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Abstract 
This research presents an approach based upon ant-colony optimization to 
address the system reliability problem. For each component of a system, the 
number of units in parallel needs to be chosen to maximize the reliability for 
the entire system. As more parallel units are selected, costs increase in a pro-
portional fashion. For this effort, quantity discounts for additional parallel 
units are considered, and the budget for purchase of parallel units is limited.  
Ant colony optimization methodology is employed to find an optimal system 
reliability that satisfies the budget constraint. The methodology is employed 
for several test problems, and near-optimal solutions are found. 
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1. Introduction 

In the pursuit of system design and system engineering, it is important to con-
struct a reliable system. One general way to do this is to include redundancies 
for each component. This is done to overcome failures of individual components. 
Each redundancy can be thought of as a backup unit. When one unit fails, a 
backup unit is activated, so that the component does not fail. The more redun-
dancies, or backups a component has, the less likely the component is to fail. At 
the same time, however, the cost increases for each redundancy, or backup unit 
that is added to the component. As such, it is desired to construct a reliability 
system that maximizes system reliability while simultaneously adheres to a li-
mited budget. 

Unfortunately, problems of this nature are difficult to solve for a couple of 
reasons: they are combinatorial in nature, making it difficult to enumerate all 
possible solutions. Additionally, these problems are highly nonlinear, with a po-
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lynomial order equal to the number of decision variables, thereby preventing the 
use of traditional mathematical programming approaches. 

Because of the challenging mathematics associated with these types of prob-
lems, heuristic approaches can be employed to find reasonable, if not optimal 
solutions. Additionally, if the heuristic approach is well thought out, the ap-
proach can find near-optimal solutions with a reasonable computational effort. 
For this research effort, an ant-colony optimization approach is employed as a 
sort of traversal through each system component with the intent of finding a 
“traversal” that provides, for each component, a high overall-system reliability 
that meets a specified budget. 

The subsequent sections of the paper present the details of the problem at 
hand, describe the heuristic methodology used, present a simple example prob-
lem, discuss applying the heuristic to some test problems, and compare these 
results to the optimal solution. General observations, and opportunities for sub-
sequent research are then offered. 

2. Background 

The reliability of a system is the mathematical product of the effective reliability 
for each individual component. The effective reliability of an individual compo-
nent is a function of the number of backup or parallel units. With more parallel 
units, the component’s effective reliability increases. This principle is well-do- 
cumented [1] [2] [3]. The effective cost also rises when more parallel units are 
added. Figure 1 details how the effective component reliability and effective cost 
works across three components—for each backup units/component combina-
tion, the first line shows reliability, while the second lines shows cost. 

For this example, we assume the reliability for a single parallel unit for com-
ponent j is Rj, where 0 1jR< < . We also assume the cost for a single parallel 
unit for component j is Cj. The effective reliability for component j is  

( )1 1
i

jR− − , where i is the number of units in parallel. The effective cost for 
component j is 1

0
i
h

h
jC D=

=∑ , where D is the quantity discount factor ( 0 1D< ≤ ), 
with i units in parallel. The boxes in orange show the number of parallel units 
used for each component: three units for component (1), two units for compo-
nent (2), and four units for component (3). The system reliability and system cost 
 

 
Figure 1. Components in series and parallel. 
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are shown as follows: 

( ) ( ) ( )43 2
1 2 3System Reliability 1 1 1 1 1 1R R R    = − − − − − −       

( ) ( ) ( )2 2 3
1 2 3System Cost 1 1 1C D D C D C D D D   = + + + + + + + +       

Selection of the number of units to employ for each component is the difficult 
part of this problem. Of course, we’d like to have as many parallel units as possi-
ble, as that increases the system reliability. Unfortunately, it also increases the 
system cost, and in reality, we are likely to have a limited budget. As such, we 
need to maximize reliability while staying within some specified budget. 

