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Abstract 
In this paper, a nonautonomous eco-epidemiological model with disease in 
the predator is formulated and analyzed, in which saturated predation rate is 
taken into consideration. Under quite weak assumptions, sufficient conditions 
for the permanence and extinction of the disease are obtained. Moreover, by 
constructing a Liapunov function, the global attractivity of the model is dis-
cussed. Finally, numerical simulations verified these results. 
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1. Introduction 

In the nature world, diseases for each species are inevitable. So it has practical 
ecological significance to consider the effects of disease in predator-prey model. 
Over the past decade, great attention has been paid to modelling and analyzing 
eco-epidemiological systems (see [1]-[25]). Most of these works studied preda-
tor-prey models with disease in the prey (see [1]-[21] [25]). Recently different 
eco- epidemiological predator-prey models with disease in predator have been 
investigated (see [22] [23] [24]). In [21], Xiao et al. considered the following au-
tonomous predator-prey model with disease in predator: 
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where ( )x t  denotes the number of wild plant species at time t; ( )1y t  and 
( )2y t  denote the number of susceptible pest and infected pest at time t, respec-

tively. Boundedness of solutions, equilibria, permanence and global stability is 
analyzed. Numerical simulations show that the system exhibits complex dynam-
ics including quasiperiodic solution, chaotic attractors when the transmission 
rate varies periodically. 

The models, which were proposed in the literatures [1]-[21], are autonomous 
systems. However, non-autonomous phenomenon is dominating in real systems. 
It comes from various sources, such as the variation of transmission rate, migra-
tion rate, the predation rate and fluctuations in death and birth rates, etc. Non-
autonomous eco-epidemiological model is more realistic than autonomous 
model. Several nonautonomous eco-epidemiological models have been studied 
in [25] [26] [27] [28] [29]. In addition, different infection rates and predation 
rates have been suggested by authors: the term of the infection rate is bilinear 

SIβ  in [1]-[12] [14] [15] [16] [17] [18] [20] [21]; in [13], the infection rate is 
nonlinear 2bI S ; in [19], the infection rate is saturated ( )1SI Iβ α+ ; the term 
of the predation rate is linear pIY in [3] [5] [10] [11] [13] [15] [16] [17] [20] [21]; 
but in [1] [2] [6] [7] [8] [9] [12] [14] [18] [19], the predation rate is saturated 

( )mYI A I+ . 
Motivated by these factors, we modify a predator-prey model with disease in 

predator by introducing standard infection rate ( ) ( ) ( ) ( ) ( )( )t S t I t S t I tσ +  
and saturated predation rate ( ) ( ) ( ) ( ) ( )( )c t X t S t h t X t+ , more in line with 
the actual situation, where prey population denoted by X and predator popula-
tion denoted by ( ) ( ) ( )Y t S t I t= + , in which S and I stand for the susceptible 
and infectious predator, respectively. Then we propose the following nonauto-
nomous eco-epidemiological model: 
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   (1.2) 

where ( )A t  is the recruitment rate of prey; ( )d t  is the natural death rates of 
prey; ( )c t  is the predation rate of predator; ( )h t  is half-saturation rate; con-
stant ( )0 00 1ρ ρ< <  is predation capacity of infection; ( )e t  is the coefficient 
in conversing prey into new immature predator; ( )r t  is the intrinsic recruit-
ment rate of predator; ( )b t  is the natural death rates of predator; ( )tσ  is the 
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contact rate; ( )tα  is the disease-related death rate of predator. 
The initial conditions are 

( ) ( ) ( )0 0,   0 0,   0 0.X S I> > ≥               (1.3) 

It is obvious that the set ( ){ }3, , 0, 0, 0K X S I R X S I= ∈ ≥ ≥ ≥  is a posi-
tively invariant set of system (1.2). 

This paper is organized as follows. In the next section, some useful lemmas are 
proposed. In Section 3, we establish the sufficient conditions for the permanence 
and extinction of the disease. Also, by constructing a Liapunov function, we ob-
tain the global attractivity of the model. Moreover, as applications of the main 
results, some corollaries are introduced. Particularly, the periodic model is dis-
cussed. In Section 4, our qualitative results for the periodic system are verified by 
numerical simulation. This paper is ended with a conclusion. 

2. Notations, Definitions, and Preliminary Lemmas 

In this section, we introduce some notations, definitions and state some lemmas 
which will be useful in the subsequent sections. Let C denote the space of all 
bounded continuous functions. Given f C∈ , we let 

( ) ( ),   .lim sup lim infu v

tt
f f t f f t

→∞→∞
= =  

If f  is W-periodic, then the average value of f  on a time interval [ ]0,W  
can be defined as 

( )
0

1 d .
W

f f t t
W

= ∫  

Definition 2.1. System (1.2) is said to be permanent if there exists a compact 
region 0K K⊂  such that every solution of system (1.2) with initial conditions 
(1.3) will eventually enter and remain in the region 0K . 

Definition 2.2. The disease is said to be extinct if the solution of system (1.2) 
with initial conditions (1.3) satisfy ( )lim 0

t
I t

→∞
= . 

