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Abstract 
The problems of optimal control (OCPs) related to PDEs are a very active area 
of research. These problems deal with the processes of mechanical engineer-
ing, heat aeronautics, physics, hydro and gas dynamics, the physics of plasma 
and other real life problems. In this paper, we deal with a class of the con-
strained OCP for parabolic systems. It is converted to new unconstrained 
OCP by adding a penalty function to the cost functional. The existence solu-
tion of the considering system of parabolic optimal control problem (POCP) 
is introduced. In this way, the uniqueness theorem for the solving POCP is 
introduced. Therefore, a theorem for the sufficient differentiability conditions 
has been proved. 
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1. Introduction 

Many researches in recent years have been devoted to the studies of optimal 
control problems for a distributed parameter system. Optimal control is widely 
applied in aerospace, physics, chemistry, biology, engineering, economics and 
other areas of science and has received considerable attention of researchers. 

The optimal boundary control problem for parabolic systems is relevant in 
mathematical description of several physical processes including chemical reac-
tions, semiconductor theory, nuclear reactor dynamics, population dynamics [1] 
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and [2]. The partial differential equations involved in these problems include el-
liptic equations, parabolic equations and hyperbolic equations [3] [4].  

Optimization can be of constrained or unconstrained problems. The presence 
of constraints in a nonlinear programming creates more problems while finding 
the minimum as compared to unconstrained ones. Several situations can be 
identified depending on the effect of constraints on the objective function. The 
simplest situation is when the constraints do not have any influence on the 
minimum point. Here the constrained minimum of the problem is the same as 
the unconstrained minimum, i.e., the constraints do not have any influence on 
the objective function. For simple optimization problems it may be possible to 
determine, beforehand, whether or not the constraints have any influence on the 
minimum point. However, in most of the practical problems, it will be extremely 
difficult to identify it. Thus one has to proceed with general assumption that the 
constraints will have some influence on the optimum point. The minimum of a 
nonlinear programming problem will not be, in general, an extreme point of the 
feasible region and may not even be on the boundary. Also the problem may 
have local minima even if the corresponding unconstrained problem is not hav-
ing local minima. Furthermore, none of the local minima may correspond to the 
global minimum of the unconstrained problem. All these characteristics are di-
rect consequences of the introduction of constraints and hence we should to 
have general algorithms to overcome these kinds of minimization problems [5] 
[6] [7] [8] [9].  

The algorithms for minimization are iterative procedures that require starting 
values of the design variable x. If the objective function has several local minima, 
the initial choice of x determines which of these will be computed. There is no 
guaranteed way of finding the global optimal point. One suggested procedure is 
to make several computer runs using different starting points and pick the best 
Rao [10]. The majority of available methods are designed for unconstrained op-
timization, where no restrictions are placed on the de-sign variables. In these 
problems the minima, if they exist are stationary points (points where gradient 
vector of the objective function vanishes). There are also special algorithms for 
constrained optimization problems, but they are not easily accessible due to their 
complexity and specialization.  

All of the many methods available for the solution of a constrained nonlinear 
programming problem can be classified into two broad categories, namely, the 
direct methods and the indirect methods approach. In the direct methods the 
constraints are handled in an explicit manner whereas in the most of the indirect 
methods, the constrained problem is solved as a sequence of unconstrained mi-
nimization problems or as a single unconstrained minimization problem. Here 
we are concerned on the indirect methods of solving constrained optimization 
problems. A large number of methods and their variations are available in the 
literature for solving constrained optimization problems using indirect methods. 
As is frequently the case with nonlinear problems, there is no single method that 
is clearly better than the others. Each method has its own strengths and weak-
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nesses. The quest for a general method that works effectively for all types of 
problems continues. Sequential transformation methods are the oldest methods 
also known as Sequential Un-Constrained Minimization Techniques (SUMT) 
based upon the work of Fiacco and McCormick, 1968. They are still among the 
most popular ones for some cases of problems, although there are some modifi-
cations that are more often used. These methods help us to remove a set of com-
plicating constraints of an optimization problem and give us a frame work to 
exploit any available methods for unconstrained optimization problems to solve, 
perhaps, approximately. [5] [6] [7] [8] [9]. However, this is not without a cost. 
In fact, this transforms the problem into a problem of non-smooth (in most cas-
es) optimization which has to be solved iteratively. The sequential transforma-
tion method is also called the classical approach and is perhaps the simplest to 
implement. Basically, there are two alternative approaches. The first is called the 
exterior penalty function method (commonly called penalty method), in which a 
penalty term is added to the objective function for any violation of constraints. 
This method generates a sequence of infeasible points, hence its name, whose 
limit is an optimal solution to the original problem. The second method is called 
interior penalty function method (commonly called barrier method), in which a 
barrier term that prevents the points generated from leaving the feasible region 
is added to the objective function. The method generates a sequence of feasible 
points whose limit is an optimal solution to the original problem. Luenberger 
[11] illustrated that penalty and barrier function methods are procedures for 
approximating constrained optimization problems by unconstrained prob-
lems.  