Optimization via mainstream mathematical programming approaches is not 
possible here, due to the highly nonlinear property of the problem. Additionally, 
the problem has an enormous search space, rendering enumeration impractical. 
In order to address this problem, we need to select a search heuristic to find a 
desirable solution requiring a reasonable computational effort. While there are 
many heuristic search approaches possible, ant-colony optimization is the search 
approach for this particular research effort. 

Ant-colony optimization is based on the concept of ants foraging for food. 
Ants essentially communicate with each other via secreting a substance called 
“pheromone.” Pheromone attracts other ants. A trail rife with pheromone will 
likely induce other ants to follow its path, while at the same time, there is a rela-
tively small probability for subsequent ants to deviate from this established path. 
This concept is illustrated by Figure 2. Initially, ants are confined to their nest (t = 
0). At t = 1, the ants pursue the food in what is seen as random fashion. At t = 2, 
there emerges a pattern where the ants start to enforce a direct route to the food. 
At steady state (t = ∞), the ants have seemingly found the shortest (best) route to 
the food, but the possibility of finding alternate routes still exists [4] [5]. 

 

 
Figure 2. Traversal of ants [6]. 
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For this research effort, we will simulate the behavior of the ants so that they 
traverse the individual components of a system with the intent of maximizing 
system reliability within budget-that is, having ants finding the “best” path dur-
ing their traversals. Dealing with a limited budget and quantity discounts is a 
unique feature of this effort [7]. This is analogous to ants finding the most effi-
cient route to a food source. The next section formalizes the search process. 

3. Methodology 

Here, we first formulate the general problem, detail the search heuristic, and of-
fer a simple example to illustrate the methodology. 

3.1. Formulation 

Before presenting the formulation, the following terms in Table 1 are intro-
duced. 

For this problem, our objective is to maximize the system reliability-the pro- 
duct of all component reliabilities. Our individual component reliabilities are 
dependent on the number of parallel units used for each component, which is a 
decision variable (xj). The number of parallel units used for each component de-
termines the cost of each individual component. More units used in parallel for 
each component increases the cost for the component, subsequently increasing 
the total cost. The total cost is limited by the budget, B. From a mathematical 
standpoint, we can represent our model in mathematical programming form via 
the following objective function and constraint, where decision variables are 
specified as integer, and in the range [1, n]: 

( )( )
1

Max : 1 1 j
m x

s j
j

R R
=

= − −∏                     (1) 

( )1

1 1
Subject to :

jxm
h

j
j h

C D B−

= =

 
≤  

 
∑ ∑                   (2) 

integer, jx j∀                           (3) 

1,jx j≥ ∀                             (4) 

,jx n j≤ ∀                             (5) 

 
Table 1. Data for example problem. 

Term Definition 

xj number of backup units for component j (decision variable) 

n number of possible backup units for any component 

m number of components in system 

Rj base reliability of component j 

Cj base cost of component j 

Rs system reliability 

D discount factor 

B budget 
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From inspection of the above model it is clear that our objective function is 
highly nonlinear, with a polynomial order of m. Additionally, our budget con-
straint is not continuous. Because of this, traditional mathematical programming 
approaches do not guarantee optimality. As such, we need to pursue a heuristic 
to provide a reasonable optimal solution via a reasonable computational effort. 

Several heuristic approaches are available to address this type of problem. A 
genetic algorithm can be used to address this problem. Genetic Algorithms have 
proven effective in solving difficult optimization problems. The down side of 
Genetic Algorithms is computational inefficiency. A Genetic Algorithm gene-
rates binary solutions, performs analyses, manipulates the binary characteristics 
of the problem, converts binary solutions back into decimal solutions, and re-
peats this process until some pre-specified stopping criterion is met. This puts 
a lot of strain on the processor, resulting in a protracted search. 

For this research effort, an artificial agent approach is used-something similar 
to ant colony optimization. An “ant” will traverse each component, starting with 
component 1 and concluding with component m. The choice of how many pa-
rallel units to select for each component during the traversal is probabilistic in 
nature, and proportional to the relative desirability of component i for each 
component j. For each unique traversal, the system reliability is computed, and if 
feasible, the system reliability is compared to the best system reliability found 
thus far. If the new solution is found to be the best so far, it becomes the new 
best solution, and the attractiveness of the solution components are enhanced 
accordingly. If the new solution is not the best found thus far, the attractiveness 
of the solution is diluted accordingly. 