Definition 2.3. The system (1.2) is said to be globally attractive if for any two 
solutions ( ) ( ) ( )( )1 1 1, ,X t S t I t  and ( ) ( ) ( )( )2 2 2, ,X t S t I t  of system (1.2) sa-
tisfy 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2lim 0,  lim 0,  lim 0.
t t t

X t X t S t S t I t I t
→∞ →∞ →∞

− = − = − =  

To prove our main results, first, we give the results on the following nonau-
tonomous Logistic differential equation: 

( ) ( ) ( ) ( ) ( )( )d
,

d
x t

x t r t b t x t
t

= −                  (2.1) 

where functions ( )r t  and ( )b t  are continuous and bounded on [ )0,R+ = +∞ . 
Lemma 2.1 [26] If there exist positive constants ( )0 1, 2i iω > =  such that 

( ) ( )1 2lim inf d 0,  lim inf d 0.
t t

t tt t
r b

ω ω
θ θ θ θ

+ +

→+∞ →+∞
> >∫ ∫  

Then 
(a) There exist , 0m M > , such that every positive solution of Equation (2.1), 
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( )x t  satisfies 

( ) ( )lim inf lim sup .
t t

m x t x t M
→∞ →∞

< ≤ <  

(b) Each fixed solution ( )x t∗  of Equation (2.1) with initial value ( )0 0x∗ >  
is bounded and globally uniformly attractive on R+ . 

(c) If 0vb > , then for any solution ( )x t  of Equation (2.1) with initial value 
( )0 0x > , we get 

( ) ( )lim inf lim sup .
v u

t t

r rx t x t
b b→∞ →∞

   ≤ ≤ ≤   
   

 

(d) When Equation (2.1) is W-periodic, then Equation (2.1) has a unique 
nonegative W-periodic solution which is globally uniformly attractive. 

Second, we consider the following equation: 

( ) ( ) ( ) ( ) ( ) ( )( )d
,

d
x t

x t r t b t x t k t
t

= − +               (2.2) 

where functions ( )r t  and ( )b t  are defined as in Equation (2.1) and ( )k t  is 
continuous and bounded function on R+ . Let ( )0 0, ,x t t x  is the solution of 
Equation (2.2) with initial value ( )0 0x t x=  and ( )0x t  is a fixed positively so-
lution of Equation (2.1). Then we get the following lemma. 

Lemma 2.2 If there exist positive constants ( )0 1, 2i iω > =  such that 

( ) ( )1 2lim inf d 0,   liminf d 0.
t t

t tt t
r b

ω ω
θ θ θ θ

+ +

→+∞ →+∞
> >∫ ∫  

Then for any constants ε > 0 and 0M > , there exist constants ( ) 0,δ δ ε= >  
( ), 0T T Mε= > , such that for any 0t R+∈  and 1

0 ,x M M− ∈  
  , when ( )k t δ≤  

for all 0t t≥  we get 

( ) ( )0 0 0 0, ,   for all  ,x t t x x t t t Tε− < ≥ +  

Lemma 2.2 can be easily proved and hence we omit it here. 
Third, we give the following nonautonomous linear differential equation 

( ) ( ) ( ) ( )d
,

d
x t

A t d t x t
t

= −                    (2.3) 

where functions ( )A t  and ( )d t  are continuous and bounded on R+ . Then 
we get the following lemma. 

Lemma 2.3 [27] If there exist positive constants ( )0 3, 4i iω > =  such that 

( ) ( )3 4lim inf d 0,  lim inf d 0.
t t

t tt t
A d

ω ω
θ θ θ θ

+ +

→+∞ →+∞
> >∫ ∫  

Then 
(a) There exist , 0m M > , such that every positive solution of Equation (2.3), 
( )x t  satisfies 

( ) ( )lim inf lim sup .
t t

m x t x t M
→∞ →∞

< ≤ <  

(b) Each fixed solution ( )x t∗  of Equation (2.3) with initial value ( )0 0x∗ >  
is bounded and globally uniformly attractive on R+ . 

(c) If 0vd > , then for any solution ( )x t  of Equation (2.3) with initial value 
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( )0 0x > , we get 

( ) ( )lim inf lim sup .
v u

t t

A Ax t x t
d d→∞ →∞

   ≤ ≤ ≤   
   

 

(d) When Equation (2.3) is W-periodic, then Equation (2.3) has a unique 
nonegative W-periodic solution which is globally uniformly attractive. 

Finally, we investigate the following equation 

( ) ( ) ( ) ( ) ( )d
,

d
x t

A t d t x t k t
t

= − +                 (2.4) 

where functions ( )A t  and ( )d t  are defined as in Equation (2.3) and ( )k t  is 
continuous and bounded function on R+ . Let ( )0 0, ,x t t x  is the solution of 
Equation (2.4) with initial value ( )0 0x t x=  and ( )0x t  is a fixed positive solu-
tion of Equation (2.3). Then we get the following lemma. 

Lemma 2.4 [28] If there exist positive constants ( )0 3, 4i iω > =  such that 

( ) ( )3 4lim inf d 0,  lim inf d 0.
t t

t tt t
A d

ω ω
θ θ θ θ

+ +

→+∞ →+∞
> >∫ ∫  

Then for any constants ε > 0 and 0M > , there exist constants ( ) 0,δ δ ε= >  
( ), 0T T Mε= > , such that for any 0t R+∈  and 0x M≤  , when ( )k t δ≤  for 

all 0t t≥  we get 

( ) ( )0 0 0 0, ,   for all  ,x t t x x t t t Tε− < ≥ +  

3. Main Results 

In this section, we will study the permanence and extinction of infected preda-
tor, and then, demonstrate the global attractivity of system (1.2). 

