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Abstract

Starting from a probabilistic model of the electron, which explains spin and
spin measurements in terms of a probability density distribution resulting
from a rapidly changing angular momentum during an extended Zitterbewe-
gung EZBW, a “light-like” model of the electron and other spin-1/2 particles
is formulated. This model describes individual particles in terms of paths of a
moving quantum. It is shown that this description allows one to reproduce
observable properties as path-averages over a period of the fast EZBW in ele-
mentary calculations. The general topology of the paths may be described as a
helical path, with a helix axis forming a circle around a fixed point in space.
The radius of the helix and of the circle is equal and given by half the reduced
Compton wave length of a photon of energy equal to the rest energy of the
particle described. The paths depend on the relative velocity between the de-
scribed “entity” and the observer, and represent the De Broglie wave. The me-
rits of the proposed model are summarized and its role in relation to the es-
tablished description by quantum mechanics is discussed. It is concluded that
it supports the existence of the proposed EZBW, and offers a description of
quantum behavior without quantum mechanics.

Keywords

Interpretation of Quantum Mechanics, Classical Probability,
Electron Structure

1. Introduction

The behavior of electrons in the nonrelativistic regime is correctly described by
the Pauli-Schrodinger theory, into which the spin is “ad hoc” introduced in the
form of spinors with non-classical properties (see, for instance, [1]).

In a recent publication [2], we have shown that, the behavior of electrons sub-
jected to spin-measurements can also correctly be described in terms of a clas-
sical statistical model which uses a probability-density distribution (PDD) of the

directions of an “instantaneous angular momentum” that changes during an as-
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sumed fast, periodic, “Zitterbewgung” ZBW. A ZBW that would allow a chang-
ing instantaneous angular momentum is not predicted by the Dirac equation,
while ZBW as a qualitative concept of interpretation of the Dirac equation exists
since the beginning of quantum mechanics [3] [4] [5]. An “extended” EZBW,
whose existence is the basis of our statistical description in terms of a PDD, has
only recently been proposed as a hypothesis in theoretical analyses of the Dirac
equation [6], and in model descriptions of the electron [7] [8] [9]. The validity of
these models, however, has never been established. No experimental evidence of
an EZBW has been reported so far.

Our statistical model, therefore, which is based on the existence of an EZBW
and explains established experimental data, constitutes important support for an
EZBW and a corresponding substructure of the electron, if it is valid.

In the present paper we report results of our attempt to further develop the
model, and to support its validity. We proceed in the following way:

1) In the next paragraph we construct the angular dependence of the length of
the “instantaneous position vector”, and the probability density of its direc-
tion, from the corresponding value of the instantaneous angular momentum
and its PDD, obtained in [2].

2) In Paragraph 3, we construct closed curves of “instantaneous positions” in real
space, which are consistent with the distributions obtained in [2], and which
reproduce all experimentally obtainable quantities as curve-averages. These
closed curves represent individual particles.

3) In Paragraph 4, we introduce proper time to parameterize the angles (& and
¢), and in this way obtain paths representing the motion for different veloci-
ties relative to the observer: the EZBW. All relevant experimentally accessible
properties of the electron are in this way explained as resulting from the
EZBW.

4)In Paragraph 5, we summarize the results, and discuss some of the many

questions that arise.

2. The Position Vector

The probability density of the directions of the instantaneous angular momen-
tum, in the (+)-state in a context defined by a magnetic field in direction (Z),

was found in [2] to be given by the function

PDD(9,¢):(dN/dw):cos(8)/n (1)

with (&) the polar angle, and ( ¢ ) the azimuth angle. The integrand
dN =(PDD)(®) dw is the probability that the instantaneous angular momen-
tum vector il(9,4) during the period of an EZBW points into a differential
surface area dw = Sin(S)dS‘dqﬁ of the unit sphere. A cut through the PDD in a
plane containing the (2)-axis is shown in Figure 1.

As indicated in the figure, the probability density vector can be decomposed
into two vectors of constant length l/ (2m), one pointing into the Z-direction,

and the other being a radius-vector of the sphere around the point (0, 0, z = 1/ (2m)).
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PDD(0)=(1/7)cosd

Figure 1. The (PDD) of the instantaneous angular momentum for a (+)-state in the con-
text defined by the (Z)-axis.

