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Abstract 
Additive manufacturing, especially in the form of 3D printing, offers the ex-
citing possibility of generating heterogeneous articles with precisely controlled 
internal microstructure. One area in which this feature can be of significant 
advantage is in diffusion control, specifically in the design and fabrication of 
microstructures which optimize the rate of transport of a solute to and from a 
contained fluid. In this work we focus on the use of flakes as diffusion-control 
agents and study computationally and theoretically the effect of orientation on 
the barrier properties of flake-filled composites. We conducted over 1500 si-
mulations in two-dimensional, doubly-periodic unit cells each containing up 
to 3000 individual flake cross-sections which are randomly placed and with 
their axes forming an angle ( π 2 θ− ) with the direction of macroscopic diffu-
sion. We consider long-flake systems of aspect ratio (α ) 100 and 1000, from 
the dilute ( 0.01αϕ = ) and into the concentrated ( 40αϕ = ) regime. Based on 
the rotation properties of the diffusivity tensor, we derive a model which is 
capable of accurately reproducing all computational results ( 0.01 40αϕ< <  
and 0 π 2θ< < ). The model requires as inputs the two principal diffusivities 
of the composite, normal and parallel to the flake axis. In this respect, we find 
the models of Lape et al. [1] and Nielsen [2] form an excellent combination. 
Both our model and our computational data predict that at 0θ >  the qua-

dratic dependence of the Barrier Improvement Factor (BIF) on (αϕ ) is lost, 
with the BIF approaching a plateau at higher values of (αϕ ). This plateau is 
lower as (θ ) increases. We derive analytical estimates of this maximum 
achievable BIF at each level of misalignment; these are also shown to be in ex-
cellent agreement with the computational results. Finally we show that our 
computational results and model are in agreement with experimental evidence 
at small values of (θ ). 
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1. Introduction 

Additive manufacturing, especially in the form of 3D printing, offers the exciting 
possibility of generating articles with precisely controlled internal microstruc-
ture. One area in which this feature can be of significant advantage is in diffu-
sion control, specifically in the design and fabrication of microstructures which 
allow for minimization of the transport of a solute to/from a contained fluid. 
Flake-filled polymeric composites, incorporating mica, glass or metallic flakes 
have found many uses in this direction, as they offer significant processing and 
property advantages, namely high dimensional stability and low warpage in 
molding, uniform in-plane mechanical properties, corrosion protection, sound 
insulation as well as appearance and color control [3] [4] [5] [6] [7]. Mi-
cron-sized flakes of inorganic materials such as mica, nano-scale platelets of clay 
minerals such as hectrite, saponite and montmorillonite and more recently gra-
phene-oxide platelets of aspect ratios well over 1000, have been used for this 
purpose [8]. It has been demonstrated that incorporation of such fillers aligned 
perpendicular to the direction of macroscopic diffusion can be very effective in 
increasing the tortuosity of the diffusion path of the diffusing species. When the 
flakes are randomly placed, as would be the case in a flake composite manufac-
tured from the melt, the predicted improvement in barrier efficiency ranges 
from being ~(αϕ ) in dilute systems, where (α ) is the aspect ratio and (ϕ ) the 
volume fraction of the flakes, to being ~ ( )2αϕ  in more concentrated disper-
sions [1] [9]-[16].  

One notable disadvantage of traditional processing methods vis-à-vis flake- 
filled composites is the fact that flake orientation cannot be precisely controlled. 
In such operations (extrusion, compression or injection molding, thermoform-
ing and others) flake orientation is achieved due to the propensity of the flakes 
to orient in accordance to the prevailing flow field—either in the main direction 
of flow when the flow is shear or transverse to it when the flow is extensional 
[17]. An additional shortcoming of traditional flow-processing routes is the ina-
bility to utilize high flake loadings since, in that case, the viscosity of the result-
ing melt becomes prohibitively high. Given the capability afforded by 3D print-
ing to fully control flake orientation as well as generate articles with flake load-
ings approaching those at maximum packing, it is desirable to predict the effec-
tive diffusion coefficient (or its inverse, the barrier improvement factor, BIF) as 
an explicit function of the flake orientation angle and for very high, previously 
untenable, concentrations.  

