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Abstract 
The aim of this study is to present an alternative approach for solving the 
multi-objective posynomial geometric programming problems. The proposed 
approach minimizes the weighted objective function comes from multi-ob- 
jective geometric programming problem subject to constraints which con-
structed by using Kuhn-Tucker Conditions. A new nonlinear problem formed 
by this approach is solved iteratively. The solution of this approach gives the 
Pareto optimal solution for the multi-objective posynomial geometric pro-
gramming problem. To demonstrate the performance of this approach, a pro- 
blem which was solved with a weighted mean method by Ojha and Biswal 
(2010) is used. The comparison of solutions between two methods shows that 
similar results are obtained. In this manner, the proposed approach can be 
used as an alternative of weighted mean method. 
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1. Introduction 

Geometric Programming Problem (GPP) is a special type of nonlinear pro-
gramming that often used in the applications for production planning, personal 
allocation, distribution, risk managements, chemical process designs and other 
engineer design situations. GPP is a special technique that is developed in order 
to find the optimum values of posynomial and signomial functions. In the clas-
sical optimization technique, a system of nonlinear equations is generally faced 
after taking partial derivatives for each variable and equalizing them to zero. 
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Since the objective function and the constraints in the GPPs will be in posy-
nomial or signomial structures, the solution of the system of nonlinear equations 
obtained by the classic optimization technique will be very difficult. The solution 
to the GPP follows the opposite method with respect to the classical optimiza-
tion technique and it depends on the technique of first finding the weight values 
and calculating the optimum value for the objective function, then finding the 
values of the decision variables. 

GPP has been known and used in various fields since 1960. GPP started to be 
modeling as part of nonlinear optimization by Zener [1] in 1961 and Duffin, Pe-
terson and Zener [2] in 1967 and particular algorithms were used when trying to 
solve GPP. After that many important studies were done in various fields: com-
munication systems [3], engineering design [4] [5] [6], resource allocation [7], 
circuit design [8], project management [9] and inventory management [10]. 

When there are multiple objectives in the GPP, the problem is defined as the 
Multi-Objective Geometric Programming Problem (MOGPP). In general, there 
are two types (namely fuzzy GPP and weighted mean method) of solving ap-
proaches are exist in the literature. The studies deal with fuzzy GPP method can 
be given as Nasseri and Alizadeh [11], Islam [12], Liu [5], Biswal [13], Verma 
[14] and Yousef [23]. Besides, to solve the multi-objective optimization problem, 
another and the simplest way is using the weighted mean method. The weighted 
mean method is also used and applied for the solution of the MOGPP by Ojha 
and Biswall [15]. 

Numerical approximations are widely used to solve the Multi-objective pro-
gramming problems. One of the numerical approximations is the Taylor series 
expansion which is also given as a solution method in this study. Toksarı [16] 
and Güzel and Sivri [17] have used Taylor series to solve the multi-objective li-
near fractional programming problem and have given examples. 

In this study, a numerical approach to solve the multi-objective posynomial 
geometric programming problems is proposed. This numerical approach mini-
mizes the weighted objective function subject to Kuhn-Tucker Conditions ex-
panded the first order Taylor series expansion about any arbitrary initial feasible 
solution. The same process is continued iteratively until the desired accuracy is 
achieved. The solution obtained at the end of the iterative processing gives the 
pareto optimal solution to solve the multi-objective posynomial geometric pro-
gramming problem. When the results obtained are compared to the results of 
the weighted mean method [15] used to solve the multi-objective posynomial 
geometric programming problems, the same results are found.  

In the next section of this study, MOGPP, weighted method for MOGPP and 
dual form of MOGPP are respectively mathematically explained. In the third 
section, the model that we suggest depending on the Kuhn-Tucker Conditions 
and first order Taylor Series expansion will be clarified. Then, the results ob-
tained by weighted mean method and the results obtained by the approach that 
we suggest will be compared for a numeric example. In the last section, conclu-
sion and comments will be included. 
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2. Multi-Objective Geometric Programming Problem 
2.1. Standard Geometric Programming Problem  

Let 1 2, , , nx x x  show n  real positive variables and ( )1 2, , , nX x x x=   a vec-
tor with components ix . A real valued function f  of x , with the form, 

( ) 1 2
1 2

naa a
nf x Cx x x= 

                      (1) 

where 0C >  and ia R∈ . The function is named a monomial function. A sum 
of one or more monomial functions is named a posynomial function. The term 
“posynomial” is meant to suggest a combination of “positive” and “polynomial”. 
A posynomial function of the term, 

