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Abstract 
Purpose: Aim of this study is to assess the anti-proliferative effect of the thia-
zole analogue (5-acetyl-4-methyl-2-(3-pyridyl) thiazole) with different human 
carcinoma cell lines and to postulate its possible mechanism of action using 
molecular modeling. Methods: Three different human carcinoma cell lines 
were used namely hepatocyte carcinoma (HEPG2), breast adenocarcinoma 
(MCF7) and colon cancer (HCT116). Molecular docking simulations for 
tested thiazole analogue and its virtual analogues against the cytochrome 
P-450 2A6 enzyme and mutated SOD were performed. Results: Cell lines cy-
totoxicity revealed that the tested thiazole analogue exerts a significant an-
ti-proliferative activity in all the used human carcinoma cell lines with a pro-
nounced anti-proliferative effect in liver carcinoma cell line HEPG2 (IC50 = 
23.8 µg/ml) whereas the anti-proliferative effect in colon carcinoma and breast 
cancer cell lines was poor with IC50 = 50 µg/ml and IC50 > 50 µg/ml respec-
tively. The postulated mechanism of action revealed the high affinity to inhibit 
SOD and CYP2A6 enzymes in the liver. Conclusion: The thiazole analogue 
(5-acetyl-4-methyl-2-(3-pyridyl)thiazole) is a potential liver specific anticanc-
er agent capable of interfering with both apoptotic signaling pathway and the 
free radical processing in liver which leads to more studies on liver cancer 
from different perspective rather than the apoptotic signaling pathway. 
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1. Introduction 

Cancer has become the leading disease-related cause of deaths of humans [1]. 
Radiation therapy and surgery treatments are only successful when cancer is lo-
calized in the early stage whereas chemotherapy has the ability to cure wide-
spread or metastatic cancers. Approximately 74% of anti-cancer drugs are either 
natural products, semi synthetic compounds or their mimetics [2]. Inhibition of 
hemoproteins such as cytochromes P450 is a widely pursued area of research for 
cancer treatment and prevention [3]. CYP proteins in general have about 500 
amino acid residues with 2 main domains: the α-domain (13 α-helices) and the 
β-domain (5 β-sheets). The α-domain contains the heme binding pocket and 
β-domain has the N-terminus [4]. The enzyme compact structure stability is due 
to phenylalanine residues (Phe107, Phe111, Phe118, Phe209 and Phe480) located 
above the haem to form the upper surface of the enzyme active site pocket. The 
π-π stacking because of the aromatic residues leads to the formation of a hydro-
gen bond with the ligands, such as methoxsalen, coumarin and amine deriva-
tives due to the interaction with Asn297 residue and aromatic ligands [5] [6]. 

Humans have CYP2A gene cluster in chromosome 19 which contains the 
three functional genes, CYP2A6, CYP2A7 and CYP2A13 [7]. 

In human liver, cytochrome P450 2A6 (CYP2A6) constitutes up to 10% of the 
total P450 content. The human CYP2A6 is expressed in the endoplasmic reticu-
lum of hepatocytes in the liver, oesophagus, lung, trachea, nasal mucosa, and 
skin [8]. 

CYP2A6 as catalysts of bilirubin oxidation suggest a role in haem homeostasis 
and in the regulation of cellular redox balance [9]. CYP2A6 hepatic over expres-
sion is elevated in hepatocellular carcinoma associated with cirrhosis and chron-
ic inflammation [10]. Inhibition of CYP2A by chalepensin causes cytotoxicity in 
carcinoma cell lines and this might have significance in target organs expressing 
CYP2A6, like testis, ovary, uterus and liver [11].  

The first identified SOD was erythrocuprein [12]. Cu, Zn superoxide dismu-
tases (Cu, Zn-SODs) are metallo-enzymes involved in cellular defense mechan-
ism against oxidative damage. Eukaryotic Cu, Zn-SODs are homodimers with 
one atom of both zinc and copper per subunit and catalyze the superoxide anion 
dismutation at a diffusion-limited rate enhanced by electrostatic guidance of the 
substrate to the active site [13]. 

The oxidized form of Cu,Zn-SOD active site has a Cu  ion coordinated in a 
distorted square pyramid by a solvent molecule and four histidines, one His is 
also a ligand to a tetrahedral Zn  coordinated by two other His and an Asp [14]. 
Local positive charge attracts a series of small anions that bind directly to Cu  in 
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place of the solvent molecule then extend in the direction of the conserved 
Arg143 [15]. In reduction status, Cu is thought to release the His63 ligand it 
shared with the Zn  ion and departing O2, to allow its conformation to become 
trigonal and roughly planar. Fe-SOD and Mn-SOD upon reduction, the active 
site electrostatics are conserved overall by uptake of a proton [16]. 

