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Abstract 
The conservation laws of continuum mechanics and of the kinetic theory with 
the influence of the angular momentum and associated with its rotation of the 
elementary volume are considered, the variant of accounting lag is investi-
gated for discrete environment. The analysis of the recording of the Lagran-
gian function for the collective interaction of the particles with the change of 
the center of inertia of the moving particles and the effect influence of the an-
gular momentum were used. The equations for gas are calculated from the 
modified Boltzmann equation and the phenomenological theory. For a rigid 
body the equations were used of the phenomenological theory, but their in-
terpretation was changed. The nonsymmetric stress tensor was obtained. The 
Boltzmann equation is written with an additional summand. This situation is 
typical for discrete environment as the transition from discrete to continuous 
environment is a key to the issue of mechanics. Summary records of all effects 
lead to a cumbersome system of equations and therefore require the selection 
of main effects in a particular situation. The Hilbert paradox was being solved. 
The simplest problem of the boundary layer continuum (the Falkner-Skan task) 
and the kinetic theory are discussed. A draw attention at the delay process 
would be suggested for the description of discrete environment. Results are 
received for some special cases. 
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1. Introduction 

Our aim is to show that the proposed system of equations can be derived from 
the first principles, and in this case, at least part of the known properties, which 
are presented in the textbooks and observed in experiments for turbulent flows, 
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can be explained without additional assumptions about the form of the turbulent 
viscosity, and that one can restrict the molecular viscosity. The basis of the con-
tinuum mechanics was built on the laws of conservation of mass, momentum 
and energy. The fundamental laws of conservation, in addition, are the law of 
conservation of angular momentum. The conservation laws are obtained by 
writing the balance equations for the volume element, located in the infinite 
space. For every conservation law, we have its own chosen elementary volume. 
However, the law of conservation of angular momentum requires a particular 
frame of reference, a particular radius vector from the origin to the elementary 
volume. In the classical approach the law of conservation of angular momentum 
is not followed. In the mechanics, consideration is made equally of the Lagran-
gian function for no interacting and collectively interacting particles that are in 
doubt, especially for the metal and for the ionic bonds. In the classical conti-
nuum, mechanics had an opinion on the relatively small contribution of surface 
forces or as their action has a volume character. However, for long bodies and 
large gradients of parameters, contribution is significant and can be a cause of 
instability, leading to changes in the flow. Angular momentum gives emergence 
of additional forces that can play the role of small perturbations affecting the 
stability of the structure or destruction of the body. The resulting effects may af-
fect in a critical and a near critical modes of aircraft, rockets, various devices, 
structures, as well as in some of the natural processes. The value of the addition-
al force is determined by the gradient of physical quantities (density, velocity, 
momentum). The action of angular momentum, i.e. torque depends substantial-
ly on the axis of inertia (center of mass). A volume element can be important 
due to both its rotation about its center of inertia and involvement of angular 
momentum, i.e. torque depends substantially on the axis of inertia (center of 
mass). The proposed new accounting delay interpretation consists in to consid-
eration the difference between the time derivative as a limit of infinity small and 
end values of the mean free path in a rarefied gas. The role of individual time 
delay for each particle velocity and average time are debated. The Boltzmann 
equation is written with an additional summand. This situation is typical for the 
discrete environment. The transition from discrete to continuous environment 
is a key in mechanics. Summary of all effects leads to a cumbersome system of 
equations and therefore requires the selection real situation. There were pre-
viously obtained modified energy equation of motion, continuity and momen-
tum for particles without structure, taking into account effects of the change of 
the angular momentum in the elementary volume. They were resulting from 
modified Boltzmann equation, which was obtained from the modified Liouville 
equation. It was built with modified the Lagrangian function. The classical phe-
nomenological theory was used for a solid body but interpretation was varied in 
this case [1] [2] [3]. Classical ideas are obtained from consideration the volume 
as exclusive. Now for consideration of the angular momentum the theory of 
brothers E., Cosserat, F. Cosserat and their modifications are used. Their theory 
contains additional constant with dimension of length that determined from ex-
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periments [4]. Even classic computation of solution presents considerable diffi-
culties [5]. In [1] [2] [3] influence of the angular momentum on the equations of 
continuum mechanics was obtained. The proposed theoretical method of con-
sideration for the angular momentum without new empirical constants was 
suggested. Method is based on the fact that we not have new dimensions to the 
angular momentum with respect to position and momentum entering into the 
equation in the classic version. Using conditions of equilibrium of forces leads to 
a symmetric stress tensor and a violation of “continuity” of the environment that 
a rigorous analysis requires additional conditions. Another approach proposed 
in [6]. It should be noted that in general case, ergodicity is not observed, that is 
very important. Analysis of the non-observance was made by T. G. Elizarova [7]. 
In conservation laws for space coordinates averaging is fulfilled but about times 
is not. We have laws that are not symmetric relatively time and space. It is cor-
rect when integral method for construction of continuum mechanics function is 
used for formulation of conservation laws. It is interesting that constructing eq-
uations through delta-function gives us the formulation of conservation laws 
too. Probably, more correct representation for the kinetic theory would be for-
mulation of integral equations that should have average time among molecules 
collisions. As we spoke higher conditions of forces equilibrium for the construc-
tion of continuum mechanics are used. In general mechanics we used the laws of 
force and angular momentum equilibrium. The laws provide a balance of power 
conservation of mass, momentum and energy. The fundamental conservation 
law in addition is the law of conservation of angular momentum. It should be 
noted that for the kinetic theory (the Boltzmann equation) the law of conserva-
tion of angular momentum does not hold. Macroscopic parameters are deter-
mined in the equilibrium function of the Chapman-Enskog distribution function 
in which used the Euler equations parameters and tensor P  is symmetric. Be-
sides for the Chapman-Enskog distribution function formally we have values 
(density, linear moment and energy) with the first-order error. This fact was 
noted by Hilbert without further use and correction [8] [9] [10] [11]. This is the 
Hilbert paradox. 