In the meanings of constrained conditions, these optimal control problems 
can be divided into control con-strained problems and state constrained prob-
lems. In each of the branches referred above, there are many excellent works and 
also many difficulties to be solved. 

The rest of this paper is organized as follows. In Section 2, the proposed sys-
tem of optimal control problem with respect to a parabolic equation is offered. 
Section 3 describes the analysis of existence and uniqueness of the solution of the 
POCP. In Section 4, the variation of the functional and its gradient is presented. 
Section 5 describes Lipschitz continuity of the gradient cost functional. Finally, 
conclusions are presented in Section 6. 

2. Problem Statement 

Consider the following POCP process be described in:  

( ){ }, : 0 , 0T x t x t TθΩ = < < < < : 

( ) ( ) ( ) ( )
, ,

, ,
x t x t

x v x t
t x x ο

ϕ ϕ
µ

∂ ∂ ∂
= + 

∂ ∂ ∂ 
              (1) 

with the initial and the boundary conditions: 

( ) ( )1, ,     0 , 0x t v x x tϕ θ= < < =                   (2) 
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( )

( ) ( ) ( ) ( )2

,
0,    0,0 ,

,
, ,     ,0

x t
x t T

x
x t

x v t x t x t T
x

ϕ

ϕ
µ τ ϕ θ

∂
= = < ≤

∂

∂
= − = < ≤  ∂

          (3) 

where the solution of the problem (1-3) is ( ),x tϕ , since,  
( ) ( ) [ ]0,    0,x x Lµ µ θ∞> ∈ , the coefficient of convection τ  is positive con-

stant-sometimes τ  is called coefficient of heat transfer. The admissible con-
trols is a set 1 2V V V V°= × ×  defined as  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 2 1 2 2 2, , , : , , 0, , 0, .TV v v x t v x v t v x t L v x L v t L Tο ο θ= = ∈ Ω ∈ ∈  

Many physical and engineering settings have the mathematical model (1-3), in 
particular in hydrology, material sciences, heat transfer and transport problems 
[12]. In the case of heat transfer, the Robin condition physically is realized as 
follows. Let the surface x θ=  of the rod be exposed to air or other fluid with 
temperature. Then ( ) ( )2, t v tϕ θ −  is the temperature difference at x θ=  be-
tween the rod and its surroundings. According to Newton’s law of cooling, the 
rate at which heat is transferred from the rod to the fluid is proportional to the 
difference in the temperature between the rod and the fluid, i.e. 