For a given functional form of the length of the instantaneous angular mo-
mentum vector il(9,¢), averages over the period of the EZBW can be calcu-
lated from the (PDD). As shown in our previous paper [2], assumption of the

functional form
|il (a))| = hicos (9) (2)

yields the average angular momentum vector § =(0,0,74/2), and the average
projection onto the (2)-axis s, = /1/2, ie. the experimentally determined spin
properties.

Using this information on the instantaneous angular momentum il(9,¢), we
now construct a vector of possible instantaneous positions, r(9,¢). The two

vectors are connected via relation
il (9,4)=r(9.6)x p(9.4):|il (3.4) = hcos(9) 3)

where p(9,¢) is an instantaneous momentum vector during the EZBW. As an
extension of our model we now assume that the vector p(S,(/ﬁ) is independent
of (), and has the direction of the normal of the instantaneous plane defined
by r(9,4) and the (2)-axis. Relation (3) then yields:

|r(9,¢)|:Lsin(9),L:ﬁ/|p| (4)

The conditions characterizing our extended model are represented in Figure

The angular probability density of the instantaneous position vector r(9,4),
which we will call PDDP, is determined by the PDD of the instantaneous angular
momentum vector by the requirement that
Z(PDDP)sin(Qp )d(&p ) =(PDD)sin(9,)d(9). With relation (1), and taking
into account that sin(Sp ) = |cos(9, )| (see Figure 2), this leads to the distribu-

tion
(PDDP)(9,¢)=|cos(19)|/(27t)(9:0~-7t) (5)
The surface of the torus, on which the possible instantaneous positions are

located, is shown in Figure 3(a), and the probability density of directions of the
position vector PDDP, given by relation (5), is shown in Figure 3(b).

%%
035: Scientific Research Publishing

513



A. Niehaus

i1(0)=hcos(0)
h/2

‘ 1(0)=L(sin0)

Figure 2. Polar plot showing the relation between instantaneous position r(9,¢), and

instantaneous angular momentum il($,4) according to our model.

z

(a)

Figure 3. (a) The torus of possible locations in units of L =//p, and (b) the directional

probability density distribution of the position vector PDDP.

The distributions shown in Figure 3(a) and Figure 3(b), together with rela-
tion (3) and the assumption made for the momentum (p), constitute our model.
Averages < f (r)) over the period of a fast EZBW, ie measurable properties of

the electron, can be calculated as average over the instantaneous positions:
(f(r))=[[PDDP(8,¢) f (r)sin(9)d9d¢
=1/(2n) [ [ £ (r)|cos (&) sin(9)dIdg (9=0--m),(¢=0--2m)

For all properties considered so far, we obtain in this way the established ex-

(6)

perimental results, Ze. the results also predicted by quantum mechanics.

(ily=1/2{0,0,1} = S (Spin) (7a)
(|it|sin(9)) = #/2 =, (spin projection) (7b)
(ry=0 (7¢)

(|r|sin(9)) =8/(2p)=L/2=r, (7d)

(mr*) =(n/2)(B/p)’ ==L’ /2= (4) (av.area) (7e)

If the elementary charge (e) is ascribed to the position (z), a circular current (J)

K2
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around the Z-axis of magnitude /= ec/ (2@r,) arises, and defines an instanta-
neous magnetic moment im =14 = nrzec/ (2nr.) . With result (7e) and (7d), we

thus obtain the average magnetic moment:
= (im) = ec/(2nr, )<nr2> =ech/(2p)= uy (8)

with ( g, ) being the Bohr magnet on if the momentum is replaced by (imc), with
(m) the rest mass of the electron. We see that, the model predicts the correct

magnetic moment, including the “anomalous” g = 2 factor—in a classical way.