First, as a preliminary, we make the following assumptions: 
(B1) Functions ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,A t d t c t h t b t e t t tσ α  are all nonnega-

tive, continuous and bounded on [ )0,R+ = +∞ ; and ( )r t  is continuous and 
bounded on [ )0,R+ = +∞ ; 

(B2) There exist positive constant ( )0 1, 2,3, 4i iω > =  such that 

( ) ( )

( ) ( )

1 2

3 4
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t t

t tt t
t t
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ω ω

ω ω

θ θ θ θ

θ θ θ θ

+ +
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> >

> >

∫ ∫

∫ ∫
 

Next, we will discuss the ultimate boundness and the permanence of prey and 
predator of system (1.2). 

Theorem 3.1 Suppose that assumptions (B1) and (B2) hold, if there exists a 
constant 5 0ω > , such that 

( ) ( ) ( ) ( ) ( ) ( )
5 1

0
1

3  lim inf d > 0,
t

tt

mB r e c
h m

ω
θ α θ ρ θ θ θ

θ
+

→+∞

 
− +  + 

∫  

hold, where 1 1
1 2 1

2 1

, ,
v u urh rM ecMAh Am M M

dh cM bh bM d
   + +  = = =     + +     

. Then the 

prey population ( )X t  and the predator population ( ) ( ) ( )Y t S t I t= +  of 
system (1.2) are permanent. 
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Proof. Let ( ) ( ) ( )( ), ,X t S t I t  be any positive solution of system (1.2) with 
initial conditions (1.3). From the first equation of (1.2), we can obtain that for all 

0t ≥  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

0
d ( )

d

.

X t X tA t d t X t c t S t I t
t h t X t

A t d t X t

ρ= − − +
+

≤ −

     (3.1) 

Based on the assumption (B2), the conclusion (a) of Lemma 2.3 and the com- 
parison theorem, there exist constant 1 1, 0M T > , such that 

( ) 1 1,   for  .X t M t T≤ ≥                       (3.2) 

If 0vd > , according to the conclusion (c) of lemma 2.3, then we get 

1

uAM
d

 =  
 

. 

From the second and third equations of (1.2) and (3.2), we have obtain that 
for all 1t T≥  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0

1

1

d
d

  

.

S t I t
S t I t r t b t S t I t

t
X t

e t c t S t I t t I t
h t X t

MS t I t r t e t c t b t S t I t
h t M

ρ α

+
= + − +

+ + −
+

 
≤ + + − + 

+  

  (3.3) 

Based on the assumption (B2), we have 

( ) ( ) ( ) ( )
1 1

1

lim inf d 0,
t

tt

Mr e c
h M

ω
θ θ θ θ

θ
+

→+∞

 
+ >  + 

∫  

According to the conclusion (a) of Lemma 2.1 and the comparison theorem, 
there exist constant 2M  and ( )2 1T T≥  such that 

( ) ( ) 2 2,   for  .S t I t M t T+ ≤ ≥                   (3.4) 

If 0vb > , according to the conclusion (c) of Lemma 2.1, then we get 

1 1
2

1

u
rh rM ecMM

bh bM
 + +

=  + 
. 

Consequently, any solutions ( ) ( ) ( )( ), ,X t S t I t  of system (1.2) with initial 
conditions (1.3) are ultimately bounded. 

Furthermore, from the first equation of system (1.2) and (3.4), we can obtain 
that for all 2t T≥  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )

0

2

d
d

.

X t X t
A t d t X t c t S t I t

t h t X t

c t
A t d t M X t

h t

ρ= − − +
+

 
≥ − +  

 

     (3.5) 

According to Lemma 2.3 (a) and the comparison theorem, there are constant 
( )1 3 2,m T T≥ , such that 
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( ) 1 3,   for  .X t m t T≥ ≥                    (3.6) 

If 0vd > , according to the conclusion (c) of lemma 2.3, then we get 

1
2

v
Ahm

dh cM
 

=  + 
. 

Moreover, it follows from the second and third equations of system (1.2) and 
(3.6) that for 3t T≥  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0

1
0

1

d
d

  

.

S t I t
S t I t r t b t S t I t

t
X t

e t c t S t I t t I t
h t X t

mS t I t r t t e t c t b t S t I t
h t m

ρ α

α ρ

+
= + − +

+ + −
+

 
≥ + − + − +  + 

 (3.7) 

Based on the assumption (B3), the comparison theorem and conclusion (a) of 
Lemma 2.1, there exist constant ( )2 4 3,m T T≥  such that 

( ) ( ) 2 4,   for  .S t I t m t T+ ≥ ≥                  (3.8) 

If 0vb > , according to the conclusion (c) of Lemma 2.1, then we get 

1 1 0 1
2

1

v
rh rm h m ecmm

bh bm
α α ρ + − − +

=  + 
 

Therefore, from (3.2), (3.4), (3.6) and (3.8), we can obtain that 

( ) ( )1 1lim inf lim sup ,
t t

m X t X t M
→+∞ →+∞

≤ ≤ ≤  

and 

( ) ( )( ) ( ) ( )( )2 2lim inf lim sup .
t t

m S t I t S t I t M
→+∞ →+∞

≤ + ≤ + ≤  

This completes the proof of Theorem 3.1.   
Remark 3.1. Suppose that assumptions (B1), (B2), (B3) hold, and 0vd > ; 

0vb > , then we can choose the constants given in the above theorem as follow-
ing: 

1 1
1 2

1

, ,
uu rh rM ecMAM M

d bh bM
 + + = =    +   

 

and 

11 1 0 1
1 2 0 2 2

2 1

, , .
v v

rh rm h m ecmAhm m M m M
dh cM bh bm

α α ρ −   + − − +
= = = +   + +   

 

Let ( )0x t  be a fixed solution of the nonautonomous linear system 

( ) ( ) ( ) ( )d
.