( ) ( ) ( ) ( )2

,
,

t
v t t

x
ϕ θ

µ θ τ ϕ θ
∂

= − −  ∂
               (4) 

The purpose is to find the optimal control ( ),x tϕ  that minimizes the fol-
lowing cost functional: 

( ) ( ) ( ) ( ) ( )2 2
20 0

, d d
T

J v q x x T x v t w t t
θ

α γ ϕ α= − + −      ∫ ∫       (5) 

and  

( )1 2,r x t rϕ≤ ≤                         (6) 

where ,γ α  are given positive numbers, ( )q x  is given function from  
[ ]2 0,L θ , ( )w t  is given function from [ ]2 0,L T  with T  is a fixed time. Pe-

nalty function methods are the most popular constraint handling methods 
among users. Two main branches of penalty method have been proposed in the 
literature: Exterior and Interior which is also called the barrier method. The ba-
sic idea in penalty method is to eliminate some or all constraints and add to the 
objective function a penalty term which prescribes a high cost to infeasible 
points. Associated with this method is a parameter Aτ , which determines the 
severity of penalty and as a consequence the extent to which the resulting un-
constrained problem approximates the original constrained problem. We restrict 
attention to the polynomial order-even penalty function. The constrained op-
timal control problem (5-6) is converted to unconstrained optimal control pro- 
blem by adding a penalty function [13] to the cost functional (5), yielding the 
modified function: 

( )
( ) ( ) ( ) ( )

,

,

, :

                    , ,

v q

v q v J v P v
α τ τ

α τ τ α τ

ψ

ψ ψ≡ = +
         (7) 
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where ( ) ( ) ( )( )1 2
0 0

d d
T

P v A s s x t
θ

τ τ ϕ ϕ = + ∫ ∫ , ( ) ( ){ } 2

1 1max , ; ;0s r x t wϕ ϕ = −  ,  

( ) ( ){ } 2

2 2max , ; ;0s x t w rϕ ϕ = −   and 0Aτ > , 0,1,2,τ =  , lim Aττ→∞
= +∞ . 

3. Well-Posedness of System  

This section present the concept of the weak solution of the system (1-3) and the 
existence solution. Let a function ( )2 TLϕ ∈ Ω  of the weak solution of the 
problem, and satisfies the following integral, for all ( ) ( )2, Tx t Lκ ∈ Ω :  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 20 0 0

0

, , ,
d d , d d

( , ) , d ,0 d , , d

, , d d ,

T T

T

T

x t x t x t
x x t x t x t

x x t

x T x T x v x x x t v t t t

v x t x t x t

θ θ

κ ϕ κ
µ ϕ

ϕ κ κ τ ϕ θ κ θ

κ

Ω Ω

Ω

∂ ∂ ∂
−

∂ ∂ ∂

+ − − −  

=

∫∫ ∫∫

∫ ∫ ∫
∫∫

  (8) 

The weak solution ( )2 TLϕ∈ Ω  of the direct problem exists and unique un-
der the above conditions with respect to the given data [14] [15]. According to 
[12], the solution of the optimal control problem can be defined as a solution of 
the minimization problem for the cost functional ( )J vα  under condition (6), 
given by (5): 

( ) ( )inf
v V

v vα αψ ψ∗ ∈
=                       (9) 

Theorem 1:  
Under the above conditions, the optimal control problem has an optimal so-

lution ( ),vϕ  in ( )2 TL VΩ × . 
Proof: when ( ) 0vαψ ∗ = , the solution v V∗ ∈  is a strict solution of systems 

(1-3) and (5-6), where v V∗ ∈  satisfies the equation of functional,  
( ) ( ) ( ), ; ,  0,x t T v q x xϕ θ= = ∈ . In parabolic problems and according to the 

theory of weak solution, can prove that the sequence ( ){ }nv V⊂  weakly con- 

verges to the function v V∈ , so that the traces sequence ( )( ){ }, ; nx T vϕ  of cor-

responding solutions of system (1-3) converges to the solution ( ){ }, ;x T vϕ  in 

( )2 TL Ω , hence, when n→∞ then ( )( ) ( )nv vα αψ ψ→  [16]. Therefore the func- 

tional ( )vαψ  is weakly continuous on V, and the non-empty set of solutions 
( ) ( ) ( ){ }: infV v V v vα α αψ ψ ψ∗ ∗ ∗

= ∈ = =  for the minimization problem (5-6) 
[17]. 