( ) ( )0d d ,f fϕ ϕ β= =∫ ∫ξ ξ ξ ξ                   (1) 

Here β -macroscopic parameter, ( )ϕ ξ -function. 

( ) ( ) ( )1, , , d ,  , , d ,n t f t f t
n

= =∫ ∫x x ξ ξ u ξ x ξ ξ             (2) 

( ) ( )2, , d , , , d .
2ij i j i i
mP m c c f t q c c f t= =∫ ∫x ξ ξ x ξ ξ           (3) 

So for the equilibrium in collision integral we have 

( ) ( ) ( )20 2 2 2 2 2
1 2 3, , , , ,

2
mf t f t n c c c c c
kT

 ≡ = − = + − =
 

+x ξ x ξ ξ u     (4) 

and for non-equilibrium distribution function 
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2
0 1 1

2 5
ij i

i j i

p m q m mcf f c c c
pkT pkT kT

  
= + − −  

   
             (5) 

we have the same macroparameters in 0f . 
There f  is distribution function, , , ,ijn P Tu  are macroparameters, , ,t x ξ  

coordinates. 
The Navier-Stokes equations of the boundary layer are non-linearity and dis-

sipation interact with each other summand. Non-linearity causes distortion of 
the original signal. The dissipation reduces the amplitude of the signal. However, 
we know that in addition to the above factors for a number of tasks are impor-
tant dispersion effects, i.e. splitting the signal into individual harmonics. Classic-
al equation, which is characterized by the presence and interaction of non- 
linearity, dissipation and dispersion, is the Korteweg-de Vries-Burgers equation. 
Waveform is changing. If in the equations of motion of the system of Navi-
er-Stokes equations we introduce an additional summand with the third deriva-
tive, then it will turn into the Korteweg-de Vries-Burgers equation. Usually we 
suggested that non-linearity and dissipation for large gradients of laminar flows 
can change flows to turbulent flows. In the Reynolds model actually stand fast 
and slow variables. In the resulting averaged equations establish the connection 
between pressure and the Reynolds-averaged flow parameters, but have not the 
answer to the question of the form of the closing ratio. The process of building 
relationships based or on empirical evidence or written out of the equation for 
higher order moments, such as turbulent (fluctuating) kinetic energy. In these 
equations include new unknowns, and the process is repeated for the specified 
circuit scenario. For the inertial flow in the equilibrium case, a well-known law 
of N.A. Kolmogorov’s theory of the dimension is performed. At the heart of all 
theories are the Navier-Stokes equations. Even if involved the Boltzmann equa-
tion in order to obtain from it the equations of turbulent flow, the output me-
thod is focused on validation of the model Reynolds, built on the basis of the 
Navier-Stokes equations. It is hardly possible to derive the equation of continui-
ty for the tube of flow for turbulent flow. The main directions of current re-
search include [12] [13] [14] [15] [16]: 
1) The increasing complexity of the structure of the dynamic viscosity coeffi-