d
X t

A t d t X t
t

= −                   (3.9) 

Particularly, if 0vd > , according to conclusion (c) of Lemma 2.3, we get 

( ) ( )0 0lim inf lim sup .
v u

t t

A Ax t x t
d d→∞ →∞

   ≤ ≤ ≤   
   

 

Let ( )0y t  be a fixed solution of the nonautonomous logistic system 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

2

d
.

d
Y t MY t r t e t c t b t Y t

t h t M
 

= + −  + 
       (3.10) 

If 0vb > , according to conclusion (c) of Lemma 2.1, we get 

( ) ( )2 2 2 2
0 0

2 2

lim inf lim sup .
v u

t t

rh rM ecM rh rM ecMy t y t
bh bM bh bM→∞ →∞

   + + + +
≤ ≤ ≤   + +   

 

Let ( )1y t  be a fixed solution of the nonautonomous logistic system 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
0

1

d
.

d
Y t mY t r t t e t c t b t Y t

t h t m
α ρ

 
= − + −  + 

   (3.11) 

If 0vb > , according to conclusion (c) of Lemma 2.1, we get 

( )

( )

1 1 1
0

1

0

1 1 1

1

liminf

limsup

.

v

t

t
u

rh rm h m ecm y t
bh bm

y t

rh rm h m ecm
bh bm

α α

α α

→∞

→∞

 + − − +
≤ + 
≤

 + − − +
≤  + 

 

Let ( )1x t  be a fixed solution of the nonautonomous linear system 

( ) ( ) ( ) ( )
( ) ( )2

d
.

d
X t c t

A t d t M X t
t h t

 
= − +  

 
            (3.12) 

If 2 0
vdh cM

h
+  > 

 
, according to conclusion (c) of Lemma 2.3, we get 

( ) ( )1 1
2 2

lim inf lim sup .
v u

t t

Ah Ahx t x t
dh cM dh cM→∞ →∞

   
≤ ≤ ≤   + +   

 

Let ( )0s t  be a fixed solution of the nonautonomous logistic system 

( ) ( ) ( ) ( ) ( )( )d
.

d
S t

S t r t b t S t
t

= −                (3.13) 

If 0vb > , according to conclusion (c) of Lemma 2.1, we get 

( ) ( )0 0lim inf lim sup .
v u

t t

r rs t s t
b b→∞ →∞

   ≤ ≤ ≤   
   

 

Then we can obtain the following results. 
Theorem 3.2 Suppose that assumptions (B1), (B2), (B3) hold. If there exists a 

constant 6 0ω > , such that 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

6 0
0

0

1
0

1

lim inf

                     d 0,

t

tt

s
r b y

y

x
e c

h x

ω θ
θ θ θ σ θ

θ

θ
ρ θ θ α θ θ

θ θ

+

→+∞


− +




+ − >+ 

∫
     (3.14) 

then the infective predator of (1.2) ( )I t  is permanent. 
Proof. Let ( ) ( ) ( )( ), ,X t S t I t  be any positive solution of system (1.2). From 
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(3.14), we can choose sufficiently small 1 20, 0ε ε> > , then there exists 0 0T >  
such that for 0t T> , 

( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

6 0 1
0 1

0 1

1 1
0 2

1 1

          d ,

t

t

s
r b y

y

x
e c

h x

ω θ ε
θ θ θ ε σ θ

θ ε

θ ε
ρ θ θ α θ θ ε

θ θ ε

+  −
− + + +

−
+ − >+ − 

∫
     (3.15) 

According to (3.2), (3.4), (3.6) and (3.8), we can obtain that there exists a con-
stant 1 0T T≥  such that 

( ) ( ) ( )( )1 1 2 2 1,   ,   for  .m X t M m S t I t M t T≤ ≤ ≤ + ≤ ≥  

Following, we will prove that there is a positive constant 0 0β >  such that 

( ) 0lim sup .
t

I t β
→∞

≥                       (3.16) 

Constructing an auxiliary system 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )0 0
d

.
d
u t

u t r t b t u t b t M t
t

σ η= − − +        (3.17) 

In view of Lemma 2.2, for the given constants 1 0ε >  and 0 0M > , there ex-
ist positive constants ( ) ( )1 1 00,  , 0L L Mδ δ ε ε= > = > , such that for any 

0t R+∈  and 1
0 0 0,u M M− ∈   , when ( ) ( )( )0 0b t M tσ η δ+ <  for all 0t t≥  we 

have 

( ) ( )0 0 0 1 0, , < ,   for all  ,u t t u s t t t Lε− ≥ +             (3.18) 

where ( )0 0, ,u t t u  is the solution of system (3.17) with initial value ( )0 0u t u= . 
Set ( )( )0 02 1u ub Mβ δ σ= + + . We suppose that (3.16) is not true. Then 

there exists 0 3P R+∈  such that for the positive solution ( ) ( ) ( )( ), ,X t S t I t  of 
(1.2) with initial condition ( ) ( ) ( )( ) 00 , 0 , 0X S I P= , we get 

( ) 0lim sup .
t

I t β
→∞

<  

So there exists a constant 2 1T T≥  such that 

( ) 0 2,   for all  ,I t t Tβ< ≥                   (3.19) 

Hence, from the second equation of system (1.2), we obtain that for all 2t T>  

( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )( )0 0

d
d

,

S t
S t r t b t S t I t

t
X t S t S t I t

e t c t t
h t X t S t I t

S t r t b t S t b t t M

σ

σ β

= − +

+ −
+ +

≥ − − +

 