4. The Variation of the Functional and Its Gradient 

The main objective here, the proof of Theorem 2 (found in tail of this section) 
which requires the following two lemmas; lemma 1 and lemma 2. Let the first 
variation of the cost functional ( )vαψ  of the cost functional (7) as follows:  

( ) ( ) ( )v v v vα α αψ ψ ψ∆ = + ∆ −                (10) 

therefore,  
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( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )

0

2

0

2
2 2 20 0

1 2

2 , ; , ; d

 , ; d

 2 d

 , ; d d
T

T T

v x T v q x x T v x

x T v x

v t w t v t dt v t t

A s s x t v x t

θ
α

θ

τ

ψ γ ϕ ϕ

γ ϕ

α α

ϕ ϕ ϕ
Ω

∆ = − ∆  

+ ∆  

+ − ∆ + ∆      

 ′ ′+ + ∆ 

∫

∫

∫ ∫
∫∫

   (11) 

where 

( ) ( ) ( ) ( )2, ; , , , , Tx t v x t v v x t v Lϕ ϕ ϕ∆ = + ∆ − ∈ Ω , 

( ) ( ) ( )( )1 1 , , , ,s s x t v v x t vϕ ϕ ϕ∆ = + ∆ − ,  

( ) ( ) ( )( )2 2 , , , ,s s x t v v x t vϕ ϕ ϕ∆ = + ∆ − , 

( ) ( ) ( ) ( ) ( ) ( ){ }0 0 1 1 2 2, , , ,v v v x t v x t v x v x v t v t V+ ∆ = + ∆ + ∆ + ∆ ∈ . 

Therefore the function ( ), ;x t vϕ ϕ∆ = ∆  is the solution of the following sys-
tem: 

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( )

1

2

, ,
, ;   ,

,
0;    0

, ;    0,0

,
, ;    ,0

T

x t x t
x v x t x t

t x x

x t
x

x
x t v x t x

x t
x v t x t x t T

x

ο

ϕ ϕ
µ

ϕ

ϕ θ

ϕ
µ τ ϕ θ

∂∆ ∂∆ ∂
= + ∆ ∈Ω  

∂ ∂ ∂ 
∂∆ = =

∂
∆ = ∆ = < <
 ∂∆
 = ∆ −∆ = < ≤  ∂

   (12) 

Lemma 1: 
If the direct system (1-3) have the corresponding solution ( ) ( )2, ; Tx t v Lϕ ϕ= ∈ Ω  

and ( ) ( )2, ; Tx t v Lρ ∈ Ω  is the solution of the adjoint parabolic problem [18]: 

( ) ( ) ( ) ( ) ( )( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 2

, ,
,   ,

,
0, 0

, 2 , ; ,   ,0

,
, ,    ,0

T

x t x t
x A s s x t

t x x

x t
x

x
x t x t v q x t T x

x t
x x t x t T

x

τ

ρ ρ
µ ϕ ϕ

ρ

ρ γ ϕ θ

ρ
µ τ ρ θ

∂ ∂ ∂  ′ ′=− − + ∈Ω    ∂ ∂ ∂ 
∂ = = ∂
 = − = < <  
 ∂− = = < ≤
 ∂

 (13) 

then the following integral identity holds for all elements  
( ) ( ) ( ){ }0 1 2, , ,v v x t v x v x=  and  

( ) ( ) ( ) ( ) ( ) ( ){ }0 0 1 1 2 2, , , ,v v v x t v x t v x v x v t v t V+ ∆ = + ∆ + ∆ + ∆ ∈ : 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )( ) ( )

00

10

20

1 2

2 , ; , ; d , ; , d d

 ,0; d

 , ; d

 , ; d d

T

T

T

x T v q x x T v x x t v v x t x t

x v v x x

t v v t t

A s s x t v x t

θ

θ

τ

γ ϕ ϕ ρ

ρ

τ ρ θ

ϕ ϕ ϕ

Ω

Ω

− ∆ = ∆  

+ ∆

+ ∆

 ′ ′− + ∆ 

∫ ∫∫

∫

∫
∫∫

 (14) 
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Proof: At t T=  with the condition in (13) to transform the left-hand side of 
(14) as follows: 