cient 
2) The increasing complexity of the equations (the introduction of the sum-

mand with the third derivative, a third-order tensor, etc.) 
3) The wording of the new system of equations for the functions of the new 

system 
4) Introduction in the equation of the motion of random or accidental forces 

viscosity 
5) Solution of the full three-dimensional unsteady Navier-Stokes equations on 

detailed grids with high-order schemes 
6) Isolation of large eddies with the addition of the flow pattern inside the grid 

cell by further study the model selected inside the cell 
Before proceeding to the solution of specific problems, we present a quote 
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from the Loitsyanskii book [12]: “The current lines of pulsating movement of cross 
streamlines of the mean flow, penetrate from one layer to another, and create the 
stirring—it is called a molar or turbulent mixing—accompanied by the transport 
through the boundary between the layers of momentum, energy, heat, and other 
mechanical or thermodynamic parameters of the mean flow liquid. Given for the 
turbulent velocity profile are averaged. As the theory of stability in the areas of 
origin of the turbulence observed first regular vibrational structure.” Log infinite 
plate profiles and tubes, generally obtained final product length, though very 
elongated. The theoretical profile is defined by introducing the  

Reynolds stress tensor 
2

2

d d 0.
dd yy
τ

= =
u  

The velocity distribution in a laminar flows are wτ
µ

=u , d const ,
d wy

µ τ= =
u  

y—distance in the vertical direction to the surface, µ —viscosity, u —velocity, 

wτ  friction. For the turbulent motion of turbulent shear the friction u vτ ρ ′ ′= −  

at the wall is zero. Reynolds equation 
2

2

d d
ddy
τ

=
u

x
 If the shear stress given by the 

formula Prandtl 
2

2 d , , const
d wl l ky kτ ρ τ = = = = 

 

u
x

 

1 ln , const
w

y C C
k τ

ρ

= + =u  

Thus, after obtaining the velocity profile by classic theory certain assumptions 
are used and did not solve of the Navier-Stokes equations and the boundary 
layer, but new equations by Prandtl. The initial equations are not satisfied on the 
external boundary or surface under no circumstances; no transition asymptotic 
solutions of problem for the semi-infinite plate to the solving the problem for 
infinite plate.  

Historical (classical) formulation of conservation laws were based on a closed 
elementary volumes for exchange of the tangential component of the physical 
variables that led to the formulation of the conditions for the equilibrium of 
forces. Being open system, the elementary volume exchanged components phys-
ical quantities in all directions. Very importance is the role of the inertia сentre 
[3]. In this paper we numerically investigate the influence of small perturbations 
of vertical velocity on the longitudinal velocity in the modified Falkner-Skan 
problem to reflect changes the influence of the angular momentum in the ele-
mentary volume. This modified task is difficult for the numerical solution, be-
cause the system of equations contain derivatives of the third order, being at the 
same time singular with small parameter near derivatives, as Navie-Stokes equa-
tions. We can find decision of the Korteweg-de Vries equation in many papers 
[17] [18]. The difficulties are associated with nonmonotonic solution of the equ-
ation. The second problem—is the interaction of two different parallel streams. 
The peculiarity of this task is singularity on two borders and the need to ensure 
continuity of the derivatives on the border interaction of flows. To study the de-
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lay in the kinetic theory is necessary due to the finiteness of the interaction time 
between the molecules and the definition of a derivative. 