( ) 1 2
1 2

1

k k nk
K

a a a
k n

k
f x C x x x

=

= ∑                     (2) 

where 0kC >  and ika R∈ . 
GPP is a problem with generalized posynomial objective and inequality con-

straints, and monomial equality constraints. Standard form of a GPP can be 
written as 

( )

( )
( )

min

subject to
1,     1, ,

1,     1, ,

ox

i

j

f x

f x i m

h x j p






≤ = 
= = 





                    (3) 

where 0 1, , , mf f f  are posynomials and 0 1, , , ph h h
 are monomials. 

GPP in standard form is not a convex optimization problem. GP is a nonli-
near, nonconvex optimization problem that can be logarithmic transformed into 
a nonlinear, convex problem. 

Assuming for simplicity that the generalized posynomials involved are ordi-
nary posynomials, it can express a GPP clearly, in the so-called standard form: 

0
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0
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1,          1

bject to
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i
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K
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c x

c x i m

g x j p

=

=






≤ =



= = 

∑

∑ 



                  (4) 

where 0 1, , , ma a a  and 0 1, , , mc c c  are vectors in nR  and  
0,  1, 2, , ,  0ic i m g> = >  are vectors with positive components.  

Most of these posynomial type GPP’s have zero or positive degrees of difficul-
ty. Parameters of GPP, except for exponents, are all positive and called posy-
nomial problems. GPP’s with some negative parameters are also called signomial 
problems.  

The degree of difficulty is defined as the number of terms minus the number 
of variables minus one, and is equal to the dimension of the dual problem. If the 
degree of difficulty is zero, the problem can be solved analytically. If the degree 
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of difficulty is positive, then the dual feasible region must be searched to max-
imize the dual objective, and if the degree of difficulty is negative, the dual con-
straints may be inconsistent [15]. 

GPP in standard form is not a convex optimization problem. GPP is a nonli-
near, nonconvex optimization problem that can be logarithmic transformed into 
a nonlinear, convex problem. 

2.2. Multi-Objective Geometric Programming Problem 

General form of multi objective GPP, where p is the number of objective func-
tions which are minimized and n is the number of positive decision variables, is 
defined as: 

( )

( )

0

0 0
11

11

min ,   1, 2, ,

subject to

1,          1, 2, ,

0,                                         1, 2, ,

k
kotj

i
itj

T n a
k k t j

jt

T n d
i it j

jt

j

g x C x k p

g x C x i m

x j n

==

==


= ∏ = 




= ∏ ≤ =
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∑

∑







             (5) 

where itjd  and 0k tja  are real numbers for all i, k, t, j and 0k tC  for all k and t 
are positive real numbers, , nx X x R∈ ∈  and 0 : ,  1, 2, ,n

kg R R k p→ =  . The 
number of terms in the thk  objective function is 0kT , and the number of terms 
in the tki  constraint is iT . X  is the set of constraints, considered as non- 
empty compact feasible region. When all of the C constants are positive, the 
function is called a posynomial. When at least one of them is negative, it is called 
a signomial [18] [25]. The model in this study consists only of posynomials. The 
degree of difficulty is found by subtracting the number of variables in the primal 
problem plus one from the number of terms in the primal problem. If the degree 
of difficulty is zero, only one solution will be achieved since the number of equa-
tions given under the normality and orthagonality conditions will be equal to the 
number of unknown terms. When the degree of difficulty is below zero, the dual 
constraints may be inconsistent. And when the degree of difficulty is above zero, 
in order to maximize the dual objective, the dual feasible region must be searched 
[18] [25]. 

Definition 1 x X∗ ∈  is a pare to optimal solution of MOGPP (5) if there 
does not exist another feasible solution x X∈  such that  

( ) ( )0 0 , 1, 2, ,k kg x g x k p∗≤ =   and ( ) ( )0 0j jg x g x∗<  at least one j . 
Definition 2 x X∗ ∈  is a weakly pare to optimal solution of MOGPP (5) if 

there does not exist another feasible solution x X∈  such that  
( ) ( )0 0 , 1, 2, ,k kg x g x k p∗< =  .  