Let ( )u t  be the solution of (3.17) with 0 0η β=  and condition ( ) ( )2 2u T S T= . 
In view of comparison theorem, we have 

( ) ( ) 2,   for all  ,S t u t t T≥ ≥  

Therefore, according to ( ) ( )( )0 0b t t Mσ β δ+ <  for any 2t T≥  and 
( ) 1

2 0 0,S T M M− ∈   . So, we choose 0 2t T=  and ( )0 2u S T= , from (3.17), we 
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have 

( ) ( )( ) ( )2 2 0 1 2, , ,   for all  .u t u t T S T s t t T Lε= ≥ − ≥ +  

Therefore 

( ) ( )0 1 2,   for all  .S t s t t T Lε≥ − ≥ +               (3.20) 

From the first equation of system (1.2), we can obtain 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

0

d
,

d

.

X t X t
A t d t X t c t S t I t

t h t X t

A t d t X t

ρ= − − +
+

≤ −

 

By comparison theorem, we have 

( ) ( )0 1 3,   for all  .X t x t t Tε≤ + ≥                (3.21) 

From the second and third equation of (1.2), we can obtain for 1t T≥  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0

2

2

d
d

  

.

S t I t
S t I t r t b t S t I t

t

X t
e t c t S t I t t I t

h t X t

MS t I t r t e t c t b t S t I t
h t M

ρ α

+
= + − +

+ + −
+

 
≤ + + − +  + 

 

By comparison theorem, there are constant ( )4 1T T≥ , such that 

( ) ( ) ( )0 1 4,   for all  .S t I t y t t Tε+ ≤ + ≥              (3.22) 

From the first equation of system (1.2), we can obtain for 1t T≥  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )

0

2

d
d

.

X t X t
A t d t X t c t S t I t

t h t X t

c t
A t d t M X t

h t

ρ= − − +
+

 
≥ − +  

 

 

By comparison theorem, we have that there is a constant ( )5 1T T≥  such that 

( ) ( )1 1 5,   for all  .X t x t t Tε≥ − ≥                (3.23) 

Hence, from the third equation of system (1.2) and (3.20) - (3.23), we get 

( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

0

0 1
0 1

0 1

1 1
0

1 1

d
d

  

  ,

I t
I t r t b t S t I t

t

X t I t S t I t
e t c t t t I t

h t X t S t I t

s t
I t r t b t y t t

y t

x t
e t c t t

h t x t

ρ σ α

ε
ε σ

ε

ε
ρ α

ε

= − +

+ + −
+ +

 −
≥ − + +

+

−
+ − 

+ − 
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for all t T ∗≥ , where { }2 3 4 5max , , ,T T T T T L∗ = + . 
Integrating the above equation from T ∗  to t , we get 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

0 1
0 1

0 1

1 1
0

1 1

exp

                                    d .

t

T

s
I t I T r b y

y

x
e c

h x

θ ε
θ θ θ ε σ θ

θ ε

θ ε
ρ θ θ α θ θ

θ θ ε

∗
∗  −

≥ − + + +

−
+ − + − 

∫
 

Thus (3.15) implies that ( )I t → +∞ , as t → +∞ . This is a contradiction. 
Therefore, (3.16) is true. 

Thus, for any 0 0t ≥  we claim that it is impossible that ( ) 0 ,I t β≤  for all 

0t t≥ . From this claim, we will discuss the following possibilities. 
(i) There exists T T ∗≥ , such that ( ) 0I t β≥  for all t T ∗≥ . 
(ii) ( )I t  oscillates about 0β  for all large t . 
It is obvious that we only need to consider the case (ii). 
In the following, we will prove ( ) ( )0 1 6 0expI t mβ β ω≥ − 

 for sufficiently 
large t , where 

( ) ( )( )1 2
0

sup .
t

b t M tβ α
≥

= +  

Let 1 2,t t  be large sufficiently times satisfying 

( ) ( ) ( ) ( )1 2 0 0 1 2,   ,   for all  , .I t I t I t t t tβ β= = < ∈         (3.24) 

If 2 1t t L− ≤ , then from the second equation of system (1.2), we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )

( ) [ ]

1

1

1

0

1 2

0 1 1 2

exp

  d

exp d

exp ,   for all  , .

t

t

t

t

S
I t I t r b S I

S I

X
e c

h X

I t b M

L t t t

θ
θ θ θ θ σ θ

θ θ

θ
ρ θ θ α θ θ

θ θ

θ α θ θ

β β


= − + + +


+ − + 

 ≥ − −  

≥ − ∈

∫

∫

 (3.25) 

If 2 1t t L− > , being similar to the proof in (3.20), (3.22), (3.23), we know that 

( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]
0 1 0 1

1 1 1 2

, ,

,  for all ,

S t s t S t I t y t

X t x t t t L t

ε ε

ε

≥ − + ≤ +

≥ − ∈ +
          (3.26) 

For any [ ]1 2,t t t∈ , if 1t t L≤ + , from the above discussion, we obtain that 

( ) ( )0 1exp .I t Lβ β≥ −  

If 1t t L≥ + , let ( )0 0n ≥ , such that ( ) )1 0 6 1 0 6, 1t t L n t L nω ω∈ + + + + + , 
then from (3.15), (3.25) and (3.26), we have 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( )