2. Elements of General Modified Theory 

As follows from the previous work, taking into account the laws of conservation 
of angular momentum we have follows equations [1] [2] [3]  

0,i i
i

i i it
ρ ρρ  ∂ ∂∂ ∂

+ + = ∂ ∂ ∂ ∂ 

u u
x

x x x
                  (6) 

0.iji i
i j ij i

i i

X
t m

ρ
ρ ρ

∂ ∂ ∂
+ + − = ∂ ∂ ∂

+
 

Pu
u u P x

x x
            (7) 

2 2

2

3 1 3 1
2 2 2 2

3 1 0
2 2

j k kj j k kj j
j

i j k kj j
i j

RT RT q q
t

RT q

ρ ρ

ρ

∂ ∂       + + + + + + +      ∂ ∂    

∂ ∂   + + + + =  ∂ ∂   

u u u u P u P
x

x u u u P
x x

  (8) 

Here t —time, ix —coordinates, iu —speed, µ —viscosity, ρ —density, 
T —temperature, q —thermal-flow, ijP —tensor of viscous pressure, X — 
force. The system is complemented by the law of conservation law the angular 
momentum equation 

j
x y z j IM

y z
∂∂ ∂ ∂

× × × =
∂ ∂ ∂ ∂

+ + +
Pr r rp p p x

x x
             (9) 

This equations were obtained from modified the Boltzmann equation [3].  

d .
d i i i

i i i i

f f f f F fс с r I
t y r m

∂ ∂ ∂ ∂ ∂
= + + − =
∂ ∂ ∂

⋅
∂ ∂
⋅

x x x
            (10) 

Here I —collision integral, F —force, f  is the one-particle distribution 
function, x —coordinate of the point and according to definition of f  in 
element of physical volume dx  near the point x  in moment t , probable 
number of molecules with velocity in element dc  near the c  is ( ), , df t c cx , 
t  is the time, ρ  is the density, ix  are the Cartesian coordinates of a particle, 

iX  are the projections of a volume force, jq  is the heat flow, R  is the gas 
constant and T  is a temperature. Another problem for the solving of the 
Boltzmann equation is the asymptotical methods. It is essential that selecting 
the local equilibrium distribution function 0f  as the basis in solution of the 
Boltzmann equation by the Chapman-Enskog method exploits macroscopic pa-
rameters in 0f  from the Euler equations [11]. Macroscopic parameters are de-
termined by the Chapman-Enskog distribution function but used parameters 
from the Euler equations and tensor P  is symmetrical. Formally in that way 
we have values (density, linear moment, energy) with mistake of the first order. 
As we mention this is the Hilbert paradox  

( ) ( )0d df fϕ ϕ β= =∫ ∫ξ ξ ξ ξ                   (11) 

Here β -macroscopic parameter, ( )ϕ ξ -function. 
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( ) ( ) ( ) ( )1, , , d , , , , d ,n t f t t f t
n

= ∫ ∫x x ξ ξ u x ξ x ξ ξ           (12) 

( ) ( )2, , , , , d
2ij j i i i
mm c c f t q c c f t= =∫ ∫P x ξ x ξ ξ           (13) 

So for the equilibrium in collision integral  

( ) ( )0 2, , , , ,
2
mf t f t n c
kT

 ≡ = − 
 

x ξ x ξ               (14) 

and for nonequilibrium distribution function 
2

0 1 1
2 5

ij i
i j i

m q m mcf f c c c
pkT kT kT

  
= + − −  

   

p
p

             (15) 

we have the same macroparameters in 0f . The nonequilibrium distribution 
function is such that integral of it contains only the integral of equilibrium func-
tion 0f  and gives containing in 0f  macroscopic parameters. The remaining 
summand gives null. We suggest to do another iteration for macroparameters 
selecting them from the Navier-Stokes equations. Elementary volume can be ro-
tated around the axis of inertia or to be involved in the rotational movement. In 
both cases the density of the flow across the border changes by  
( ) ( )

d
d

r r
r
ρ

′⋅ − +
u

  (Figure 1) by rotation of the elementary volume. The con-

tribution of other components is small, taking into account the smallness of the 
volume and the absence of rotation on axis.  

3. Falkner-Scan Task with Modified Boundary Conditions 

Consider the boundary layer with the forward motion of the cylinder at a speed 
at the outer edge ( m

eU ax= ) with input summand for angular momentum. This 
problem contains as a special case of the decision for the plate with a uniform 
external flow and interesting as an example of accelerated ( 0m > ) or delayed 
( 0m < ) motion in the external flow eU  

eU U
y

νε∞

 ∂ ∂
= + + ∂ ∂ 

u
x

                    (16) 

 

 
Figure 1. Element volume for density. 
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2

2 ,e
e

U
v U y

y y y y y
µ µ

 ∂  ∂ ∂ ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

u u u uu
x u

          (17) 

0,
y
ν∂ ∂

+ =
∂ ∂
u
x  

or 

 0vy
y y y
ν∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂
u
x

                    (18) 

with boundary conditions 

( )1 20,  0,  .m
w

uv x
y

µ τ α −∂
= = =

∂
=u

 
,  0;  ,  0,  ,  const,  cons .,  tm

e e eU y U U ax a m= →∞ > = = = = =u x u x  
The numerical method was built. Managed to count 300 steps, then there was 

an increase the vertical velocity component. That requires another mathematical 
model. Solution of self-similar problem was carried out in [19]. 