3. The Weighting Method to the Multi-Objective  
Geometric Programming Problem 

General form of multi objective optimization problem can be mathematically 
stated as: 
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( ) ( ) ( ){ }1 2Minimize , , , 2

subject to
,

pf x f x f x p

x X

≥


∈ 



             (6) 

where nx R∈  and : ,  1, 2, ,n
if R R i p→ = 

. X  is the set of constraints, 
considered as non-empty compact feasible region.  

A multi-objective problem is often solved by combining its multiple objectives 
into one single-objective scalar function. This approach is in general known as 
the weighted-sum or scalarization method. In more detail, the weighted-sum 
method minimizes a positively weighted convex sum of the objectives, that is, 

( )
1
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                     (7) 

that represents a new optimization problem with a single objective function. We 
denote the above minimization problem with ( )XP w . 

The following result by Geoffrion [19] states a necessary and sufficient condi-
tion in the case of convexity as follows: If the solution set x X∈  is convex and 
the p  objectives ( )if x  are convex on X , x∗  is a strict Pareto optimum if 
and only if it exists nw R∈ , such that x∗  is an optimal solution of problem 

( )XP w . If the convexity hypothesis does not hold, then only the necessary con-
dition remains valid, i.e., the optimal solutions of ( )XP w  are strict Pareto op-
timal [20]. 

In order to the above MOGPP defined in problem (5) consider the following 
procedure of the weighting method, a new minimization type objective function 
( )Z µ  may be defined as: 

( ) ( )
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 (8) 

4. The Kuhn-Tucker Theorem 

The basic mathematical programming problem is that of choosing values of va-
riables so as to minimize a function of those variables subject to m  inequality 
constraints: 
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( )

( )

0

0,              1, 2, ,

min
subject to

0,      1,2, ,
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x j m

g x

g x i m
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
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> = 

≤ =
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

                  (9) 

This problem is a generalization of the classical optimization problem, since 
equality constraints are a special case of inequality constraints. By m  additional 
variables, called slack variables, ( )1, 2, ,iy i m=  , the mathematical program-
ming problem (9) can be rewritten as a classical optimization problem: 

( )

( )

0

2

0,                       1, 2, ,

min
subject to

0,      1,2, ,

j

i i

x j m

g x

g x y i m






> = 

+ = =




              (10) 

The solution to problem (10) is then analogous to the Lagrange theorem for 
classical optimization problems. The Lagrange theory for a classical optimization 
problem can be extended to problem (10) by the following theorem. 

Theorem 4.1 Assume that ( ) ( ), 1, 2, ,kg x k m=   are all differentiable. If the 

function ( )0g x  attains at point 0x  a local minimum subject to the set  

( ){ }0, 1, 2, ,iK x g x i m= ≤ = 
, then there exists a vector of Lagrange multip-

liers 0u such that the following conditions are satisfied: 

( ) ( )
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          (11) 

The conditions (11) are necessary conditions for a local minimum of problem. 
The conditions (11) are called the Kuhn-Tucker conditions. 

For proof of theorem, the Lagrange function can be defined as: 

( ) ( ) ( )( )2
0 0

1
, , 0

m

i i
i

L x y u g x u g x y
=

= + + =∑             (12) 

The necessary conditions for its local minimum are   
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m i i

i
ij j j
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y
∂

= = =
∂
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( ) ( ) ( )20 0, ,
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L x y u
g x y i m

u
∂

= + = =
∂


          (15) 

The conditions (11) are obtained from the conditions (12)-(15) [24].  
When there are inequalities constraints in nonlinear optimization problems, 
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Kuhn-Tucker Conditions can be used which are based on Lagrange multipliers. 
The Kuhn-Tucker Conditions satisfy the necessary and sufficient conditions for 
a local optimum point to be a global optimum point [21] [22]. 

5. Proposed Method to Solve MOGPP 

The multi-objective geometric problem (5) as a single objective function using 
the weighting method can be rewritten as follows: 

( )

( )
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The above problem (16) may be slightly modified by introducing new va-
riables iy , whose values is transformed into single objective GPP as: 
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Assume that ( )Z xµ  and ( )2
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( )1, 2, ,i m=   to problem (17) according to theorem 4.1 can be defined as 
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where at the point 0x , the objective function ( )0Z xµ  attaints a local mini-
mum according to theorem (4.1). The optimization problem to minimize the 
objective function ( )0Z xµ  subject to conditions (18) can be rewritten as fol-
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lows: 
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Since the necessary conditions (17) are also the sufficient conditions for a 
minimum problem if the objective function of the geometric programming pro- 
blem (19) is convex. Therefore, optimal solution of the problem (19) gives the 
solution of the problem (16). 