3.2. Ant-Colony Heuristic 

Prior to detailing the optimization algorithm, the following terms in Table 2  
 
Table 2. Data for example problem. 

Term Definition 
xj number of backup units for component j (decision variable) 
n number of possible backup units for any component 
m number of components in system 

i backup unit index ( )1,  2, ,i n=   

j component index ( )1,2, ,j m=   

rij reliability of i parallel units for component j 
cij cost of i parallel units for component j 

pherij pheromone associated with i parallel units for component j 
impij number of times i parallel units for component j has been in the best solution 
probij probability of selecting i parallel units for component j 

rs system reliability 
cs system cost 

maxR highest obtained value of system reliability 
A pheromone amplifier 
D discount factor 
B budget 
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are defined: 

3.2.1. Step 1: Initialization 
First of all, the reliability and cost matrices are determined. The reliability of as-
sociated with employing i parallel units for component j is determined as fol-
lows: 

( )( )1 1 ,
i

ij ir R j= − − ∀                        (6) 

The cost associated with employing i parallel units for component j is deter-
mined as follows: 

( )1

1
, ,

i
h

ij j
h

c C D i j−

=

= ∀∑                       (7) 

Because we desire high values of reliability and low values of cost when 
choosing the number of parallel units for each component, pheromone is a func-
tion of the ratio of reliability to cost for each parallel unit/component combina-
tion. As such, pheromone is as follows: 

pher , ,ij ij ijr c i j= ∀                        (8) 

imp 1, ,ij i j= ∀                         (9) 

Our level of pheromone, along with the initialized improvement matrix, is 
then used to determine the probability of selecting i parallel units for component 
j. This is determined as follows: 

( )( )
( )( )( )1

pher imp
prob ,

pher imp

a
ij ij

ij n a
ij iji

j
β

β
=

= ∀
∑

               (10) 

The probability calculation above combines both pheromone and the number 
of overall best-solution improvements associated with selecting i parallel units 
for component j. The values of α and β are amplifiers, or weights for pheromone 
and improvements, respectively. MaxR is initialized to zero. Thus concludes the 
initialization process. The traversal process is now described. 

3.2.2. Step 2: Traversal 
An artificial agent, or “ant” traverses all m components, and at each component, 
a number of backup units are selected. We use the decision variable xj to 
represent the number of backup units selected for component j. This selection is 
done via Monte-Carlo simulation using the probabilities shown in Equation (10). 
A uniformly-distributed random number on the [0, 1] interval is generated and 
the appropriate value of xj is determined by where this random number lies in 
accordance with Equation (10). At the completion of the traversal, we have a so-
lution. 

3.2.3. Step 3: Assessment 
Our traversal of the m components provides us with a solution, where xj 
represents the number of parallel units employed for component j. We need to 
determine the system reliability and system cost of our recently-obtained solu-
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tion. System reliability is obtained as follows: 

,
1

,
j

m

s x j
j

r r j
=

= ∀∏                          (11) 

System cost is defined as follows: 

,
1

,
j

m

s x j
j

c c j
=

= ∀∑                          (12) 

If the system reliability obtained via Equation (11) exceeds MaxR, and the 
system cost obtained via Equation (12) is less than the budgeted amount (B), the 
solution is the best one found thus far, and this solution becomes the best solu-
tion thus far: 

Max sR r=                           (13) 

3.2.4. Step 4: Pheromone Update 
If the recently found solution is the best thus far as defined above, the phero-
mone is updated accordingly: 

pher pher ,
j jx j x j A j= + ∀                     (14) 

Additionally, the number of improvements associated with this new best solu-
tion is incremented as follows: 

imp imp 1,
j jx j x j j= + ∀                      (15) 

Otherwise-that is, if the new solution is not an improvement over the best- 
found solution thus far, the pheromone is updated accordingly. 

pher pher ,
j jx j x j A j= − ∀                     (16) 

Equations (14) and (15) enhance a solution that was found to be desirable-the 
characteristics of this solution are made more likely to occur in future traversals. 
Equation (16) dilutes a solution that was not found to be desirable—the charac-
teristics of this solution are made less likely to occur in future traversals. Re-
gardless of the type of pheromone adjustment made above, probabilities must be 
re-adjusted for the next traversal. This is done via Equation (10). 