1

1 0 6

1 1 0 6

1 0 6

1

1

0

1

0

0 1
1 0 1

0 1

0

exp

  d

exp

  d

exp

  

t

t

t n t

t t n

t n

t

S
I t I t r b S I

S I

X
e c

h X

I t r b S I

S X
e c

S I h X

s
I t r b y

y

e c

ω

ω

ω

θ
θ θ θ θ σ θ

θ θ

θ
ρ θ θ α θ θ

θ θ

θ θ θ θ

θ θ
σ θ ρ θ θ α θ θ

θ θ θ θ

θ ε
θ θ θ ε σ θ

θ ε

ρ θ θ

+

+

+


= − + + +


+ − + 

 = + − +    


+ + − + + 
 −

≥ − + + +

+

∫

∫ ∫

∫

( )
( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )( )
( )

1 0 6

1 0 6

1 1

1 1

2

1 2

0 1 6 0

d

  exp d

exp d

exp .

t

t n

t

t n

x
h x

b M

I t b M

m

ω

ω

θ ε
α θ θ

θ θ ε

θ α θ θ

θ α θ θ

β β ω

+

+

−
− + − 

× − −

≥ − −

≥ −

∫

∫


  (3.27) 

So we have that 

( ) [ ]0 1 2,   for all  , .I t m t t t≥ ∈  

In other words, the infective predator ( )I t  is permanent. This completes the 
proof of Theorem 3.2. 

  
Theorem 3.3 Suppose that assumptions (B1) - (B3) hold. If there exists a 

constant 7 0ω > , such that 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

7 0
0

1

0
0

0

4 lim sup

                               d 0,

t

tt

y
B r b s

y

x
e c

h x

ω θ
θ θ θ σ θ

θ

θ
ρ θ θ α θ θ

θ θ

+

→∞


− +




+ − ≤+ 

∫
 (3.28) 

Then the infective pedator of system (1.2) ( )I t  is extinct. 
Proof. From assumption (B2), we can choose constants 1 0η >  (small 

enough) and 0 0T >  (large enough) such that 

( )2
1 0d ,   for all  .

t

t
b t T

ω
θ θ η

+
≥ ≥∫  

For any ( )0 1ε ε< < , we set ( ){ }0 7 1 2 1min 2 , 2ε ω η ε ω η ε= . If (3.28) holds, 
then there exist 0δ >  and 1 0T T≥  such that 

( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

7 0
0

1

0
0 0

0

         d ,

t

t

y
r b s

y

x
e c

h x

ω θ δ
θ θ θ δ σ θ

θ δ

θ δ
ρ θ θ α θ θ ε

θ θ δ

+  +
− − + −

+
+ − ≤+ + 

∫
 

for all 1t T≥ . Choose an integer 0n  satisfying 2 7 0 2 72 2 1nω ω ω ω≤ ≤ + . Set 
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0 0 7nλ ω= , then 

( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

0

0 7

2

0
0

1

0
0

0

0
0

1

20
0

0

0 0 1

1

          d

               d d

2
1 .
2

t

t

t n

t

t

t

y
r b s

y

x
e c b

h x

y
r b s

y

x
e c b

h x

n

λ

ω

ω

θ δ
θ θ θ δ σ θ

θ δ

θ δ
ρ θ θ α θ θ ε θ

θ θ δ

θ δ
θ θ θ δ σ θ

θ δ

θ δ
ρ θ θ α θ θ θ ε θ

θ θ δ

ε η ε

η ε

+

+

+

 +
− − + −

+
+ − − + + 
 +

≤ − − + −
+

+ − −+ + 
≤ −

≤ −

∫

∫

∫

 (3.29) 

From the second equation of system (1.2), we have 

( ) ( ) ( ) ( ) ( )( )d
,

d
S t

S t r t b t S t
t

≥ −  

for all 1t T≥ . By the comparison theorem and Lemma 2.1 (b), there exists a 
constant 2 1T T≥  such that 

( ) ( )0 2,   for all  .S t s t t Tδ≥ − ≥  

From the second and third equations of (1.2), we have obtain that for all 

1t T≥  

( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1

1

d
d

.

S t I t
t

MS t I t r t e t c t b t S t I t
h t M

+

 
≤ + + − + 

+  

 

By the comparison theorem and Lemma 2.1 (b), there exists a constant 

3 1T T≥  such that 

( ) ( ) ( ) ( )0 3,   for all  .S t S t I t y t t Tδ≤ + ≤ + ≥  

From the second and third equations of (1.2), we have obtain that for all 

1t T≥  

( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1
0

1

d
d

S t I t
t

mS t I t r t t e t c t b t S t I t
h t m

α ρ

+

 
≥ + − + − +  + 

 

By the comparison theorem and Lemma 2.1 (b), there exists a constant 

4 1T T≥  such that 

( ) ( ) ( )1 4,   for all  .S t I t y t t Tδ+ ≥ + ≥  

Moreover, from the first equation of system (1.2), we have 
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( ) ( ) ( ) ( )d
.

d
X t

A t d t X t
t

≤ −  

for all 1t T≥ . By the comparison theorem and Lemma 2.3 (b), there is a 5 1T T≥  
such that 

( ) ( )0 5,   for all  .X t x t t Tδ≤ + ≥  

Let 

( ) ( ) ( )( ) ( ){

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

0

0 0
0

0 1

sup

             

t T
r t b t s t b t

x t y t
e t c t t t

h t x t y t

φ δ

δ δ
ρ σ α

δ δ

≥
= + + +

+ + + + + 
+ + − 

, 

and { }2 3 4 5max , , ,T T T T T= , then we have that for t T≥  

( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )(

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

0

0

0 0
0

0 1

d
d

  

)

  .