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

0

0

0 1 2

2 , ; , ; d

, ; , ; d

, ; , ; d d

, ; , ; , ; , ; d d

, ; , ; d d , ; , ; d d

, , ; d d

T

T

T T

T

t

t t

x xx x

x T v q x x T v x

x T v x T v x

x t v x t v x t

x t v x t v x t v x t v x t

x t v x x t v x t x x t v x t v x t

v x t x t v x t A s s

θ

θ

τ

γ ϕ ϕ

ρ ϕ

ρ ϕ

ρ ϕ ρ ϕ

ρ µ ϕ µ ρ ϕ

ρ ϕ ϕ

Ω

Ω

Ω Ω

Ω

− ∆  

= ∆

= ∆  

= ∆ + ∆  

= ∆ − ∆

′ ′+ ∆ − +

∫

∫
∫∫

∫∫

∫∫ ∫∫

∫∫ ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

00

0 1 2

, ; d d

, ; , ; , ; , ; d

, , ; d d , ; d d

T

T T

T x
x x x

x t v x t

x t v x x t v x x t v x t v t

v x t x t v x t A s s x t v x t

θ

τ

ϕ

ρ µ ϕ µ ρ ϕ

ρ ϕ ϕ φ

Ω

=

=

Ω Ω

  ∆ 

= ∆ − ∆  

 ′ ′+ ∆ − + ∆ 

∫∫

∫
∫∫ ∫∫

 

At the boundary conditions in (13) and (14) for the functions ( ), ;x t vρ  and
( ), ;x t vϕ∆ ; we obtain (14). Corresponding to the inverse problem in system 

(1-3) and (5-6), the parabolic problem (13) define as an adjoint problem. By 
backward one of the Equation (13), the “final condition” at t T=  it is a well- 
posed initial boundary-value problem under a time reversal. The first variation 
of the cost functional ( )vαψ  obtain by using integral identity in (14) on the 
right-hand side of Equation (11): 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

0 20

1 2 20 0

2 2
20 0

, , ; d d , ; d

 ,0; d 2 d

 d , ; d

T

T

T

T

v v x t x t v x t t v v t t

x v v x x v t w t v t t

v t t x T v x

α

θ

θ

ψ ρ τ ρ θ

ρ α

α γ ϕ

Ω

∆ = ∆ + ∆

+ ∆ + − ∆  

+ ∆ + ∆      

∫∫ ∫

∫ ∫

∫ ∫

  (15) 

Using the definition of the Fréchet-differential and the above the scalar prod-
uct definition in V, transform the right-hand side of (15) need into the following 
expression: 

( ) ( ) ( ) ( )2 2/
20 0

, d , ; d
T

V
v v v v t t x T v x

θ
α αψ ψ α γ ϕ∆ = ∆ + ∆ + ∆      ∫ ∫  (16) 

Now we need to show that the last two terms on the right-hand side of (15) 
are of order ( )p

VO v , with 1p ≥ .  
Lemma 2: 
If the parabolic problem (12) have the solution ( ) ( )2, ; Tx t v Lϕ ϕ∆ = ∆ ∈ Ω , 

v V∈ , then the following inequality holds: 

( ) 2 2
00

, ; d ,   Vx T v x c v v V
θ

ϕ∆ ≤ ∆ ∀∆ ∈  ∫            (17) 

where 
Vv∆  is the norm ( )2 normTL Ω −  of the function v V∆ ∈ ,  

( ) ( ) ( )
1 2

2 2 2
0 1 20 0

, d d d d
T

T

Vv v x t x t v x x v t t
θ

Ω

 
∆ = ∆ + ∆ + ∆ 

  
∫∫ ∫ ∫  is the norm  
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( )2 TL Ω  of the function v V∆ ∈ , and the constants 0c , 0>  are defined as 
follows: 

{ } ( )

( ){ }
0 0

2

max 1, 0, min 0,

min , 2 2 0
x

c x
θ

τ µ µ

µ θ τ τ θ

∗ ≤ ≤

∗

= > = >

= + >

            (18) 

Proof:  
Multiplying the Equation (12) by ϕ∆ , then integrating the result on TΩ , 

( )( ) ( )( ) ( ) ( )2
x x xx x

x x xµ φ ϕ µ ϕ ϕ µ ϕ∆ ∆ = ∆ ∆ − ∆ , 
2

2t t
ϕ ϕφϕ ∂∆ ∂∆

∆ =
∂ ∂

. 