At Figure 2 & Figure 3, horizontal line-stretch coordinate  
 

 
Figure 2. 0.05m = − ; 0.2202wτ =  Profile ( )Ф η  along η  coordinate. 

 

 
Figure 3. 0.33;m =  0.7575wτ =  Profile ( )Ф η  along η  coordinate. 
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( ) ( ) ( )
1

1 2 2,  ,  .
m

mm ccx Ф yx v cx Vµ
µ

−
−= = =u η η η          (19) 

resulted by constant boundary conditions at the outer edge of the boundary 
layer. 

Figures 2-7 illustrate the effects of the angular momentum on the velocity 
profiles in the boundary layer (Equation (8)). In the presence of the vortex per-
turbations around an axis z, vortex structure is there inside the boundary layer. 
It is known [20] that vortex perturbations located for parallel flows, new struc-
tures are not allowed, but for turbulent flows there are various another struc-
tures within the boundary layer [13]-[23]. On vertical coordinate is u , on hori-
zontal coordinate is y , u  and v . 

Figure 8 produced the stream function for the latter option for 0m = , 
0.5wτ = , 0.005.ε =  

 

 
Figure 4. Profile of the horizontal velocity component along the vertical axis: 0.04m = − , 

0.5;wτ =  1.—15th layer, 2.—30th layer, 3.—60th layer 
 

 
Figure 5. Profile v , 0.04m = − , 0.5wτ = . 
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Figure 6. Profile of the horizontal velocity component along the vertical axis: 0m = , 

0.5wτ = ; 1.—15th layer, 2.—100th layer, 3.—101st layer. 
 

 
Figure 7. Profile v , 0m = , 0.5wτ = . 

 

 
Figure 8. The stream function for the latter option for 0m = , 0.5wτ = , 0.005ε = . 
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4. Free Layers of Mixing 

The simplest example of the transition layer between two homogeneous flows is 
diffusing vortex sheet. The fluid velocity in planes parallel vortex sheet is con-
stant [24]. 

The schema the stream is produced on Figure 9. Install the free mixing layer, 
by definition, varies along the coordinate ,  ,x u  hence the boundary layer equa-
tions are applicable. Homogeneous flow of the same fluid moves in parallel in-
creasing x  coordinate at different speeds 1U  and 2U  (Figure 1). The prob-
lem is self-similar, singular and necessary to apply non-standard method of so-
lution. We divide the area into two parts, the initial value of the friction is given 
on line 0. The problem is resolved in every part for the second derivative of the 
current function. The velocity function is obtained by integrating the function. 
The iterative process is will be done until convergence. 

2

2 ,  0e
e

U vv U y
y y y y yy

µ µ
 ∂  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂   

u u u u uu
x x x  

After a dimensionless functions eU  we have 
2 2

2 2

d d d d d1 2
d d dd d
Ф Ф Ф ФФ V µ µ

 
− + = +  

 
ŋ

ŋŋ
η

ηη η  
d d1 2 0
d d
Ф V

− + =
ŋŋ

η
 

SubstitutingVwe getthe equation 
3 3 2

3 3 2

d d d d2 0
d d d d

µ µ
 Ψ Ψ Ψ

+ + Ψ = 
  ŋ
η

η η η
              (20) 

Here *
1 1 1,  1 2U y Uµ µΨ = Ψ = η .  

Then we have 

2 2 0′′′′ ′′′ ′′Ψ + Ψ +ΨΨ =η  

with boundary conditions  

( ) ( ) ( ) ( ) ( )0 0,  0 1 ,  0 0 ,  a a′ ′′ ′′Ψ = Ψ = − Ψ + = Ψ − Ψ −∞ =       (21) 

Analytical solutions have not been found. The numerical result is on Figure 
10. 