3.2.5. Step 5: Repeat 
Steps 2, 3 and 4 are repeated until some stopping condition is reached, which is 
typically a user-defined condition. The last reported “best solution” reported is 
considered the best solution. 

3.3. Example 

To illustrate the presented methodology, we present a small example. Consider a 
problem with eight components (m = 8) and up to six units in parallel (n = 6) 
are permitted for each component. Table 3 below shows the given Rj and Cj val-
ues. 

Table 4 shows the reliability matrix (rij values) for up to six units in parallel 
for each of the eight components. Equation (6) was used to determine these val-
ues. Please note that for each individual component, the reliability increases with  
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Table 3. Data for example problem. 

 1 2 3 4 5 6 7 8 

Rj 0.885 0.90 0.92 0.89 0.93 0.925 0.92 0.97 

Cj $ 7.50 $3.50 $6.00 $4.00 $9.00 $6.00 $5.50 $8.00 

 
Table 4. Reliability matrix. 

 1 2 3 4 5 6 7 8 

1 0.885000 0.900000 0.920000 0.890000 0.930000 0.925000 0.920000 0.970000 

2 0.986775 0.990000 0.993600 0.987900 0.995100 0.994375 0.993600 0.999100 

3 0.998479 0.999000 0.999488 0.998669 0.999657 0.999578 0.999488 0.999973 

4 0.999825 0.999900 0.999959 0.999854 0.999976 0.999968 0.999959 0.999999 

5 0.999980 0.999990 0.999997 0.999984 0.999999 0.999999 0.999997 1.000000 

6 0.999998 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 

 
each additional unit in parallel. That is, the more units used in parallel, the higher 
the component’s reliability. As an example, if three parallel units are used for 
component six, the component reliability is 0.999578 (r36 = 0.999578). 

Table 5 shows the cost matrix for i units in parallel for each component (cij 
values). These values are determined by Equation (7), along with a discount fac-
tor (D) of 0.97. Note that for each component, using more units in parallel in-
creases the component cost by a factor of D. As such, there is a tradeoff with us-
ing more units in parallel—the more units used in parallel, the higher the cost. 
Because of this, one must carefully choose the number of parallel units to op-
timize the system reliability with a limited budget, B. As an example, if we use 
three parallel units for component two, our cost is $10.19 (r32 = 10.19). 

As an agent or “ant” traverses the m components of the system, they must 
make a decision on how many parallel components to employ for the next com-
ponent. This is a stochastic process, and the level of pheromone is influential in 
the selection process. For this research effort, the level of pheromone is deter-
mined via Equation (8), which is the ratio of rij to cij for all i,j combinations. It 
should be noted that since the impij values are initialized to one, they do not af-
fect the probabilities at this point in the search. 

For this example, for three parallel units being used for component one is 

( )0.0457 pher imp 0.0457ij ij    =    . Additionally, the values of and α and β and 
both assumed to equal one. These values are shown in Table 6. For each com-
ponent, the total amount of (pherij)(impij) is summed on the bottom line. 

These values are converted to probabilities via Equation (10), and are shown 
in Table 7. For each individual component, one will note that the sum of proba-
bilities is unity. Monte Carlo simulation is used to select the number of parallel 
units employed for each component. For example, there is a 0.1057 probability 
that there will be four parallel units employed for component eight (prob48 = 
0.1057). 

For the purpose of our example, let us assume that we have a discount factor  
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Table 5. Cost matrix. 