I t
I t r t b t S t I t

t

X t I t S t I t
e t c t t t I t

h t X t S t I t

I t r t b t s t b t I t

x t y t
e t c t t t

h t x t y t

ρ σ α

δ

δ δ
ρ σ α

δ δ

= − +

+ + −
+ +

≤ − − −

+ +
+ + − 

+ + − 

   (3.30) 

If ( ) ( )0 1   for all  I t t Tε ε≥ < < ≥ , then let 2 0n ≥  be a nonnegative integer 
such that ( ) )2 0 2 0, 1t T n T nλ λ∈ + + + , integrating (3.30) from T to t, we can 
obtain 

( ) ( ) ( ) ( ) ( )( ) ( )(

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( ) ( )(

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 0

2 0

0

0 0
0

0 1

0

0 0
0

0 1

1 2 0

exp

  d

exp

  d

1exp exp .
2

t

T

T n t

T T n

I t I T r t b t s t b t

x t y t
e t c t t t

h t x t y t

I T r t b t s t b t

x t y t
e t c t t t

h t x t y t

I T n

λ

λ

δ ε

δ δ
ρ σ α θ

δ δ

δ ε

δ δ
ρ σ α θ

δ δ

η ε λ φ

+

+

≤ − − −

+ +
+ + − + + − 

 = + − − −  

+ +
+ + − + + − 

 ≤ − 
 

∫

∫ ∫  

Then it follows that ( ) 0I t →  as t → +∞ . This is a contradiction with 
( )I t ε≥ . Hence there exist a constant 1t T≥  such that ( )1I t ε< . 
Finally, we will prove 

( ) ( )0exp ,I t ε φλ≤                     (3.31) 

for all 1t t≥ . If it is not true, there exists a 2 1t t>  such that ( ) ( )2 0expI t ε φλ> . 
Hence, there exists a ( )3 1 2,t t t∈  such that ( )3I t ε=  and ( )I t ε>  for all 
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( )3 2,t t t∈ . Let n3 be a nonnegative integer such that ( ) )2 3 3 0 3 3 0, 1t t n t nλ λ∈ + + + , 
then integrating (3.31) from 3t  to 2t , we can obtain that 

( ) ( )

( ) ( ) ( ) ( )( ) ( )(

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( )(

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( )

2

3

3 3 0 2

3 3 3 0

0 2

3 0

0 0
0

0 1

0

0 0
0

0 1

1 3 0

exp

exp

  d

exp

  d

1exp exp
2

ex

t

t

t n t

t t n

I t

I t r t b t s t b t

x t y t
e t c t t t t

h t x t y t

r t b t s t b t

x t y t
e t c t t t t

h t x t y t

n

λ

λ

ε φλ

δ ε

δ δ
ρ σ α

δ δ

ε δ ε

δ δ
ρ σ α

δ δ

ε η ε φλ

ε

+

+

<

≤ − − −

+ +
+ + − + + − 

 = + − − −  

+ +
+ + − + + − 

 ≤ − 
 

<

∫

∫ ∫

( )0p .φλ

 

This leads to a contradiction. Therefore, inequality (3.31) holds. Furthermore, 
since ε  can be arbitrarily small, it is clear that ( ) 0I t → , as t → +∞ . This 
completes the proof of Theorem 3.3. 

  
In particularly, when system (1.2) degenerates into W −  periodic system, 

then assumptions (B1) - (B3) is equivalent to the following cases: 
(A1) Functions ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,A t d t c t h t e t b t tσ  are all nonnegative, 

continuous periodic functions with period W , ( )r t  are continuous periodic 
function with period W . 

(A2) 0,  0,  0,  0.r b A d> > > >  

(A3) 1
0

1

0.ecmr
h m

α ρ
 

− + > + 
 

In view of Theorems 3.2 and 3.3, we can get the following corollaries. 
Corollary 3.1 Suppose that assumptions (A1) - (A3) hold, and 

( )

0 1
0

0 1

0

1,

s ecxr
y h x

R
by

σ ρ

α∗

   
+ +   +  = >

+
 

then the infective predator of system (1.2) ( )I t  is permanent. 
Corollary 3.2 Suppose that assumptions (A1) - (A3) hold, and 

( )

0 0
0

1 0

0

1,

y ecxr
y h x

R
bs

σ ρ

α
∗

  
+ +    +   = ≤

+
 

then the infective predator of system (1.2) ( )I t  is extinct. 
In the following, we will discuss the global attractivity of system (1.2). 
Theorem 3.4 Suppose that assumptions ((B1) - (B3) hold. If there exist con-  
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stants ( )0 1, 2,3i iµ > =  such that ( )lim inf 0it
H t

→∞
> , where 

( ) ( ) ( ) ( )
( )( )

( ) ( ) ( )
( )( )

( ) ( ) ( ) ( )
( )( )

( ) ( ) ( )
( )( )
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1 1 2
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21 2
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c t h t m c t h t M
H t d t
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e t c t h t e t c t h t

h t m h t m

c t M e t c t M
H t b t

h t M h t M m

t t
b t

m m

t c t M
H t

M h t M

e t c t M t
mh t M m

µ µ µ ρ

µ ρ µ ρ

µ µ µ ρ

α σ
µ µ µ

σ
µ µ ρ

α
µ ρ µ

= + − −
+ +

− − −
+ +

= − − −
+ +

− − −

= − −
+

− − −
+

     (3.32) 

and 1 2 1 2, , ,M M m m  are the constants obtained in Theorem 3.1. Then system 
(1.2) is globally attractive. 