In tumor cells, several observations suggesting that ROS may mediate apopto-
sis, thus depletion of endogenous antioxidants can promote apoptosis, and 
presence of endogenous antioxidants can sometimes delay or inhibit apoptosis 
[17] suggesting that the use of anti-SOD may be of significance as an anti-cancer 
drug [18]. 

Thiazoles are a familiar group of heterocyclic compounds have a wide variety 
of biological activities [19] such as treatment of pain [20], inflammation, HIV 
infections [21], bacterial infection [22], anti-tubercular [23], and inhibitors of 
bacterial DNA gyrase B [24]. Thiazole antibiotics Siomycin A [25] and thios-
trepton [26] inhibit FoxM1 and induce apoptosis in human cancer cells; there-
fore thiazole derivatives developed as potential anticancer agents [27], and have 
been reported to display anti-proliferative activity. 

From the above mentioned literature, we aim to assess the anti-proliferative 
effect of the thiazole analogue [5-acetyl-4-methyl-2-(3-pyridyl) thiazole] with 
different cell lines (liver, breast, and colon) carcinoma and to postulate its possi-
ble mechanism of action. 

2. Experimental 
2.1. Thiazole Analogue Preparation and Chemicals 

The tested thiazole analogue-acetyl-4-methyl-2-(2-pyridyl) thiazole was synthe-
sized according to reported scheme by Bondok et al. [28] without any change 
and all the used chemicals were purchased from Sigma-Aldrich (USA), Merck 
KGaA (Germany) and Structure confirmation using melting point and 1H NMR 
was found identical to literature. 

2.2. Cell Lines Cytotoxicity Protocol 

Three different human cell lines were used namely hepatocyte carcinoma 
(HEPG2), breast adenocarcinoma (MCF7) and colon cancer (HCT116). All the 
cell lines, the used reagents and staining dyes were from Sigma Aldrich (USA). 

Cell lines cytotoxicity protocol according to Skehan et al. [29] Cells were 
plated in 96 multi well plate (104 cells/well) for 24 hours before the addition of 
the tested thiazole analogue to allow attachment of the cells to the plate wall. 
Different concentrations of the tested thiazole analogue (0, 5, 12.5, 25, 50 µg/ml) 
were added to the cell monolayer triplicate wells. Monolayer cells were incu-
bated with the compound for 48 hours at 37 C0 and in atmosphere of 5% CO2. 
After 48 hours cells were fixed, washed and stained with Sulfo-Rhodamine-B 
stain. Washing the excess stain by acetic acid and attached stain was recovered 
with Tris-EDTA buffer. ELISA reader was used to measure color intensity and 
the relation between surviving fraction and drug concentration is plotted to get 
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the survival curve of each tumor cell line. 

2.3. Docking Studies of the Thiazole Analogue against SOD and 
CYP2A6 

Docking studies were performed using Sybyl-X molecular modelling program. 
Sybyl-X uses the Surflex Docker which performs its molecular docking function 
aided by the generation of an idealized active site (Protomol) consisting of 
dummy atoms to guide the docking process. The Protomol is generated based on 
the interaction between the indigenous ligand and the active site residues is lo-
cated beyond the co-crystallized ligand pocket for best accuracy. The crystal 
structures of SOD and CYP2A6 were both download from the RCSB website 
(www.rcsb.com) (PDB Codes: 2WZ6 and 2FDW respectively). All mutations 
present in the structure were mutated back to the wild type protein. The metal 
ions and metal-ligand bonds were defined and appropriate charges were as-
signed to avoid repulsion between the test ligand and metal ions. The proteins 
were then prepared for docking using the Biopolymer Preparation tool accord-
ing to the following criteria: H-Addition, H-Bond; Termini treatment, charged; 
Protonation type of histidines, according to H-Bonding donor or acceptor; Side 
Chain Bumps, Fix by Lovell method. At the end of the preparation, brief Staged 
Energy Minimization was performed to the amino acid residues only using the 
following parameters: Iterations, 100; Initial Minimization, None; Force Field, 
MMFF94s; Charges, MMFF94; Dielectric constant, Constant; Non-Bonding Cu-
toff, 8.0 Å. The prepared proteins were saved as a MOL2 files. The ligands were 
then generated using ACD/Chemsketch software (appreciably available for free 
downloading by ACD Labs, Inc.) and saved in SD format. The 3D structures 
were generated by Concord protocol of Sybyl-X and saved as SLN files to be 
used for docking. Docking was performed using the Dock Ligands protocol of 
Sybyl-X. The protomol was generated using the co-crystallized ligand of each 
protein. The docked ligands were then inspected to compare the similarities and 
differences in binding modes with the co-crystallized ligands. 