3. Paths of Instantaneous Positions

Paths of instantaneous positions are obtained if the angles (¢, and ¢) in rela-
tion (6) depend on each other. The integrand in (6) suggests, that the relevant
averages < f (r)> obtained by integration over the solid angle sin(J)ddd¢
(see 7, 8), can also be obtained as average over such paths. The condition is that,
the dependence between (9 ) and (¢ ) is linear, and the paths are closed. Closed
paths arise if the ratio of the angles is a natural number (n). To describe paths,
we introduce the torus angle ¢, =29 (see Figure 2), and the angle on the circle
¢. =¢ . The linear dependence we describe as ¢ =ng, if @ <¢,, and as
¢ =ng.,if ¢ <g .In this way closed paths are characterized by the natural
numbers n, and n, that can vary as (n_,n, =+1,£2,43 ...+ ), and by a var-
iation of the angles as (¢, =0---2xn, ¢, =0---4m) for the chosen path. An explicit
example of the position vector, using relation (4), for a path characterized by

(@ <@.) is given in (9) below. Also given in (9) is the momentum vector

p(¢.n)

r(d.m)=(%2.2), p(d.1,) = (PP, 1.

x=Lcos’ (E’j cos(n,g,)

y = Lcos’ (%)sin(ntqﬁt), ¢ =0---4x 9)

z{%]sin(m

h . a
P, :_Zslﬂ(nt¢t)npy :zcos(nt¢t)’pz =0

With relations (9), paths of the position vector, and of the angular momentum
vector, can be calculated for various conditions. Figure 4(a) and Figure 4(b)
show, as examples, a 3.D-plot of the path of instantaneous positions for n, =10,
and a 3.D-plot of the path of the instantaneous positions for n, =10.

3D plots of the paths of the instantaneous angular momentum vector, are
shown in Figure 4(c) and Figure 4(d). (c) for n, =10, and (d) for n, =10.

All averages obtained using the spatial distribution of the instantaneous posi-
tion vector (see results (7a-7e), and result (8)), can now be calculated as averages
over the respective paths. It turns out that, results identical to the results (7a-7e,
and (8)) are obtained for all allowed paths, ie. for (n,,n, =+1,+ 2,43,...+0).

K2
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(0 (d)

Figure 4. (a), (b): Paths of the instantaneous positions in units of Lzﬁ/ p. (a) for
n, =10, and (b) for n, =10; (c), (d): The path of the instantaneous angular momentum

vector in units of h for the cases n, =10 (c),and n, =10 (d).

We conclude from this that, individual particles characterized by the paths
own the corresponding properties at different conditions, and also, that the dis-
tribution of instantaneous positions constructed in paragraph 2, corresponds to
an average over paths of individual particles with different initial conditions.
These results suggest strongly that, the distinction of paths by different (#,, n_)-
values corresponds to the necessary difference of the description of particles at
different relative velocities between particle and observer, where the different
velocities do not influence the observed properties. The relation between differ-
ent (n,, n )-values and the corresponding different relative velocities is de-

scribed in the next paragraph.

4. Time Dependent Paths of the Position Vector

We introduce proper time by introducing frequencies for the circular- and for
the toroidal variation of the corresponding angles, by writing ¢ =@, and
@ = ot . We consider the case (¢, <¢.) and ¢, =n,4,, outlined in the preced-
ing paragraph, and demonstrated in Figure 4(a) for n, =10. The rotation axes
defining ¢, and ¢, are perpendicular to each other, and the radii (7, ) and (7, )
both have the value of half the reduced Compton wavelength. We define the
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. . /2 .
quadratic sum of the frequencies, o, = (a)f +a)t2) 2w, = o, , which characte-

rizes the “entity”. Using the relation between the frequencies defined above, this

2
leadsto o, (1 +n )l/ = w, , and thus to the following general relations:

o, =20, (1+n )@ 0, =20, (1+7] )@ (10)

Introducing these frequencies into relations (9), one obtains time dependent
positions r(t,nt), Le., paths that are different for different relative velocities
between the observer and the system at <r(t)> =0 (see 7c). If the relative veloc-
ity v = fce,, ischosen to have a certain direction (indicated by the unit vector

e, ), this is taken into account by the corresponding change of the position
coordinates, by writing r(t, ,B) = r(t)+vt. If we choose a relative velocity in
(2)-direction, this leads to the following description of the system, based on re-
lation (9):

r(t,8)=(x.2),
x=Leos® (ot +m)/2)cos(n,m,),
y=Lcos’ (@t +m)/2)sin(na), =

z=(L/2)sin(wt+m)+ fBct.

The path for the internal motion is described by the position vector
rl(t,,B) =| x,y,z—fct |.