We obtain energy identity after applying the initial and boundary conditions 
as the following:  

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

2 2 2

0 0

2

0 2 10 0

, ; d 2 , ; d 2 d d

2 , , ; d d 2 , ; d d

T

T

T
x

T

x T v x t v t x x t

v x t x t v x t t v v t t v x x

θ

θ

ϕ τ ϕ θ µ ϕ

ϕ τ ϕ θ

Ω

Ω

∆ + ∆ + ∆      

= ∆ ∆ + ∆ ∆ + ∆  

∫ ∫ ∫∫

∫∫ ∫ ∫
 (19) 

We use the  -inequality ( ) ( )2 2( 2 2 , , , 0Rαγ α γ α γ≤ + ∀ ∈ ∀ >    for the 
solution ( ), ;x t vϕ ϕ∆ = ∆  of the parabolic problem (19). Then for all 0> we 
have: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

0 2 10 0

2 2 2
0 0

22
2 10 0

2 , , ; d d 2 , ; d d

1, ; d d , d d , ; d

  d d

T

T T

T

T

T

v x t x t v x t t v v t t v x x

x t v x t v x t x t t v t

v t t v x x

θ

θ

ϕ τ ϕ θ

ϕ τ ϕ θ

τ

Ω

Ω Ω

∆ ∆ + ∆ ∆ + ∆  

≤ ∆ + ∆ + ∆          

+ ∆ + ∆      

∫∫ ∫ ∫

∫∫ ∫∫ ∫

∫ ∫

 





  (20) 

Applying the Cauchy inequality to estimate the term ( ) 2
,x tϕ∆   : 

( ) ( ) ( )

( )( ) ( )( )

( ) ( )( )

22

2 2

2 2

0

, , ; d , ;

2 , ; d 2 , ;

2 , ; d 2 , ;

x

x

x

x t t v t v

t v t v

x t v x t v

θ
κ

θ
κ

θ

ϕ ϕ κ κ ϕ θ

ϕ κ κ ϕ θ

θ ϕ ϕ θ

 ∆ = ∆ − ∆     

≤ ∆ + ∆

≤ ∆ + ∆  

∫

∫

∫

 

By integrating the both sides of above inequality on TΩ , we obtain: 

( ) ( ) ( )2 2 22
0

, ; d d 2 , ; d d 2 , ; d
T T

T
xx t v x t x t v x t t v tϕ θ ϕ θ ϕ θ

Ω Ω

∆ ≤ ∆ + ∆          ∫∫ ∫∫ ∫  (21) 

and use this estimate on the right-hand side of (20): 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2

0 2 10 0

2 22
0

22 2
0 2 10 0

2 , , ; d d 2 , ; d d

2 , ; d d ( 2 ) , ; d

1  , d d d d

T

T

T

T

T
x

T

v x t x t v x t t v v t t v x x

x t v x t t v t

v x t x t v t t v x x

θ

θ

ϕ τ ϕ θ

θ ϕ θ τ ϕ θ

τ

Ω

Ω

Ω

∆ ∆ + ∆ ∆ + ∆  

≤ ∆ + + ∆      

+ ∆ + ∆ + ∆          

∫∫ ∫ ∫

∫∫ ∫

∫∫ ∫ ∫

  

 

 

From (19) with above inequality, we obtain: 
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( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 2 0 0

22 2
0 2 10 0

, ; d d , ; d , ; d

1 , d d d d

T

T

T
x

T

c x t v x t c t v t x T v x

v x t x t v t t v x x

θ

θ

ϕ ϕ θ ϕ

τ
Ω

Ω

∆ + ∆ + ∆          

≤ ∆ + ∆ + ∆          

∫∫ ∫ ∫

∫∫ ∫ ∫
 

 (22) 

where ( )2
1 2c µ θ∗= −   and 2 2 2c τ θ τ= − −  , we get bound (18) with 0>  

for estimate (22): 