The above problem (19) is nonlinear problem since both the objective func-
tion and the constraints are nonlinear. We will use the Taylor theorem for the 
linearization to the problem (19). Let be both the objective function and the 
constraints have differentiable. Then they are expanded using the Taylor theo-
rem about any arbitrary initial feasible solution 0 nx R∈  and any arbitrary ini-
tial feasible values 0 mu R∈  to problem (19). Thus, the problem (19) as the li-
near approximation problem can be rewritten as follows: 

( ) ( )( )( )

( ) ( )

( ) ( )
( )

1 1

0 00

0
0

0

1

0
0

1 1 00

1

0

1

subject to

                 ,0, 1, 2,

min

1

1

i
itj

i
itj

i

m

i
ij j

m

i
ij j

T n d

it j
t j

T n d

it j
t

T

i

j

t

x x

x
x

Z Z x x

C
Z

C
Z

x x

u
x x

x
x

C

u j n
x x

u

µ µ

µ

µ

=

=

= =

= =

=

+∇

  
∂  ∂  + ∂ ∂ 

 
 

  
∂  ∂  +∇ + = = ∂ ∂ 

 


−

−
−



−

∑ ∏

∑

∑

∑
∏

∑



( ) ( ) ( )

( ) ( ) ( )

000

1 1 1

00

1 1 1

0

0

1

1 1 0,    1, 2, ,

,             1, 2, ,0

0,                

1 1

 

i
itj itj

i i
itj itj

Tn nd d

it itj j
j t j

T Tn nd

i

i

d

it itj j
t j t j

u i mx x

i m

u

C x x

C C x xx x

= = =

= = = =

 
− ∇ − −  

 
  

− +∇ − − ≤ 

   
+ = =   

   

 
= 

 
≥

    

∏ ∑ ∏

∑ ∏ ∑ ∏





                                                                                   1, 2, ,i m

























=









 (20) 

The linear approximation problem is solved, giving an optimal solution 1x  
and 1u , a new linear programming problem is derived from the solution 1x  
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and 1u . Linear approximation problem is solved, giving an optimal solution 2x  
and 2u . The following steps are involved from the initial step till reaching the 
desired optimal solution or until 1i ix x+ −  is as close to zero as possible itera-
tively. The optimal solution 1ix +  is taken as the pare to optimal solution for 
MOGPP since solution 1ix +  is better than ix . 

The steps for the proposed solution algorithm are given below:  
Step 1: Formulate the given MOGPP is as a single objective GP using the 

weighting method. 
Step 2: Construct the constraints for the new problem from Kuhn-Tucker 

conditions.  
Step 3: Set the nonlinear model taking the single objective function in step 1 

and the constraints in step 2 to MOGPP. 
Step 4: t  value denotes the iteration or step number of the proposed itera-

tive approach and tx  and tu  denote the vector parameter assigned to the vec-
tor of objective function and constraints in step 1. Take the initial solution 0t = , 

0x  and 0u , arbitrarily.  
Step 5: Expanded both the objective function and constraints of the problem 

obtained in step 3 using first order Taylor polynomial series about tx  and tu   
in the feasible region of problem. Reduced the problem obtained in step 3 to a 
linear programming problem. 

Step 6: Solve the problem in step 5. Calculate to the approximate solution 
1tx +  and 1tu +   
Step 7: For eps > 0 and eps as close to 0 as possible, if 1t tx x eps+ − <  is tak-

en as the pareto optimal solution to MOGPP and the values for the objective 
functions are calculated. Else, take 1 11,  ;  t t t tt t x x u u+ += + = = , go back to step 5. 