 1 2 3 4 5 6 7 8 

1 $7.50 $3.50 $6.00 $4.00 $9.00 $6.00 $5.50 $8.00 

2 $14.78 $6.90 $11.82 $7.88 $17.73 $11.82 $10.84 $15.76 

3 $21.83 $10.19 $17.47 $11.64 $26.20 $17.47 $16.01 $23.29 

4 $28.68 $13.38 $22.94 $15.29 $34.41 $22.94 $21.03 $30.59 

5 $35.32 $16.48 $28.25 $18.84 $42.38 $28.25 $25.90 $37.67 

6 $41.76 $19.49 $33.41 $22.27 $50.11 $33.41 $30.62 $44.54 

 
Table 6. (pherij)(impij) matrix. 

 1 2 3 4 5 6 7 8 

1 0.1180 0.2571 0.1533 0.2225 0.1033 0.1542 0.1673 0.1213 

2 0.0668 0.1436 0.0841 0.1254 0.0561 0.0841 0.0917 0.0634 

3 0.0457 0.0981 0.0572 0.0858 0.0382 0.0572 0.0624 0.0429 

4 0.0349 0.0747 0.0436 0.0654 0.0291 0.0436 0.0475 0.0327 

5 0.0283 0.0607 0.0354 0.0531 0.0236 0.0354 0.0386 0.0265 

6 0.0239 0.0513 0.0299 0.0449 0.0200 0.0299 0.0327 0.0225 

Sum 0.3177 0.6855 0.4035 0.5970 0.2702 0.4044 0.4402 0.3093 

 
Table 7. Probability matrix. 

 1 2 3 4 5 6 7 8 

1 0.3715 0.3751 0.3800 0.3727 0.3824 0.3812 0.3800 0.3920 

2 0.2103 0.2095 0.2083 0.2100 0.2077 0.2080 0.2083 0.2050 

3 0.1440 0.1430 0.1418 0.1437 0.1412 0.1415 0.1418 0.1388 

4 0.1098 0.1090 0.1080 0.1095 0.1075 0.1078 0.1080 0.1057 

5 0.0891 0.0885 0.0877 0.0889 0.0873 0.0875 0.0877 0.0858 

6 0.0754 0.0749 0.0742 0.0752 0.0739 0.0740 0.0742 0.0726 

Sum 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
of D = 0.97, with a budget of B = $200. We also assume Monte Carlo simulation 
resulted in a solution of x = [3, 4, 3, 3, 2, 3, 2, 2]. That is three parallel units for 
component one, four parallel units for component two, etc. Tables 4-6 are en-
hanced to show the associated component reliabilities and costs associated with 
this solution-these values are shaded. With this solution, we compute the system 
reliability as follows: 

( )( )( )( )
( )( )( )( )
0.998479 0.999900 0.999488 0.998669

      0.995100 0.999578 0.993600 0.999100 0.984008.
sr =

=
 

The system cost is determined as follows: 

$21.83 $13.38 $17.47 $11.64 $17.73 $17.47 $10.84 $15.76 $126.11sc = + + + + + + + =  
Given that this is our first solution, it provides us with the maximum system 

reliability (maxR) thus far. Our system cost is also within our budget of $200 (cs < 



P. R. McMullen 
 

108 

B). As such, this is our best solution thus far. The value of MaxR is replaced with 
rs. Because this solution is an improvement over the previous best solution, the 
pheromone must be updated accordingly. Table 8 and Table 9 show how the 
pheromone matrix is updated by the pre-selected amplifier value equal to 0.01 
(A = 0.01) for the appropriate solution values-affected values are shaded. Non- 
affected values are the same as before. 

Because this solution is the best found thus far, our improvement matrix is 
also updated in accordance with Equation (15). 

Because the pheromone and improvement matrices have been adjusted, the 
corresponding probability matrix must also be adjusted. All probability values 
will change. Probabilities associated with the recently-obtained best solution will 
increase, while the other probabilities will decrease—this is the result of en-
hancing the pheromone and improvement values for the recently found best so-
lution. Table 10 shows the updated probability matrix. 