We need a relation between ( #) and (n, ) in order to get velocity dependent
paths from (11). Looking at relations (10), we notice that ( @, ) becomes twice the

De Broglie frequency, which is given by «,,, = fa, = Sc/L , if we chose
1
ﬂ:(Hn} )’(E] (12)

As an extension of the model we assume (12) to be correct, which then yields

for the frequencies the relations

w, =2pc/L; @, =2npc/L (13)

With relations (9-13) we now have a rather complete description of the
spin-(1/2) particle in terms of paths in real space of the “quantum” during its
(EZBW). The description explains the wave-particle dualism reflected in the De
Broglie frequency, which is represented by paths calculated for r(l, ,8) (see
Figure 5). It is further remarkable that, relative velocities characterized by a
natural number (7,,n, ) are special, because for these velocities the time period is
given by 2m/@,, , while for numbers in between the natural numbers the period
is longer. This predicts a kind of quantization of relative motion. Finally, from
relation (12) it is also evident that both types of paths exemplified in Figure 4
arise when ( ) varies in the physically possible region from zero to 1. In the re-
gion (0< < 277%), one has paths rl(t,ﬂ) of the internal motion of the type

shown in Figure 4(a), and for the region (27

< f <1) the paths are of the type
shown in Figure 4(b). For all these paths, the same averages as given in (7a-7e,

8), are now obtained as time averages over a period of the corresponding
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Figure 5. A parametric 3D plot of the positions in real space (in units of L) during one
period of the (EZBW), for the case n, =10 (left figure). Path of the “entity” during the

second period (right figure). Progress of the “entity” in z-direction is seen to proceed at
the velocity v =2nL/r =2nlw,/4n=(L/2)w, = Bc (see relation (13).

EZBW. In the limiting case ( f — 0, n, — ) the frequencies become
(0, >0, @, > 2m,), and in the case ( f — 1, n, —» ), the frequencies become
(@, 52w, ®, >0).

A parametric 3D plot of the position (7, ) in real space during one period
of the EZBW, calculated using relations (10, 11, 12) for the case n, =10, is
shown in Figure 5.

The modulation of the lateral size of the system is due to the torus frequency
@, , which is twice the De Broglie frequency. The extension of the “entity” in
z-direction during one period is 2nZ, independent of (v = fc ), but its progress
in zdirection as a function of time occurs at velocity (v). A thorough discussion
of these paths is beyond the scope of the present paper. We expect, however, that

uncertainty relations as well as interference phenomena will be describable.

5. Summary and Discussion

We have presented a model which describes the electron in terms of paths in real
space of possible positions of a “quantum” which carries out an extended peri-
odic Zitterbewegung (EZBW). The model is completely general. The only quan-
tity that specifies the described spin-1/2 particle, is the momentum of a photon

whose energy equals the rest energy of the particle. Qualitatively, the scenario
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the model suggests may be summarized as follows: The “quantum”, which forms
the photon when it follows a straight axis and has momentum ( p =mc ) in di-
rection of that axis, represents the particle of mass (1) when its axis forms a cir-
cle around a fixed point in space and is thus completely localized. Its possible
positions then lie on a torus around the fixed point, with the torus radius being
equal to the radius of the circle the axis forms around the fixed point. Examples
of paths are shown in Figure 4. The energy of this electromagnetic “entity”,
which has a size equal to the reduced Compton wave length #/mc,is E =mc*,
with (m) being the relativistic mass. In paragraph 4, proper time is introduced,
which leads to the description of paths in terms of frequencies for toroidal-and
circular variation of instantaneous positions. The variation of these frequencies
with relative velocity between observer and “entity” completes the model. The
toroidal frequency turns out to be equal to twice the De Broglie frequency, and
the quadratic sum of the two frequencies is constant and equals twice the fre-
quency of the “free” photon that has the same energy as the “entity”.

Thus, the model implies that a certain way of localization of a photon in space
creates an “entity” which has the properties of a particle with rest mass, and in
this way “explains” the equivalence relation /@ =mc”.

The following observable properties of the “entity”-which is to be identified
with the free electron-are obtained as averages over an (EZBW) by elementary
calculations, and are found to agree with experiment.