The two main approaches which have been used in the literature to-date for 
this purpose are (i) an ad-hoc incorporation of orientation metrics in existing 
models for the BIF [8] [18] and (ii) derivation of BIF models from diffusion path 
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calculations [19] [20] [21]. In both cases, the proposed models have been derived 
for low or very-low flake concentrations and have not been extensively tested in 
the moderate to high-concentration regime, which will be of importance in any 
3D printing application. In addition, by not respecting the rotational properties 
of the diffusivity tensor, these models are not grounded on a sound theoretical 
footing. This paper addresses the above issues both computationally and theo-
retically, by proposing a model based on the two principal diffusivities of a flake 
composite. We also show that the implications of our theoretical model are fully 
supported by extensive computational results. 

2. Computational 

We carry out steady-state diffusion computations in doubly-periodic unit cells 
containing up to 3000 individual flake cross-sections. These are added in the 
domain sequentially, using a Random Sequential Addition (RSA) procedure. 
Specifically, at each flake placement attempt, two random numbers are used to 
assign the coordinates of the flake center while its orientation angle (θ ) is fixed 
and the same for all flakes. If, after placement, no overlap with other flakes is 
detected, the process continues with the next flake, until the desired number of 
flakes has been placed, or, until no flake can be placed after 50,000 attempts; in 
this case no geometry is generated. In order to enable subsequent meshing of the 
computational domain, a minimum allowable distance between flakes is im-
posed; this is ( 2t ) where ( t ) is the thickness of the flake. Since in this work we 
have dealt with flakes of high aspect ratio ( 100α =  and 1000α = ), this mini-
mum distance requirement is deemed reasonable so as to not result in excessive 
local mesh refinement. In a rectangular unit cell of dimensions (H) and (L) con-
taining (N) flakes of dimensions ( ,t α ), the flake area fraction ( ϕ ) is 

2N t LHϕ α=  and the length (l) of each flake ( )l LH Nαφ= . We have 
looked at systems in which 0.01  40αϕ≤ ≤ . At higher values of (αϕ ) it be-
comes impossible to fill the space with non-overlapping flake crossections. This 
not-withstanding, the present study is to our knowledge the first to investigate 
systems of such large concentration. 

In multi-particle simulations, use of doubly-periodic cells is essential when 
dealing with elongated particles so as to eliminate artifacts of oriented (or, dep-
leted) layers which would otherwise appear adjacent to cell boundaries [11] [16]. 
The effect of the RVE dimensions on the computed effective diffusivity is also 
eliminated when using periodic unit cells. A sample unit cell, showing flakes 
oriented at an angle θ = 0.8 rad with respect to the horizontal (x) axis (extended 
slightly outside the limits of the unit cell to show the doubly-periodic geometry) 
is shown in Figure 1.  

The boundary conditions are cyclic on the right and left boundaries, namely 
( ) ( )left right0, ,C y C L y= . On the top and bottom boundaries, fixed values of 

concentration are prescribed. On the surface of each flake we impose 
0C∂ ∂ =n  indicating that the flakes are impermeable. At each level of (α ) and 

(ϕ ) we generate ~10 different realizations, each containing up to 3000 randomly  
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Figure 1. Sample unit cell—doubly-periodic—containing 500 flake crossections, all 
oriented at an angle θ = 0.8 rad to the horizontal (x) axis. 100α = , 1αϕ = . On the right 
is shown a detail of the computational mesh. 

 
placed flakes. The computational meshes are created by the mesh generating 
program Salome through an in-house automated procedure and contain ~106 
triangular elements. 