 
Table 8. Updated pheromone matrix. 

 1 2 3 4 5 6 7 8 

1 0.1180 0.2571 0.1533 0.2225 0.1033 0.1542 0.1673 0.1213 

2 0.0668 0.1436 0.0841 0.1254 0.0661 0.0841 0.1017 0.0734 

3 0.0557 0.0981 0.0672 0.0958 0.0382 0.0672 0.0624 0.0429 

4 0.0349 0.0847 0.0436 0.0654 0.0291 0.0436 0.0475 0.0327 

5 0.0283 0.0607 0.0354 0.0531 0.0236 0.0354 0.0386 0.0265 

6 0.0239 0.0513 0.0299 0.0449 0.0200 0.0299 0.0327 0.0225 

 
Table 9. Updated improvement matrix. 

 1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 2 1 2 2 

3 2 1 2 2 1 2 1 1 

4 1 2 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 1 1 

 
Table 10. Updated probability matrix. 

 1 2 3 4 5 6 7 8 

1 0.3079 0.3295 0.3189 0.3165 0.2982 0.3202 0.3031 0.3089 

2 0.1743 0.1841 0.1750 0.1784 0.3816 0.1746 0.3685 0.3738 

3 0.2906 0.1257 0.2796 0.2726 0.1103 0.2791 0.1131 0.1092 

4 0.0911 0.2171 0.0907 0.0930 0.0840 0.0905 0.0861 0.0833 

5 0.0738 0.0778 0.0736 0.0755 0.0681 0.0735 0.0699 0.0675 

6 0.0624 0.0658 0.0622 0.0639 0.0577 0.0621 0.0592 0.0573 

Sum 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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The iterative process: traversal, assessment, and updating of pheromone, im-
provements and probabilities continues until some stopping criterion is met. For 
this simple example, 1000 iterations are used, resulting in the solution x = [5, 5, 4, 
6, 4, 4, 4, 3], with a system reliability of rs = 0.999804, and a system cost of cs = 
$198.68. This solution was also determined to be optimal via enumeration of all 
solutions. 

4. Experimentation 

The presented methodology is used on four test problems. Details of these test 
problems are shown in Table 11. The number of possible solutions is equivalent 
to the following: 

ComponentsSolutions Backupsnm= =  

It should be noted that using more than eight parallel units (backups) for each 
component results in diminishing utility-system reliability gains become neglig-
ible, and only the cost increases, leading to suboptimal solutions. 

For each of the test problems, the Rj and Cj values are provided in Tables 
12-15. This information enables us to pursue the presented heuristic, in our ef-
fort to find good solutions for these test problems. 

 
Table 11. Test problems. 

Problem Backups Components Budget (B) 
Discount 

(D) 
Solutions 

ACO-1 8 10 275 0.95 1,073,741,824 

ACO-2 8 12 450 0.99 68,719,476,736 

ACO-3 8 13 400 0.97 549,755,813,888 

ACO-4 8 14 650 0.95 4,398,046,511,104 

 
Table 12. Test problem ACO-1. 

 1 2 3 4 5 6 7 8 9 10 

Rj 0.7516 0.7195 0.8059 0.6875 0.7751 0.8373 0.9081 0.7877 0.7275 0.8236 

Cj 6.34 6.00 7.10 5.54 6.81 4.91 5.38 6.75 5.73 6.44 

 
Table 13. Test problem ACO-2. 

 1 2 3 4 5 6 7 8 9 10 11 12 

Rj 0.681 0.7896 0.8488 0.8860 0.7652 0.6293 0.7834 0.7526 0.8239 0.9543 0.7427 0.8465 

Cj 8.30 6.30 9.70 7.55 9.74 4.85 4.50 6.80 9.74 4.00 7.13 7.80 

 
Table 14. Test problem ACO-3. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

Rj 0.885 0.900 0.920 0.890 0.930 0.925 0.920 0.970 0.925 0.900 0.750 0.780 0.912 

Cj 7.50 3.50 6.00 4.00 9.00 6.00 5.50 8.00 4.50 7.50 6.50 7.90 8.30 
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Table 15. (a) Test Problem ACO-4. (b) Test Problem ACO-4. 

