 1

1

F
F M

eBu
eEX

ρ
ε

β

−
= +

−



               (3.28) 

with 0MX  the guiding center position of the last electron in the Fermi level 
1n ρ= − . We consider now the simplest case: From Figure 12, we will examine 

the case where all states are occupied up to the Fermi energy (Equation 3.28). 
The Fermi energy is located at n = 4 with 0 2M xX L= − : 

( )1 42

8
21

xF
F

eELeBu
ε

β
= −

−



                  

 (3.29) 
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Figure 12. Schematic Representation of energy levels in graphene. Figure shows , yn kε  vs 

X0. The inter-L.L. energy gap gets smaller by increasing Landau Level index n . States n = 
0,1 and 2 do not overlap with each other, but states 3,4,5n =   and so on, do. If the 
Fermi energy is located at n = 0, 1 or 2, we expect that Hall conductivity will still be quan-
tized in the form ( ) 22 1 2H e hσ ρ= − , with ρ = 1, 2, and 3.  

 
To determine the number of states in L.L. n = 3, we examine its intersection 

with Fermi energy (see Figure 12): 

( ) ( )

( )
( )

01 4 1 42 2

0 1 42

6 8
21 1

8 6
2 1

xF F
F

x F
F

eELeBu eBueEX

L eBuX
eE

β β

β

+ = −
− −

⇒ = − + −
−

 



           

 (3.30) 

Now, we determine the starting ( 0l ) and final ( Fl ) point of l for this case: 

( )0 1 420

6
2 2π 1

y

B

L
l

l
β

β

Φ
= − +

Φ −
                 (3.31) 

( )

( )
( )

( )

2
0 1 42

1 4 1 42 20

2π 6

1

68 6
2 1 1

F B
B

y

y yF
F

F

l lX l
L

L L EB eBu el
h hu eBE

β

β

β β

= −
−

Φ
⇒ = − + − +

Φ − −

 

 

 (3.32) 

The number of states in L.L. n = 3 is given by: 

( )
( )0 1 42

8 6
1

y F
F

L B eBul l
h E β

− = −
−



,              (3.33) 

and the total number of states under Fermi energy is: 


( )

( )1 420 0
0

2 8 6
1

y F

n

L B eBug
h E β

=

Φ Φ
= + + −
Φ Φ −



           (3.34) 

If all states are filled with electrons, then the electron number is (considering 
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that we have four electrons in each case, except for n = 0, in which we place two 
electrons in each state):  

( )
( )1 420

10 4 8 6
1

y FL B eBuN
h E β

Φ
= + −

Φ −



           

 (3.35) 

This relation modifies Hall conductivity as: 

( )
( )

2

1 42
10 4 8 6

1
A F

H
x

n e eBue e eN
B SB h hL E

σ
β

= = = + −
−



    

 (3.36) 

Now, by directly using Equation (3.9) and substituting in (3.36): 

( ) ( )1 4 1 42 2

2 2

1 1
F F

x

x

e Bu e Buz eEL E z
eLβ β

= ⇒ =
− −

 

          

 (3.37) 

we conclude to: 

( )
2 2

10 4 4 3A
H

n e e e eN
B SB h zh

σ = = = + −
          

 (3.38) 

demonstrating the possibility of irrational quantization of the Hall conductance 
(always if the E-field is sufficiently strong). 

4. Considering the QHE-Breakdown in High Injected Currents 

At this point one may wonder about the relevance of the above results, as these 
do not seem to take into account mechanisms associated with the breakdown of 
QHE under non-equilibrium conditions, i.e. due to high injected current densi-
ties [14] [15] [16]. Indeed, in the case of hundreds of μΑ (0.6 - 0.9 mΑ, taken 
from ref. [16], the exact value depending on the filling factor) flowing through 
the sample in the y-direction, the longitudinal resistivity is different from zero 
by orders of magnitude, resulting in an inevitable dissipation of energy, and the 
Hall conductivity deviates from its exact quantized values.  

One of the reasons behind this deviation is the thermal instability that hap-
pens due to large current densities flowing continuously for a period of time 
through the material. The amount of heat gained by the electrons per unit time 
per unit area due to the electric field is given by  

2
in yyQ Eσ=  

This amount of heat is then passed to the lattice structure, ending up in the 
Helium coolant. This means that there is a gradient of temperature between the 
electrons and the atoms forming the crystal that relates the heat transferred to 
the atoms through the following equation: 

( )out e hQ k T T= −  

When the electric field exceeds a critical value, the amount of heat gained by 
the electrons ( )inQ  is always greater than the amount of heat transferred to the 
atoms ( )outQ  and the excess in thermal energy results in an energy excitation 
in the order of the cyclotronic energy, destroying the stability of the quantum 
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Hall conductivity plateaus.  
It should be noted that the present work takes into account the applied E-field 

directly within the energy spectrum, and there is no need to investigate the 
heating of the electron gas separately. It is contained a priori in the thermody-
namic formulation that we have used to derive our results. Furthermore, the re-
sults shown in this paper can be relevant at even relatively low E-fields, or low 
injected current densities as well. To see this, we may assign some numbers to 
our mathematical relations, starting from Equation (2.1) that gives the limit of 
strong E-field: yE eLω>   for 1z > . For a strong magnetic field of 40 Tesla, 
and a macroscopic length yL  of 1 cm, we have: 

1.054 40 91 0.46 V my yE eL B mLω= = = × =  . 