Numerical example  
To illustrate the proposed model we consider the following problem which is 

also used in [15]. 
Find 1 2 3 4, , ,x x x x  

( )10 1 2 3 4min 4 10 4 2g x x x x x= + + +  

( )20 1 2 3max g x x x x=  

subject to 
2 2
1 2
2 2
4 4

1x x
x x

+ ≤  

1 2 3

100 1
x x x

≤  

1 2 3 4, , , 0x x x x >  

The primal problem above can be written as below: 

( )10 1 2 3 4min 4 10 4 2g x x x x x= + + +  

( ) 1 1 1
20 1 2 3min g x x x x− − −′ =  

subject to 
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2 2 2 2
1 4 2 4 1x x x x− −+ ≤  

1 1 1
1 2 3100 1x x x− − − ≤  

1 2 3 4, , , 0x x x x >  

Using the weights 1w  and 2w , the primal problem is written as below: 

( ) ( ) ( )1 1 1
1 1 2 3 4 2 1 2 34 10 4 2Z x w x x x x w x x x− − −= + + + +  

subject to 
2 2 2 2
1 4 2 4 1x x x x− −+ ≤  

1 1 1
1 2 3100 1x x x− − − ≤  

1 2 3 4, , , 0x x x x >  

where 1 2 1 21, , 0w w w w+ = >  
In this problem, the primal term number is 8, primal variable number is 4 and 

thus the degree of difficulty is 3. 
The dual problem corresponding to the last primal problem is given below: 

( )

( )( )

01 02 03 04 05 11

12
11 12 21

1 1 1 1 2

01 02 03 04 05 11

11 12
12

4 10

   

4 2 1max

1 1         0          0 

w w w w w w

w

w
w w w

w w w w wV w
w w w w w w

w w
w

+

           
=            

          

 
+ 

 

 

subject to 

01 02 03 04 05 1w w w w w+ + + + =  

01 05 11 212 0w w w w− + − =  

02 05 12 212 0w w w w− − − =  

03 05 21 0w w w− − =  

04 11 122 2 0w w w− − =  

1 2 1w w+ =  

01 02 03 04 05 11 12 21, , , , , , , 0w w w w w w w w ≥  

1 2, 0w w >  

10 87.98776g =  and 20 0.01g =  

Problem 1 will now be solved using the proposed model. The value interval 
for 1w  and 2w  will be between 0.1 and 0.9. For the weights 1 0.5w = ,  

2 0.5w =  the given geometric problem from the Problem 1 is written as 

( ) 1 2 3 4
1 2 3

1min 2 5 2
2wZ x x x x x

x x x
= + + + + , 

subject to 
2 2 2 2 2
1 4 2 4 11 0x x x x y− −− − − =  

1 1 1 2
1 2 3 21 100 0x x x y− − −− − =  

1 2 3 4, , , 0x x x x >  

1 2 1 21, , 0w w w w+ = > . 
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Then, the above problem according to the Kuhn-Tucker Conditions can be 
formulated as in Model 1 as follows: 

( )

( ) ( )
1 2 3 4 1 2 1 2 3 4

1 2 3

2 2 2 2 2 1 1 1 2
1 1 4 2 4 1 2 1 2 3 2

1, , , , , 2 5 2
2

1 1 100

wh x x x x x x x x
x x x

x x x x y x x x y

γ γ

γ γ− − − − −

= + + + +

− − − − − − −
         (21) 

From Equation (21) the problem is written as follows: 

( ) 1 2 3 4
1 2 3

1min 2 5 2
2wZ x x x x x

x x x
= + + + +  

subject to 

1 1 2
2 2 2
1 2 3 4 1 2 3

2 1000.9 0.4 0,x
x x x x x x x

γ γ
− + − + =  

1 1 2
2 2 2

1 2 3 4 1 2 3

2 1000.9 0.1 0,x
x x x x x x x

γ γ
− + − + =  

2
2 2

1 2 3 1 2 3

1000.9 0.4 0,
x x x x x x

γ
− − + =  

2 2
1 2

1 3 3
4 4

2 2 0.2 0,x x
x x

γ
 

− + + = 
 

 

2 2
1 2

1 2 2
4 4

1 0,x x
x x

γ
 
− − + ≥ 
 

 

2
1 2 3

100 1 0
x x x

γ
 
− + ≥ 
 

, 

1 2 3 4 1 2, , , , , 0.x x x x γ γ >  

To linearize the nonlinear objective function with the nonlinear constraints in 
the above problem, we use the first order Taylor polynomial series at any initial 
feasible point  

( ) ( )1 2 3 4 1 20 5, 3, 7, 6, 2, 10X x x x x γ γ= = = = = = =   

as follows: 

( ) 1 2 3 4min 1.999047619 4.998413 1.99932 0.01905wZ x x x x x≈ + + + + , 

subject to 

1 2 3 4 1 20.8734 0.63524 0.272245 0.1852 0.277778 0.1905 5.0683 0,x x x x γ γ+ + − + − − =  