3. Results and Discussion 

Performance of cytotoxicity tests has shown that the tested thiazole analogue 
5-acetyl-4-methyl-2-(3-pyridyl) thiazole demonstrates considerable cytotoxicity 
against all used cell lines. The compound has shown prominent cytotoxic selec-
tivity towards hepatocellular cancer (HEPG2) cell line with and IC50 of 23.8 
µg/ml. This potency is considerably much lower than the cytotoxic potencies of 
the compound against colorectal cancer (HCT116) and breast adenocarcinoma 
(MCF7) cell lines were the IC50 values were 50 µg/ml and >50 µg/ml respectively 
(Figure 1).  

This selective property of the compound may be attributed to the proposed 
mechanism of action. We conducted structure similarity search studies to iden-
tify possible biochemical targets of the tested compound. The search showed that 
our compound exhibited appreciable structure similarity with inhibitors of the 

http://www.rcsb.com/
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superoxide dismutase [30] (SOD) and cytochrome P450 2A6 (CYP2A6) [5] 
(Figure 2). This is consistent with the cytotoxicity assay results since SOD and 
CYP2A6 are much more abundant in the liver tissue [31]. Molecular docking 
studies were performed to study the binding interactions between the studied 
compound and the postulated biochemical targets and compare the predicted 
binding modes with the ligands in the co-crystal structure. 

SOD are essential enzymes to protect cells from damage induced by superox-
ide radical (O2-) [32]. The active O2-production and low SOD activity in cancer 
cells [33] [34] [35] may render the malignant cells survival highly dependent on 
SOD levels consequently SOD inhibition would promote cancer cell deathcancer 
cells death. Mitochondria are the major source of superoxide production and in-
hibition of SOD causes mitochondrial membrane damage through free-radical  

 

 
Figure 1. The concentration-activity curves of the tested thiazole compound expressed as 
fraction of surviving cells against compound concentration for different cell lines; liver 
carcinoma (HEPG2) (a), colon carcinoma (HCT116) (b) and breast adenocarcinoma (c). 

 

 
Figure 2. The structures of the tested thiazole compound (1), SOD quinazoline inhibitor 
(Hasnain et al. 2010) (2) and CYP2A6 inhibitor (Cashman et al. 2006). 
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attack on membrane phospholipids and loss of the ability to retain a fluorescent 
dye (rhodamine-123) used to indicate the loss of mitochondrial transmembrane 
potential [36] [37]. Damage to phospholipids results in the release of mitochon-
drial cytochrome c to the cytosol triggering apoptosis [38]. SOD inhibition 
might have different mechanisms such as inhibition of tubulin polymerization 
and angiogenesis [39] [40]. 

SOD enzyme crystal structure reveals a catalytic site which can bind metal 
chelators principally due to the presence of metal cations [14]. Hasnain et al. [41], 
however, discovered an allosteric site that binds 2-trifluormethyl-4-quinazoline 
derivatives as inhibitors of Cu-Zn loaded SOD. Molecular docking studies re-
vealed several similarities between the binding modes of the tested thiazole and 
Hasnain’s 2-trifluormethyl-4-quinazoline derivative. Hasnain et al. [41] demon-
strated that the trifluromethyl group is an important moiety for SOD inhibition 
as it invades a small hydrophobic cleft formed by the side chains of Lys-30 and 
Glu-100 disrupting the proper conformation of the allosteric site. The 2-pyridiyl 
group of our tested thiazole ligand was found to similarly invade this pocket and 
rests comfortably within appropriate distance with their hydrophobic side chains 
(Figure 3). 

To assess the importance of different structural moieties of the thiazole deriv-
ative, a small set of virtual analogues of the tested pyridylthiazole with either 
oversized groups or truncated (smaller) functional groups were created. The 
bulkier virtual compound created by replacement of the 5-acetyl with pivaloyl  
 

 
Figure 3. (a) Interactions of the thiazole compound with the hydrophobic cleft of Lys30 
and Glu100. (b) Hydrogen bonding with the sidechain of Ser98. (c) π-π interactions be-
tween the thiazole compound and Trp32. (d) Overlay of the thiazole compound and the 
co-crystallized quinazoline inhibitor of SOD. 
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(trimethylacetyl) homologue, it showed lower scoring than our tested thiazole as 
the t-butyl group forced the thiazole ring away from making any significant 
aromatic interaction with Trp-32 and prevented the thiazole ring from making 
any hydrogen bonding with Ser-98. The only remaining binding interactions of 
the pyridine ring were with the small pocket between Lys-30 and Glu-100. 