( ) ( ) ( ) ( )
22 2 2

0 2 10 0 0

1, ; d , d d d d
T

T
x T v x v x t x t v t t v x x

θ θτϕ
Ω

∆ ≤ ∆ + ∆ + ∆              ∫ ∫∫ ∫ ∫
 

 

Hence, the last integral (15) is bounded by ( )2

VO v∆  and using Fréchet- 
differential definition at v V∈ . 

( ) ( ) ( ) ( )2 2/
20 0

, d , ; d
T

V
v v v v t t x T v x

θ
α αψ ψ α γ ϕ∆ = ∆ + ∆ + ∆      ∫ ∫  

we obtain the following theorem: 
Theorem 2: 
The cost functional ( ) ( )1,1v C Vαψ ∈  is Fréchet-differentiable in the consi-

dered problem hold, and Fréchet derivative at v V∈  of ( )vαψ can be defined 
by the solution ( )1,0

2 TWρ ∈ Ω  of the adjoint problem (13) as follows: 

( ) ( ) ( ) ( ){ }/ , ; , ,0; ; , ;v x t v x v t vαψ ρ ρ τ ρ θ=          (23) 

5. The Continuity of Gradient Functional 

In this section, by helping the gradient of cost functional ( )vαψ  we prove the 
Lipschitz continuity of ( )/ vαψ . The minimization problem (9) need an estima-
tion of the iteration parameter 0τα >  beginning with the initial iteration  

( )0v V∈ :  
( ) ( ) ( )( )1 / ,    0,1, 2,n n n

nv v v nαα ψ+ = − =             (24) 

In many situation estimations of determine the parameter τα  in various 
gradient methods is a difficult problem [19]. However, for arbitrary parameters 

0 1, 0δ δ > , the parameter nα  can be estimated via the Lipschitz constant in the 
case of Lipschitz continuity of the gradient ( )/ vαψ  as follows: 

( )0 10 2 2 ,n Lδ α δ< ≤ ≤ +                   (25) 

Lemma 3: 
The functional ( )vαψ  is of Hölder class ( )1,1C V  under the conditions of 

Theorem 2 and 

( ) ( ) ( ) ( )( )
1 2

/ /
4 1 22 d d

T
VV

v v v L v c A s s x tα α τψ ψ ϕ ϕ
Ω

 
 ′ ′+ ∆ − ≤ ∆ + ∆ + ∆  

  
∫∫  (26) 

where 

( ) ( ) ( )( ) ( )( )

( )( )

2 2 2/ / 2
0

2
4 0

, ; d d , ; d

                                     ,0; d

T

T

V
v v v x t v x t t v t

c x v x

α α

θ

ψ ψ ρ τ ρ θ

ρ

Ω

+ ∆ − = ∆ + ∆

+ ∆

∫∫ ∫

∫
    (27) 
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where 2
4 * 2c θ µ θ τ τ= + +  and for parameters 0c , 0> , the Lipschitz con-

stant is defined in (22) as follows: 

0 42 0L c cγ= >                      (28) 

Proof: Let the following backward parabolic problem 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ]

1 2

, ,
, ,

, 2 , ;     0,

0, ,
0, , , 0,

T

x t x t
x A s s x t

t x x

x T x T v x

t t
t t T

x x

τ

ρ ρ
µ ϕ ϕ

ρ γ ϕ θ

ρ ρ θ
µ θ τ ρ θ

∂∆ ∂∆ ∂ ′ ′=− − ∆ + ∆ ∈Ω     ∂ ∂ ∂ 
∆ = ∆ ∈
∂∆ ∂∆ = − = ∆ ∈ ∂ ∂

 (29) 

has the solution ( ) ( ) ( ) ( )1,0
2, ; , ; , ; Tx t v x t v v x t v Wρ ρ ρ∆ = + ∆ − ∈ Ω . Therefore, 

using the initial and boundary conditions after multiplying both sides of Equa-
tion (29) by ( ), ;x t vρ∆ , and integrating on TΩ  as in the proof of Lemma 2, we 
can get the following energy identity: 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2 2