1 2 3 4 1

2

0.63524 2.2286 0.45374 0.11111 0.166667
0.11376 7.37302 0,

x x x x γ
γ
+ + − +

− − =
 

1 2 3 20.272245 0.453742 0.3889 0.1361 3.4456 0x x x γ+ + − − = , 

1 2 4 10.1852 0.11111 0.3148 0.3148 0.37037 0x x x γ− − + − + = , 

1 2 4 1
5 1 17 1 0,
9 3 27 18

x x x γ− − + + ≥  

1 2 3 2
40 200 200 1 200 0,
21 63 147 21 7

x x x γ+ + + − ≥  
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1 2 3 4 1 2, , , , , 0.x x x x γ γ >  

The solution of the above problem is  
( ) (

)
1 2 3

4 1 2

1 5.14076376, 2.4703573, 7.523979,

              5.5904741, 2.8711, 14.7081

X x x x

x γ γ

= = = =

= = =
, 

( )( )min 1 43.27685778wZ X =  and 10 86.5435g =  and 20 0.0104656g = . 

When the same procedure is applied to point ( )1X , the solution ( )2X  is 
obtained. If the same iteration continues for the weights 1 0.5w = , 2 0.5w = , 
the calculated solution points ( ) ( ) ( ) ( ) ( )2 , 3 , 4 , 5 , 6X X X X X  and the corres-
ponding objective function values 10g  and 20g  are given in Table 1. As seen 
in Table 1, the absolute value of the difference between the points X(5) and X(5) 
is reduced enough to a smaller value, and the iteration is terminated. One of the 
points ( )5X  or ( )6X  can be assumed the par to optimal solution point of the 
given MOGPP for the weights 1 0.5w = , 2 0.5w = . 

By considering different values of 1w  and 2w , the corresponding solutions 
of the problem applying the taylor approach in each iteration are given in Table 2. 

6. Result and Conclusion 

In this study, we proposed an alternative approach to the approximate pare to 
solution of MOGPP based on the weighting method. In this model, MOGPP has 
been reduced to a sequential linear programming problem and the Pareto op-
timal solution of MOGPP has been calculated approximately in an easier and 
more speedy way. Besides in GP problems and MOGPP the solution becomes 
more difficult when the degree of difficulty is a positive number whereas such a 
difficulty does not exist in the developed model. The solution for the problem 
given in the example by the weighted mean method is shown in Table 3 and the  
 
Table 1. The corresponding iteration solution for 1 0.5w =  and 2 0.5w = , using the 
Taylor series approach. 

Variables 

s  1x  2x  3x  4x  1γ  2γ  10g  20g  

0 5 3 7 6 2 10 88 0.009524 

1 5.140764 2.470357 7.523979 5.590474 2.871 14.708 86.543491 0.010466 

2 5.091219 2.661165 7.349591 5.737520 2.8738 14.686 87.849933 0.010043 

3 5.084131 2.682310 7.332497 5.748260 2.874 14.65986 87.986130 0.010001 

4 5.084056 2.682555 7.332314 5.748367 2.874 14.65962 87.987763 0.010000 

5 5.084056 2.682555 7.332314 5.748367 2.874 14.65962 87.987464 0.010000 

6 5.084056 2.682555 7.332314 5.748367 2.874 14.65962 87.987764 0.010000 
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Table 2. The solution from the numerical approach method. 

Variables 

1w  2w  1x  2x  3x  4x  10g  20g  s  

0.1 0.9 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.2 0.8 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.3 0.7 5.084056 2.682555 7.332314 5.748367 87.987762 0.01000 5 

0.4 0.6 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.5 0.5 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 6 

0.6 0.4 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 4 

0.7 0.3 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.8 0.2 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.9 0.1 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

 
Table 3. Primal solutions [15]. 

Variables 

1w  2w  1x  2x  3x  4x  Z  

0.1 0.9 5.084055 2.682555 7.332315 5.748367 8.08776 

0.2 0.8 5.084055 2.682555 7.332315 5.748367 8.08776 

0.3 0.7 5.084055 2.682555 7.332315 5.748367 8.08776 

0.4 0.6 5.084055 2.682555 7.332315 5.748367 8.08776 

0.5 0.5 5.084055 2.682555 7.332315 5.748367 8.08776 

 
solution by the model that we developed is shown in Table 2 and the results are 
almost the same. For this reason, proposed method can be used as an alternative 
of weighted mean method. 
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