A smaller analogue without the pyridine ring was virtually constructed and 
included in the docking experiment to investigate the impact of the pyridyl 
group on binding. This compound hadrotated to place the acetyl group in the 
Lys30-Glu100 pocket but hydrophobic contacts appear to be less significant than 
that of the parent pyridyl analogue. Interestingly, the thiazole ring preferred to 
tighten its π-π stacking attraction with Trp-32 making a hydrogen bond with 
Ser-89 (Figure 4). We conclude from this docking experiment that the tested 
thiazole analogue has optimum structural architecture to bind and inhibit supe-
roxide dismutase enzyme. 

Cytochrome P-450 2A6 (CYP2A6) gene is one of three members of CYP2A 
gene subfamily in human, CYP2A7 and CYP2A13. Their transcripts (CYP2A6, 
CYP2A7 and CYP2A13) have been found in liver although CYP2A6 is the most 
abundant form [31]. CYP2A6 utilizes a heme cofactor to oxidize its substrates 
and the active site of this enzyme is compact containing a hydrophobic Phe-cluster 
formed by the residues Phe107, Phe111, Phe108, Phe209 and Phe480. In this re-
gion, coumarin substrate is directed towards a regioselective oxidation site 
through the only hydrogen bond donor Asn297 [42]. 

Molecular docking against CYP2A6 revealed that tested thiazole analogue 
could bind to the (CYP2A6) in a similar fashion to the one observed in the 
3-pyridyl-furan inhibitor co-crystallized with enzyme [43].  

As shown in (Figure 5) the carbonyl oxygen of tested thiazole analogue occu-
pies virtually the same position as the methanamino nitrogen of the bound inhi-
bitor, effectively completing the coordination shell of the heme iron. The central 
thiazole moiety parallels the furan moiety of the inhibitor, which allows for the 
optimal positioning of the pyridyl moiety, thereby establishing a key hydrogen 
bond to the side chain of Asn297 and two edge-to-face interactions with the 
aromatic side chains of Phe107 and Phe111. 
 

 
Figure 4. Binding mode of a bulkier analogue of the thiazole compound (a) and a trun-
cated analogue lacking the pyridyl moiety (b) with SOD. 
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To assess the importance of structural characteristics of the tested thiazole for 
the inhibition of CYP2A6, the same subset tested against SOD was once more 
tested against CYP2A6. The bulkier analogue possessing a tert-butyl group in-
stead of methyl scored much lower. This is due to loss of essential interactions 
between the carbonyl oxygen and the metal ion and the hydrogen bond with 
Asn297. Hydrophobic interactions were rather maintained with the Phe cluster 
of CYP2A6. The smaller analogue lacking the pyridyl moiety also scored less due 
to loss of hydrophobic interactions with the Phe cluster and hydrogen bonding 
with Asn297. Interaction of the carbonyl oxygen with the metal ion was con-
served. These findings indicate that the tested thiazole compound exhibits 
structural features necessary for the inhibition of CYP2A6 (Figure 6). 

 

 
Figure 5. (a) Interactions of the thiazole compound with the hydrophobic Phe cluster of 
CYP2A6. (b) Hydrogen bonding with the side chain of Asn297. (c) Ineraction with the 
metal cation inside the heme cofactor of CYP2A6. (d) Overlay of the thiazole compound 
and the co-crystallized ligand of CYP2A6. 

 

 
Figure 6. Binding mode of a bulkier analogue of the thiazole compound (a) and a trun-
cated analogue lacking the pyridyl moiety (b) with CYP2A6. 
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Overall, tested thiazole analogue can be accommodated in the CYP2A6 bind-
ing site and maintain key residue interactions consistent with the reported inhi-
bitors, this suggests that tested thiazole analogue could exert its action via inhi-
bition of CYP2A6. CYP2A6 inhibition will contributeto programmed cancer cell 
death and increased sensitivity to chemotherapy in hepatocellular carcinoma 
[31]. 

4. Conclusion 

In conclusion, this study is reporting the selective antiproliferative activity of 
5-acetyl-4-methyl-2-(3-pyridyl) thiazole in vitro and its possible mechanism of 
activity was demonstrated using docking studies. We also explained the struc-
tural determinants required for the simultaneous inhibition of SOD and 
CYP2A6 by conducting molecular comparisons in silico. The ability of the tested 
thiazole analogue to inhibit both SOD and CYP2A6 (mainly found in liver) 
might explain its pronounced activity as an anti-proliferative agent in liver car-
cinoma and the importance of inhibiting both enzymes simultaneously. Our 
findings may be useful in the future development of more potent cytotoxic 
agents directed towards liver cancer that act as adual inhibitors of SOD and 
CYP2A6. 
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