These meshes are then used by Open Foam to solve the steady-state diffusion 
equation 2 0C∇ = , (C) being the solute concentration, and provide its distribu-
tion in the domain of interest. The assumption of an isotropic matrix material is 
also made. The solution also supplies the value of C∂ ∂n  at each point on the 
upper (or lower) boundary. As a result, the mass flux along this boundary can be 
calculated as  

0
0

d
L

n
CJ D x∂ = −  ∂ ∫ n  

where the subscript (n) indicates numerically computed value, n is the outward 
unit vector and (L) is the width of the unit cell. Because of impermeable flakes 
crossing boundaries, which results in sudden local changes of the flux, care must 
be taken in performing this integration. In this work, we used adaptive intervals 
and only accepted values of the integral when these were convergent with re-
finement. Equating this flux with the one obtained from Fick’s law in a macros-
copic equivalent cell (whose diffusivity is Deff) we obtain 

0
eff

0

d
LHD CD x

C L
∂ =  ∆ ⋅ ∂ ∫ n  

where C∆  is the macroscopically imposed concentration difference and (H) 
the height of the unit cell. These effective diffusivities will be presented and dis-
cussed for various values of (θ ), (α ) and (ϕ ) in the following sections. 

3. Results and Discussion 

In the following we present the results of a comprehensive computational study 
of diffusion across doubly-periodic unit cells, each containing up to N = 3000 
randomly placed impermeable flakes of rectangular cross-section. In such a sys-
tem, the orientation of each flake is defined by the orientation angle (θ) formed 
between the vertical axis (y), which is taken to be the direction of macroscopic 
diffusion, and the outward normal vector on the flake surface. The horizontal 
axis is indicated as ( x ). Parametric studies have shown that for N > 200 the ob-
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tained Deff were practically indistinguishable; this conclusion extended for (αϕ ) 
as large as 40; therefore most of our computations have been carried out in RVEs 
containing 500 flake cross sections. We look at systems ranging from dilute to 
concentrated and in which the fiber orientation (θ) changes between zero (flake 
orientation perpendicular to the direction of diffusion) to π 2  (fibers oriented 
along the direction of macroscopic diffusion). We have carried out computations 
in unit cells similar to those of Figure 1 for 100α =  and 0.01,  0.1,  1.0αϕ =  
and 10αϕ = , as well as for 1000α =  and 0.01 40αϕ≤ ≤ . 

3.1. Effect of Flake Misalignment on Effective Diffusivity 

Representative results of the distribution of (C), also showing the corresponding 
flake distributions, are shown in Figure 2 and Figure 3. 

We define as D11 the diffusivity of such a system when θ = 0˚ (all flakes 
oriented perpendicular to the direction of macroscopic diffusion) and D22 the 
diffusivity when θ = 90˚ (all flakes oriented parallel to the direction of diffusion). 
D11 and D22 are the principal values of the two-dimensional diffusivity tensor, D. 
The diffusivity tensor ′D  corresponding to a system in which the flakes assume 
an orientation angle θ (counterclockwise with respect to the x-axis) can be de-
termined according to the relation T′ =Q QDQ , where Q  is the rotation ten-
sor ( ( )11 cosQ θ= , ( )12 sinQ θ= − , 21 12Q Q= − , ( )22 cosQ θ= ). 

Hence 
2 2

11 22 11 22
2 2

11 22 11 22

cos sin sin cos sin cos
sin cos sin cos sin cos
D D D D

D D D D
θ θ θ θ θ θ

θ θ θ θ θ θ
 + − +

′ =  
− + + 

D  (1) 

Therefore, the effective diffusivity of this system in the direction (y) forming  
 

 
Figure 2. Distribution of concentration in geometries with θ = 0 and 1,10,40αϕ = . The 
distribution of flakes is also visible. N = 500. 

 

 
Figure 3. Distribution of concentration in geometries with π 4θ =  and 1,10,40αϕ = . 
The distribution of flakes is also visible. N = 500. 
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an angle ( π 2 θ− ) with the axis of the flakes will be 

( ) ( ) ( )2 2
eff 11 22cos sinD D Dθ θ θ= +                 (2) 

We will investigate the use of Equation (2) to determine ( )effD θ , provided 
the principal permeabilities D11 and D22 are known. By comparing its predictions 
to our computational results we will identify which models for D11 and D22 give 
the best agreement with computation.  