1) Spin of /2 is obtained as average of angular momentum of the quantum
during a period of the (EZBW). Also spin projection of 7/2 is obtained as av-
erage of angular momentum projection during the period.

2) If the elementary charge (e) is ascribed to the position of the quantum, the
magnetic moment of the free electron is predicted to equal the experimental
value of one Bohr magneton. No “ad hoc” introduction of a g = 2 factor is ne-
cessary.

3) The De Broglie frequency is identified as half the torus frequency. In this
way, the “wave particle duality” of the electron is explained. The factor of two
accounts for the fact that the De Broglie frequency describes the probability am-
plitude, while the torus frequency describes the probability.

4) The relativistic mass- and energy variation with relative velocity is auto-
matically taken into account by the corresponding variation of L = (ﬁ/ p) , and
of the frequencies describing the “entity”.

The results above support the validity of the model, which therefore offers an
alternative description to quantum mechanics, at least for the phenomena con-
sidered.

There arise, of course, many questions concerning the role of the presented
model. Below we discuss the most obvious ones.

First, what is the relation between the model and non-relativistic quantum
mechanics? Since the model predicts the correct magnetic moment as an average
over an EZBW-period, at any relative velocity, and in addition predicts the same

frequency for the EZBW as the Dirac equation does for the ZBW, we conclude
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that it describes the Dirac particle, also in the non-relativistic region, in contrast
to the Pauli-Schrodinger theory. Further, the phases of wave functions corres-
pond to phases of change of the possible positions of the “quantum” in the mod-
el. For instance, the relative phase appearing in the singlet state wave function
between the wave functions of the two electrons, is reflected in the phase-locked
paths of the type shown in Figure 5, for two electrons of opposite spin, moving
in opposite directions, and having a common origin. An EPR-paradox does not
arise.

Secondly, what does the “quantization” of relative velocity, implied in relation
(12), mean? As shown (see 7c), the instantaneous electric dipole moment (er) -
present during the (EZBW)-averages to zero over a full period. For velocities
v=/fc= c(l +n’ )71/2 which do not belong to a natural number (), the period
can be substantially longer than the one determined by (7), and an average elec-
tric moment persists until the longer period is completed. Also the average an-
gular momentum vector-the spin-has x- and y-components until the full period
is completed. Since the average electric dipole moment may lead to interactions,
the translational motion at relative velocities belonging to natural numbers ()
may be regarded as especially stable. Since, during an acceleration of electrons
the velocity varies continuously through regions not belonging to natural num-
bers (11), one may speculate that the observed radiation during acceleration may
be explained by such incompletely averaged electric moments.

Further, the question of antimatter-the positron-we did not mention. Quali-
tatively, we argue as follows. The model uses two frequencies (see relations 10,
11), which can have positive or negative sign. There are four combinations of
signs: (+, +), (-, =), (+, =), (=, +). The first two correspond to positive-and the
second two to negative polarization of the circulating photon, and therefore are
different “entities” and represent positron and electron. The two combinations
of signs, possible for each of the particles, define their two spin-states. We did
not consider the question of charge. However we would expect that the different
polarizations yield opposite static charges (+e) at the center of the “entities”.

Finally, since the model predicts the g = 2 factor correctly, the question arises
why it fails to predict the (g — 2) deviation of 0.00232 [10]...Bohr magnetons? If
the deviation is ascribed to self-interaction, the interaction of the magnetic mo-
ment with the calculated average electric moment due to the average distance of
the charge from the rotation plane, <e|zl|> = e(l/n)L (see relation (11)), would
be a possible candidate. This speculation would lead to a correction of the g-
>, and
the magnetic moment g, to be the fine structure constant ( « ), a correction of
(1/7) =0.00232--- would arise. This is the first term of the quantum-electro-
dynamic correction of the g= 2 factor in terms of powers of (« ) [11].

factor. Assuming the coupling constant between electric moment <e|zl

6. Conclusion

The demonstrated merits of the model presented strongly suggest its validity.

The model supports the existence of the proposed EZBW, and suggests the

520

K2
o5
“t:o

Scientific Research Publishing



A. Niehaus

purely electromagnetic origin of mass. And last but not least, it demonstrates
that microscopic phenomena can be described without quantum mechanics, and
thereby “explain” paradoxes known to be connected with “understanding”

quantum mechanics.
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