The friction is greater than for classic case. 
 

 
Figure 9. Set the transition layer between two parallel streams, the contacting at 0=x . 
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Figure 10. The calculation results for 0.4a = . 

5. Exact Solution for Kinetic Theory: The Barometric  
Boltzmann Formula 

Gas is at stationary condition in field of force which has potential ϕ  (this is 
analogy tasks from [10]):  

As before solution we shall be look for as ( ) ( ) 2
e Bf A −= x ξx . We receive the 

old result Const.B =  For ( )A x  we have equation 

d d d 2 0.
d d di

i i i

A A A B
m

ϕ⋅ ∂
+ + =

∂
x

x x x x
                (22) 

We have old result that is common for one-dimension tasks: 
23 2

2
0 e e .

2π

m
kT kTmf n

kT

ϕ
− − =  

 

ξ
 

General local-Makswell distribution is 
3 2

2exp ,  .
2π 2

m mf n c c
kT kT

   = − = −  
   

ξ u             (23) 

Modification the Boltzmann equation is 

( ), .i i i i
i i i i

f f fg J f f∂ ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
ξ ξ x

x x x ξ
 

g X m= —acceleration of molecules. 
Let local-Makswell solution of the equation will be considered as in old algo-

rithm  
2

0 4ln i if γ γ γ= + +ξ ξ . 

Then we receive old equation and the changing  

0 0i ig
t
γ

γ
∂

+
∂

= , 

2
0 0 0 0

4 2

12 0
2

i
i i i

i i i ii

g
t
γ γ γ γ γ

γ
∂ ∂ ∂ ∂ ∂∂

+ + + + + =
∂ ∂ ∂ ∂ ∂∂

x x
x x x xx

,        (24) 
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( )

( )

04 1 1 1 1*
2 2 2 2

1 1 0,
2 2

j j ji i i
ij i j

j i j i j i i

j ji i
i j

j j i i j i

t
γ γ γγ γ γ γγ

δ

γ γγ γ

     ∂ ∂ ∂∂ ∂ ∂ ∂∂
+ + + + + + +          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

    ∂ ∂∂ ∂∂ ∂
 + + + + + =       ∂ ∂ ∂ ∂ ∂ ∂    

x x
x x x x x x x

x x
x x x x x x

 

As before 

4 0,  const.
i

Tγ∂
= =

∂x
 

As the result we shall receive modified gas-dynamic equations but without 
viscosity and thermal conductivity 

6. The Role of Angular Momentum and Delay 

In general case three positions are important for understanding the causes of 
modification the theory [1] [2] [3]. Another type of including angular momen-
tum is contained in [6].  
1) It is necessary to take for equilibrium conditions more general condition- 

condition of angular momentum, although equilibrium of force is needed to 
retain but with non-symmetric stress tensor 

2) Replacement of velocity decomposition near point of elementary volume to 
the decomposition near axis of inertia 

3) Delay 
For kinetic theory is need to investigate the question what is measured in ex-

periment: the role of delay: at present moment or for middle results. If in expe-
riment middle results are measured then it is essential to choose time and scale. 

If the time is in coordination then the delay is no need to take into considera-
tion besides the cases for relaxation time where we need to coordinate the delay. 
Then the Boltzmann equation is 

d
d i i i

i i i i

f f f f F fc c r I
t t r r r m c

⋅ ⋅
∂ ∂ ∂ ∂ ∂

= + + − =
∂ ∂ ∂ ∂ ∂

            (25) 

2

2

d
d i i i

i i i i

f f f f f F fс с r I
t t r r r m ct

τ ⋅ ⋅
∂ ∂ ∂ ∂ ∂ ∂

= + + + − =
∂ ∂ ∂ ∂ ∂∂

,         (26) 

( ) ( ) 1
1 1d d d , , , , d d d

ft f t f t O t gb b
x

ε−  ∂  ∆ + ∆  ∂  
= ∫x ξ x ξ x ξ ξ ξ      (27) 

( ) ( ) 1
1 1d d d , , , , d d

ft f t f t O t g b
x

ε+  ∂  ′ ′ ′ ′ ′ ′∆ = + ∆  ∂  
∫x ξ x ξ x ξ ξ ξ     (28) 