In the first instance we have compared the computational results for dilute 
cases ( 0.01αϕ =  and 0.1αϕ = ) with the predictions of Equation (2), in which  

Nielsen’s [2], model has been used for D11 and D22, namely 22 0
1

1 2
D D ϕ

ϕ α
−

=
+

 

and 11 0
1

1 2
D D ϕ

αϕ
−

=
+

. 

Extensive comparisons have shown that predictions of Equation (2) based on 
Nielsen’s model for D11 and D22 are close to the computational results only for 
the very dilute regime ( ~ 0.01αϕ ). For progressively higher of (αϕ ) there is a 
growing discrepancy.  

It is of course possible to use diffusivity models for D11 and D22 more suitable 
for concentrated suspensions. A review and evaluation of available models has 
been carried out by Chen and Papathanasiou [11]. Of the models discussed 
there, we single out those of Cussler and co-workers [1] [9] mainly because of 
their relevance to the systems modeled here (randomly placed flakes) as well as 
due to the small number of adjustable parameters needed in their implementa-
tion and their extensive use in the literature. Lape et al. [1] proposed that for 
diffusion across arrays of unidirectional randomly placed flakes it is 

( )2
0

eff

1 3
1

D
D

αφ
φ

+
=

−
 

In deriving this model, the tortuosity factor was taken to be 1 + αφ/3 and it 
was further assumed that the ratio of the areas available for diffusion is 

( ) ( )0 1 3 1fA A αφ φ= + −  

Implicit in the above derivation is the assumption that the diffusion paths 
around a flake form straight lines; therefore it is not unreasonable to treat the 
factor “3” in the expression above as a geometrical parameter that may be ad-
justed if so suggested by the data. Since that was found to be the case in analyz-
ing our data, we use the model of Lape et al. [1] in the form: 

( )
( )

2
0

eff

1
1

D
D

αφ λ
φ

+
=

−
                       (3) 

in which ( λ ) is an adjustable geometrical parameter. Another model suitable for 
concentrated aligned flake systems [9] reads 

( )
2 2

0

eff

1
1

D
D

α φ
β φ

= +
−

                       (4) 

where ( β ) is also an adjustable geometric factor. The following Figure 4 gives a  
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Figure 4. Comparison of computational results (points) with predictions of Equation (2) for 1αϕ =  and 10αϕ = . The legend 
refers to the model used in place of D11. For D22 Nielsen’s model [2] was used. In all cases 100α = , 1.15β =  in Equation (4) 
and 2.5λ =  in Equation (3).  
 

comparison between the computational results, for flakes with 100α =  and for 
1αϕ =  and 10αϕ = , in unit cells similar to those of Figure 3 and the predic-

tions of Equation (2), in which D11 is taken from [1] [9] and D22 from [2]. It is 
evident that use of models for D11 more suitable for concentrated systems results 
in significantly improved predictions of Deff for all (θ). The model of Lape et    
al. [1] gives an excellent agreement with the computational results for 2.5λ =  
even for αϕ  as low as 0.01 (especially away from ~ π 2θ ) with a slight ad-
justment of λ  to 2.7 at 0.01αϕ = , while the model of Cussler et al. [1] gave a 
very good fit with 1.15β =  at 1αϕ ≥ . The latter model Equation (4) can also 
be used at lower (αϕ ) values with proper adjustment of the parameter ( β ); at 

0.1αϕ =  best agreement was obtained for 0.117β =  and at 0.01αϕ =  best 
agreement was obtained for 0.014β = . Finally, it is noteworthy that near 

π 2θ =  (flakes oriented almost parallel to the direction of diffusion) the nu-
merical results are in very close agreement with Equation (2) for all concentra-
tions. Since at ~ π 2θ  the term containing D22 dominates, this shows that 
Nielsen’s model for diffusion parallel to the flakes is a reliable one, even for (αφ) 
as high as 10. 