0 0

2
1 20

1, ; d d , ; d ,0; d
2

2 , ; d d d

T

T

T
xx x t v x t t v t x v x

x T v x A s s x t

θ

θ
τ

µ ρ τ ρ θ ρ

γ ϕ ϕ ϕ

Ω

Ω

∆ + ∆ + ∆          

 ′ ′= ∆ + ∆ + ∆    

∫∫ ∫ ∫

∫ ∫∫
 (30) 

implies the following two inequalities: 

( ) ( )

( ) ( ) ( )( )

2 2

0

2
1 20

1, ; d d ,0; d
2

2 , ; d d d

T

T

x x t v x t x v x

x T v x A s s x t

θ

θ
τ

µ ρ ρ

γ ϕ ϕ ϕ

∗
Ω

Ω

∆ + ∆      

 ′ ′≤ ∆ + ∆ + ∆    

∫∫ ∫

∫ ∫∫
      (31) 

and 

( ) ( )

( ) ( ) ( )( )

2 2

0 0

2
1 20

1, ; d ,0; d
2

2 , ; d d d
T

T
t v t x v x

x T v x A s s x t

θ

θ
τ

τ ρ θ ρ

γ ϕ ϕ ϕ
Ω

∆ + ∆      

 ′ ′≤ ∆ + ∆ + ∆    

∫ ∫

∫ ∫∫
      (32) 

Multiplying the first and the second inequality by *
2 /2 µθ  and τθ /2 , cor-

respondingly, summing up them, and then using the inequality (20) we obtain: 

( ) ( ) ( )

( ) ( ) ( )( )

2 22
* 0

2 2
22

1 20
* *

, ; d d ,0; d

4 , ; d 2 d d

T

T

x t v x t x v x

x T v x A s s x t

θ

θ
τ

ρ θ µ θ τ ρ

θ θ θ θγ ϕ ϕ ϕ
µ τ µ τ

Ω

Ω

∆ + + ∆      

   
 ′ ′≤ + ∆ + + ∆ + ∆       

   

∫∫ ∫

∫ ∫∫
 (33) 

Computing of the second integral on the right-hand side of (26) by the same 
term. From the energy identity (30) we can obtain the following: 

( ) ( )

( ) ( ) ( )( )

2 22
0 0

22
1 20

, ; d ,0; d
2

2 , ; d d d
T

T
t v t x v x

x T v x A s s x t

θ

θ
τ

ττ ρ θ ρ

γ τ ϕ ϕ ϕ
Ω

∆ + ∆      

 ′ ′≤ ∆ + ∆ + ∆    

∫ ∫

∫ ∫∫
    (34) 

This, with the last estimate, concludes 
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( ) ( ) ( )

( ) ( ) ( )( )

22 2 2

0 0
4 4

22
1 20

1 , ; d d , ; d ,0; d

4 , ; d 2 d d

T

T

T
x t v x t t v t x v x

c c

x T v x A s s x t

θ

θ
τ

τρ ρ θ ρ

γ ϕ ϕ ϕ

Ω

Ω

∆ + ∆ + ∆          

 ′ ′≤ ∆ + ∆ + ∆    

∫∫ ∫ ∫

∫ ∫∫
 (35) 

where 2
4 * 2c θ µ θ τ τ= + + , using this in (27) and taking into account Lemma 

2 we obtain (26) with the Lipschitz constant L  in (28). 

6. Conclusion 

In this paper, we studied a class of the constrained OCP for parabolic systems. 
The existence and uniqueness of the system is introduced. In this way, the uni-
queness theorem for the solving POCP is introduced. Therefore, a theorem for 
the sufficient differentiability conditions has been proved. By using the exterior 
penalty function method, the constrained problem is converted to new uncon-
strained OCP. The common techniques of constructing the gradient of the cost 
functional using the solving of the adjoint problem is investigated. 
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