(a) 

 1 2 3 4 5 6 7 

Rj 0.827 0.842 0.865 0.861 0.885 0.898 0.829 

Cj 4.28 5.25 11.03 13.34 9.49 9.68 16.31 

(b) 

 8 9 10 11 12 13 14 

Rj 0.839 0.853 0.927 0.828 0.838 0.823 0.871 

Cj 8.36 9.37 4.93 11.64 11.16 11.93 13.28 

5. Experimental Results 

Table 16 shows the results of the heuristic approach as compared to the optimal 
solution as obtained via complete enumeration. For all problems, the search pa-
rameters for α and β were set to 1 and 1.5 respectively. For each problem, the 
ant-colony optimization heuristic was performed using the number of iterations 
specified in Table 16. For each problem, the heuristic was repeated ten times, 
and the mean and standard deviation of the objective function value were calcu-
lated. From inspection of Table 16, it should be noted that the heuristic per-
formed, on average, no worse than 0.03% inferior to optimal. 

Figure 3 shows a “snapshot” of the improvement matrix for ACO-4. Each 
column represents one of the (14) components, while each row represents the 
number of units used in parallel for the component of interest. The intensity of 
each circle represents the frequency that i parallel units were used for compo-
nent j when a new “best solution” was found. The darker the circle, the more of-
ten that particular number of parallel units was found to be beneficial for the 
best solution. For example, (7) parallel units is a desirable number value for 
component (1), while (1) parallel unit was not desirable for component (1). This 
improvement matrix is used in the probability calculations to “reinforce” desira-
ble solutions for subsequent ant traversals. 

6. Concluding Comments 

We have presented an ant-colony optimization approach to address a system re-
liability problem with quantity discounts and a constrained budget. Because 
conventional optimization approaches are not feasible for such large, nonlinear 
problems, we must pursue search heuristics. Of course, ant-colony optimization 
is one of many options. Tabu Search, Simulated Annealing and Genetic Algo-
rithms are possible search candidates. For this type of problem, however, ant- 
colony optimization serves us well due to the fact that we are able to model our 
desire for a solution by simulating an ant traversing the search space in a logical 
fashion. This would be more difficult with the aforementioned approaches. Fur-
thermore, these other search approaches can be computationally expensive due 
to the management details associated with these approaches. 

Of course, there are always opportunities for additional research, and this effort  
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Table 16. Heuristic solutions compared to optimal. 

 Optimal Solution Heuristic Solution 

Problem Solution (xj) Reliability Iterations Reliability ( x ) Reliability (s) 

ACO-1 [5, 6, 4, 7, 5, 4, 3, 5, 6, 5] 99.380807% 25,000 99.351834% 0.166855% 

ACO-2 [7, 5, 4, 4, 6, 8, 6, 6, 5, 3, 6, 4] 99.659840% 50,000 99.638339% 0.046367% 

ACO-3 [5, 5, 5, 5, 4, 4, 5, 3, 5, 5, 8, 7, 5] 99.980674% 100,000 99.974600% 0.006069% 

ACO-4 [6, 5, 5, 5, 5, 4, 5, 6, 5, 4, 6, 5, 6, 5] 99.918462% 250,000 99.906818% 0.007980% 

 

 
Figure 3. Snapshot of improvement matrix for ACO-4. 

 
is no exception. The largest problem addressed has 4.4 trillion possible solutions. 
Comparing our best solution found via the heuristic to the optimal solution with 
4.4 trillion possibilities required some work, but with today’s computational re-
sources, it was surprisingly possible. In fact, the size of the experimental prob-
lems is considered one of the unique features associated with this effort—other 
efforts work with are unable to provide solutions to problems of this practical 
size [8] [9]. To this end, larger problems can be pursued in the future. Addition-
ally, other heuristic approaches can be tried, such as those aforementioned. 
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