Additional comparisons for 1000α =  and higher values of (αϕ ) are shown 
in Figure 5, in terms of the BIF. There are 50 computational data-points at each 
value of (αϕ ) and those at the same (θ ) almost completely overlap. This has 
been shown before [11], namely that spatial randomness has a very small effect 
on the diffusivity of such systems.  

In summary, our computational results and the comparisons presented above 
have shown that the effective diffusivity Deff of a system of randomly placed 
flakes oriented at an angle ( π 2 θ− ) with the direction of macroscopic diffusion 
can be predicted by 

( ) ( )
( )

( ) ( ) ( )eff 2 2
2

0

1 1
cos sin

1 21

D
D
θ φ φ

θ θ
φ ααφ λ

− −
= +

++
          (5) 
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Figure 5. Comparison of computational results (points) with predictions of Equation (2) for 20αϕ =  and 40αϕ = . The legend 
refers to the model used in place of D11. For D22 Nielsen’s model [2] was used. In all cases 1000α = , 1.15β =  in Equation (4) 
and 2.5λ =  in Equation (3). 
 

where 2.5λ = . As explained above, this model is in excellent agreement with 
the computational data for the entire range of (αϕ ) and (θ) studied. In addition, 
we compare the predictions of our model to an experimental result [22] [23], 
namely that for small values of the misalignment angle (θ) it is 

( )
( ) ( )eff 2

eff

0
cos

D
D

θ
θ

θ
=

=
 

in which 0θ =  corresponds to a composite fully aligned normal to the direc-
tion of diffusion. If D11 is the diffusivity of the fully-aligned system, the BIF im-
plied by the above statement will be  

2
2

1
11

cosBIF cos
D

θ αφ θ= ≈                     (6) 

From Equation (2) it can be seen that the BIF implied by our model, (setting, 
without loss of generality or relevance, D22~D0~1) is  

( ) ( )2 2
11

1BIF
1 1 cosD θ

=
+ − ⋅

                   (7) 

As shown in Figure 6, at each value of (θ ) the predictions of Equation (7) 
approach asymptotically those of Equation (6) albeit at progressively higher val-
ues of D11 (that is, for more dilute systems) as (θ ) increases. However, the li-
miting behavior of Equation (7) in the concentrated regime (small D11) suggests 
a qualitatively different behavior for the BIF. Our computational results support 
this prediction, as will be elaborated upon in the following section. With refer-
ence to Figure 6, if the model of Lape et al. [1] is adopted for D11, a value of 

11 0.1D =  corresponds to 6.5αϕ =  while a value 11 0.01D =  will give 27αϕ = . 
Therefore, our model is consistent with Equation (6) well into the semi-concen- 
trated regime, for small misalignment angles. 
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3.2. The Effect of Flake Concentration 

In aligned systems, it is known [1] [9] [10] that the BIF scales with ( )2αϕ  at 
higher concentrations, and linearly with ( )αϕ  in the dilute regime. No such 
definitive information is available when deviations from perfect alignment oc-
cur. Figure 7 shows all our computational results for 1000α = . It is clear that 
while the quadratic rise with (αϕ ) is indeed observed in aligned systems 
( 0θ = ), this asymptotic behavior is lost as (θ) increase and the BIF approaches a  

 

 
Figure 6. Predictions of Equation (7) (broken lines) showing its asymptotic approach to 
the experimental result represented by Equation (6) (solid line). Larger values of D11 cor-
respond to more dilute systems.  

 

 
Figure 7. Summary of computational results (circles) for 1000α =  and θ = 0, 0.1, 0.2, 
0.4, 0.6, 0.8, and 1.0, all in rad. We observe the anticipated quadratic rise of the BIF with 
(αϕ ) for higher values of (αϕ ) at 0θ =  and also a progressively lower plateau reached 
at increasing values of the misalignment angle (θ ). The predictions of Equation (5) are 
also shown as solid lines. Total of 1295 data points. 
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plateau value; this plateau is lower the larger the misalignment angle (θ) is. The 
implication of this result is that for the full potential of large-α  flake systems as 
diffusion barriers to be realized, good alignment is essential. Also shown in Fig-
ure 7 are the predictions of Equation (5); as in Figure 4 and Figure 5 the 
agreement between the two is excellent. 