Above this critical E-field (and therefore for low Hall E-field) all the inter-L.L. 
overlaps that we considered can occur and the need for introducing breakdown 
effects is therefore eliminated. In the non-equilibrium breakdown regime of the 
QHE state in Graphene, it has been verified that not all L.Ls experience the 
breakdown [17]. For example, the 0n =  L.L. remains robust under the influ-
ence of a relatively strong E-field. Therefore, the breakdown in Graphene is a 
filling factor-dependent phenomenon, with different critical electric fields for 
each filling factor in a way that we may always impose a low enough E-field to 
achieve the results derived in this paper. The stronger the B-field is, the weaker 
the E-field gets, much lower than the breakdown limit. 

Apart from the above mentioned electron-heating mechanism we point out, 
for completeness, that percolation of incompressible regions [18] has also been 
invoked for the QHE-breakdown, as well as the possible existence of compressi-
ble regions in the bulk [19], which however do not seem to offer insights rele-
vant to the present calculation. 

Finally, there exists a small number of publications in the literature that seem 
to be close to our exact solution (although they deviate from it); they also find 
fractional quantization of the Hall conductivity by seriously taking into account 
a conceptual difference between the externally applied E-field and the 
Hall-electric field (the one that is formed in the (classical) steady state, as op-
posed to the field being applied). They take into account the non-negligible ef-
fect of the Hall E-field on the electronic density of states, which is further broa-
dened by the presence of this Hall E-field, see i.e. ref. [20]. Just like interactions 
lead to a splitting of L.Ls (as is well-known in the Fractional QHE), the Hall 
electric field succeeds in a similar manner to divide each Landau Level into 
many sub-levels without any introduction of impurities or interactions. Frac-
tional quantization is then observed in higher L.Ls (due to the density of 
states-broadening), but not in the lowest L.L. (where interactions are dominant, 
and a Composite Fermion approach—hence a passage to the so-called Λ-Levels— 
must be used instead (see [9] for a practical use of Λ-Levels)). However, strong 
anisotropies have been observed at these fractions [17] which suggests that they 
need to be considered more carefully as functions of the Hall E-field.  

By way of comparison with the above, we must state that in the present work 
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we have avoided the notion of a Hall electric field, as this is a built-in conse-
quence of the presence of the B-field in the (classical) steady state (or in a sta-
tionary state in the corresponding quantum problem), or, alternatively, as this 
can be viewed as a response of the system to an external voltage (or the external-
ly applied E-field) which is already fully taken into account in our physical pic-
ture (Hamiltonian) and in our associated calculations. We use, instead, the 
“physical broadening” given by the presence of the external E-field in order to 
describe the fractional quantization. Furthermore, with respect to the possible 
robustness of our results (such as Equation (2.31)) for a conventional system, 
that gives the Hall conductivity value for a certain magnetic field and fixed par-
ticle number), we recall that topological protection and exact quantization of 

Hσ  in a high E-field is not guaranteed for our system in the thermodynamic 
limit. This is better clarified at least in a visual manner in Figure 10(a) and Fig-
ure 10(b) (where the number of edge states plays a role), but it further needs in-
clusion of other factors not taken into account here, like the impurity potential; 
this, however, is actually expected to have a positive effect—it is expected to 
eventually broaden the electronic density of states, and, at least, assist in estab-
lishing the topological stability of the system (in a similar manner as this occurs 
in the ordinary Integer-QHE). 

5. Conclusion 

We have shown that by finding the optimal energy at zero temperature in the 
case of conventional semiconductors, fractional Hall values appear at the points 
of jumps of the Fermi energy. This does not necessarily mean that plateaux ap-
pear. Inclusion of impurity potential may lead to quantized plateau structure 
even in the case of strong E field, due to further broadening of L.Ls, isolating ex-
tended from localized states. We should point out that it is not the gap closing 
that causes plateau disappearance, but rather the fact that we have ignored the 
impurity potential in our calculations. We have also calculated analytically, using 
ground state energy considerations the total internal energy, magnetization and 
polarization as functions of the electromagnetic field. The associated de Haas- 
van Alphen oscillation periods are also influenced by the presence of the electric 
field in a specific quantitative manner. A corresponding exact calculation in a 
pseudo-relativistic system, such as Graphene, is more involved but it has also 
been carried out here in detail. An immediate result of our toy model is the pos-
sibility of irrational Hall values, although further investigation is required (i.e. 
inclusion of disorder) in order to see if these effects survive under realistic con-
ditions. 
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