I − += ∆ − ∆                          (29) 
2

2

f f f
t t t

τ∂ ∂ ∂
↔ +

∂ ∂ ∂
 

( ) ( ), , , ,f t f t′ ′ ′ ′↔x ξ x ξ  

( ) ( ) ( ), , , , , , f ff t f t f t
t x

τ λ τ λ∂ ∂
↔ + + ↔ + + +

∂ ∂
x ξ x ξ x ξ   (30) 
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( ) ( ) ( ) 1 1
1 1 1 1 1 1, , , , , ,

f ff t f t f t
t

τ λ τ λ
∂ ∂

↔ + + ↔ + + +
∂ ∂

x ξ x ξ x ξ
x
  

In the formulas selected averages, although one can select to individual speeds 
and consider all their sums. Similarly, calculated values with the molecule that is 
flying during the free path, the mean free path of the molecules and the travel 
time to and after the collision can be different (may be different values of the in-
cident and impinging molecules (with index one)) 

1 1
1 1 1 1 1 1 1 1

1 1
1 1 1 1

τ
f ff fff f f ff f f f f f f

t t
f ff ff f f f

t t

τ λ λ

τ τ λ λ

∂ ∂∂ ∂′ ′ ′ ′− ↔ − + + + +
∂ ∂ ∂ ∂
′ ′′ ′∂ ∂∂ ∂′ ′ ′ ′ ′ ′ ′+ − − − − − − −

∂ ∂ ∂ ∂

x x

x x
  

      (31) 

In general, this formula should be writing in this form, but for small gradients 
of simple gas can be write to single time and single long of the run. However, for 
structural gas, for example, at altitudes above 120 km the free time of run on 
three Mach numbers, i.e. lag time 10−8 c and more that can be comparable with 
the relaxation time. In fact, the expression can be simplified by considering the 
order of magnitude. Then we have 

00 0
0 0 0 01 1

1 1 1 1 1 1 1 1

0 00 0
0 0 01 1

1 1 1 1

τ
f ff fff f f ff f f f f f f

t t
f ff ff f f f

t t

τ λ λ

τ τ λ λ

∂ ∂∂ ∂′ ′ ′ ′− ↔ − + + + +
∂ ∂ ∂ ∂
′ ′′ ′∂ ∂∂ ∂′ ′ ′ ′ ′ ′ ′+ − − − − − −

∂ ∂ ∂ ∂

x x

x x
  

   (32) 

Then the integrals are computed and we obtain the corresponding kernel of 
the Navier-Stokes equations. For small and medium gradients free time is single 
and single mean free path. But significant differences are in the interaction of 
gases with different properties. Will be discussed the situation when we have the 
density for the two interaction elementary volume which are much different. 
Another situation when properties of molecules are close. In order to evaluate 
we are using single mean free time and single mean free path. The density after 
collision is counted to equal to density of impinging of particles. 

The preceding value of right part will be ( 1n n ) 
00 0

0 0 0 01 1 1
1 1

1 1 1 1

f n fn f n n f nf f f f
n t n n t n n

τ τ τ τ λ λ λ λ
 ′∂ ∂∂ ∂

− − +
     

+   − + − ∂ ∂ ∂ ∂
  

     

ξ
ξ x x  

Derivative on x  is given us self diffusion, termo-diffusion and baro-diffu- 
sion about which S. V. Vallander told. Direct influence on delay the first item has  

0
0

1
1

n fC f
n t
τ ∂
∂

. If count up that n  we shall receive the main item 
0

1

.n f
n t
τ ∂
∂

  

It is additive core of the modified Boltzmann equation and the Navier-Stokes 
equations. It is necessary to take into the attention for rarefied gas of compli-
cated molecules with time relaxation is near time between collisions. 

7. Conclusion 

Influence of the angular momentum is investigated and, as consequence, non- 
symmetry of stress tensor is received for elementary volume. The role of delay is 
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investigated in kinetic theory. It shows the influence of these effects in conti-
nuum mechanics and kinetic theory, and some the numerical results are demon-
strated (the Falkner-Skan problem). The striped structure was received. Vertical 
component of velocity plays more roles if the angular momentum is taken into 
account. The perturbations on upper of boundary layer form the vortex near the 
surface. The exact solution of kinetic theory that is well known in classic is con-
sidered. 
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