3.3. Limiting Behavior of the BIF at Very High (αφ). 

In light of the excellent agreement between computational results and Equation 
(5) it is possible to use the latter to obtain analytical estimates of the leveling-off 
values of the BIF at each (θ), by observing that the first term of Equation (5) be-
comes negligible at high (αϕ ), leaving  

( ) ( )
( ) ( )

1

21
lim BIF sin

1 2αφ

φ
θ

φ α

−

→∞

 −
= ⋅ 

+  
              (8) 

Figure 8 compares our computational results to the predictions of Equation 
(8) as well as the approach to that limit based on Equation (5). A conclusion is 
obvious—the quadratic rise of the BIF with (αϕ ) is lost when 0θ > . For a mi-
salignment as small as 5.7˚ (0.1 rad) the upper limit on the achievable BIF from 
Equation (13) is 104—a three-fold decrease from the theoretical BIF of a per-
fectly aligned composite with 40αϕ =  and a multi-fold decrease from an 
aligned composite of even higher (αϕ ). In fact, for such concentrated systems 
the departure from the theoretical BIF can be very rapid at small misalignment 
angles, as can be inferred from Equation (8). This we show in Figure 9 in which 
we plot the predictions of Equation (8) along with our computational results for 

1000α =  and 40αϕ = .  
The above comments and results are particularly pertinent to high aspect ratio  

 

 
Figure 8. The approach to the BIF limit (as predicted by Equation (8), dotted lines) for θ 
= 0.1, 0.2 and 0.4 (in rad) as well as the predictions of Equation (5) (solid lines). Points 
are computational results. α = 1000. 
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Figure 9. Computed BIF at ( )40 1000αϕ α= =  as a function of the misalignment angle 

(θ). With a solid line are shown the predictions of Equation (8). The rate of decline in 
barrier performance with even a slight misalignment is very significant at small (θ), when 
(αφ) is large. 

 
flakes, such as found in exfoliated nanoclay or graphene composites, for which 
even at low (ϕ ) a high (αϕ ) value can be achieved; in our simulations in which 

1000α = , the maximum αϕ  of 40 translates into 4%ϕ = . Evidently, 
Εquation (8) in that case says that the limiting BIF is only a function of the misa-
lignment angle—and our computations are in complete agreement with this 
prediction. At higher loadings, Equation (8) predicts that the limiting BIF will 
increase for larger values of (αϕ ).  

4. Conclusion 

In this study we proposed a model for the Barrier Improvement Factor (BIF) of 
misaligned flake composites which is valid up to very high flake concentrations, 
as could be found in composites fabricated by 3D printing. The model requires 
as inputs the two principal diffusivities of the composite, normal and parallel to 
the flake axis. In this respect, we find that the models of Lape et al. [1] and Niel-
sen [2] form an excellent combination. The simple algebraic form of the pro-
posed model makes it usable without recourse to special computing facilities. 
This model was tested exhaustively by comparing to predictions of 2D computer 
simulations which included up to 3000 randomly placed but uniformly oriented 
flake cross-sections in each RVE. Each cross-section forms an angle ( π 2 θ− ) 
with the direction of macroscopic diffusion. Over 1500 simulations were carried 
out and upon comparison the model was found in agreement with computation-
al results for all misalignment angles and for values of (αϕ ) up to 40. Both our 
model and our computational data predict that at 0θ >  the quadratic depen-
dence of the BIF on (αϕ ) is lost, with the BIF approaching a plateau at higher 
values of (αϕ ). This plateau is lower as (θ) increases. We derive analytical esti-
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mates of this maximum achievable BIF at each level of misalignment; these are 
also shown to be in excellent agreement with the computational results. Finally 
we show that our computational results and model are in agreement with expe-
rimental evidence at small values of (θ). Future work involves extension to even 
higher values of (αϕ ) as well as comparison with 3D computations. 
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