Proof. Denote ( ) ( ) ( )Y t S t I t= + , then system (1.2) is equivalent to the fol-
lowing system 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )
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d
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d
d

             ,

X t X t
A t d t X t c t Y t I t

t h t X t
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Y t r t b t Y t

t
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e t c t Y t I t t I t
h t X t

I t X t I t
I t r t b t Y t e t c t

t h t X t

Y t I t I t
t t I t

Y t
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ρ α

ρ

σ α





 = − − − −
 +


 = −


 + − − −
 +


 = − +
 +


−
+ −



 (3.33) 

Let ( ) ( ) ( )( )1 1 1, ,X t Y t I t , ( ) ( ) ( )( )2 2 2, ,X t Y t I t  be any two solutions of sys-
tem (3.33). Then from (3.2), (3.4), (3.6), (3.8), we have 

( ) ( ) ( ) ( )1 1 2 2,  ,  ,k k k km X t M m Y t M I t Y t≤ ≤ ≤ ≤ ≤         (3.34) 

for all 0t ≥  and 1, 2k = . 
Define a Liapunov function 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 3 1 2ln ln ln ln .V t X t X t Y t Y t I t I tµ µ µ= − + − + −  

Calculating the Dini upper right derivative of ( )V t , we can obtain 
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According to the condition ( ) ( )lim inf 0 1, 2,3it
H t i

→∞
> = , there exist constants 

0ϖ >  and 0 0T >  such that ( ) ( )1, 2,3iH t iϖ≥ =  for all 0t T≥ . Moreover, 
we can get that 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 1 2 ,D V t X t X t Y t Y t I t I tϖ+ ≤ − − + − + −   (3.35) 

for all 0t T≥ . Integrating (3.35) from 0T  to t , we can see 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

0

0

1 2 1 2 1 2 d ,
t
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V t V T

X X Y Y I Iϖ θ θ θ θ θ θ θ

−

≤ − − + − + −∫
 

then we have, 
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.
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X X Y Y I I

V T

ϖ θ θ θ θ θ θ θ− + − + −

≤ < +∞

∫      (3.36) 

From (3.34) and system (3.33), we can obtain that ( ) ( )( )1 2
d
d

X t X t
t

− , 

( ) ( )( )1 2
d
d

Y t Y t
t

− , ( ) ( )( )1 2
d
d

I t I t
t

−  are all bounded on [ )0,∞ . 

Therefore, in view of (3.36), we obtain 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2lim 0,  lim 0,  lim 0.
t t t

X t X t Y t Y t I t I t
→∞ →∞ →∞

− = − = − =  

In other words, the system (1.2) is globally attractive. This completes the proof. 
  

4. Numerical Simulation and Discussion 

Numerical verification of the results is necessary for completeness of the analyt-
ical study. In this section, we present some numerical simulations to verify our 
analytical findings of system (1.2) by means of the software Matlab. 

In system (1.2), let ( ) ( )2 1.5sinA t t= + , ( ) ( )0.436 0.1sind t t= + ,  
( ) ( )0.5 0.05cosc t t= + , ( ) ( )0.4 0.08sine t t= + , ( ) ( )2 0.2sinh t t= + , 0.85ρ = , 
( ) ( )0.8 0.3sinr t t= + , ( ) ( )1.5 0.1sinb t t= + , and ( ) ( )0.2 0.03sint tα = + . 

Obviously, it is easy to verify that assumptions (B1), (B2) and (B3) hold. Let 
( ) ( )0.06 0.03cost tσ = + , our results show that the upper threshold value 

0.9934 1R∗ = < . Thus the conditions of Corollary 3.2 are satisfied, and the dis-
ease will be extinct (see Figure 1). 

Increasing the infective rate ( )tσ  to ( )0.22 0.03cos t+ , we can easily get 
the lower threshold value 1.0441 1R∗ = > . From Corollary 3.1, we know that the 
disease will be permanent (see Figure 2). 

Moreover, in system (1.2), let ( ) ( )2 0.5sinA t t= + , ( ) ( )0.5 0.2sind t t= + , 
( ) ( )0.4 0.04cosc t t= + , ( ) ( )0.4 0.1sine t t= + , ( ) ( )4 0.5sinh t t= + , 0.5ρ = , 
( ) ( )5 0.4sinr t t= + , ( ) ( )2 0.2sinb t t= + , ( ) ( )0.1 0.03sint tα = + , and
( ) ( )0.8 0.1cost tσ = + . Considering system (1.2) with initial conditions (4, 0.02, 

0.8), (3.2, 0.001, 2.8), (3.9, 0.001, 2.8), (3.7, 0.003, 2.6), (3.4, 0.02, 2.6), numerical 
simulations show that the solution curves finally converge into a closed curve in 
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Figure 1. The left figure shows the movement paths of X, S and I as functions of time t. The graph of the trajectory in (X, S, 
I)-space is shown in the right figure. 0.9934 1R∗ = < . The disease will be die out. 
 

  
Figure 2. The left figure shows the movement paths of X, S and I as functions of time t. The graph of the trajectory in (X, S, 
I)-space is shown in the right figure. 1.0440 1R∗ = > . The disease is permanent. 

 
three-dimensional space, which implies that there exists a periodic solution of 
system (1.2), and it is globally attractive (see Figure 3). Therefore, we conjecture 
that if all the conditions of theorem 3.4 hold, then system (1.2) has a periodic 
solution which is globally attractive. This will be left as our future consideration. 
Moreover, the conditions on the permanence and extinction of the infected prey 
species can merge into a threshold criterion and the thresholds ,R R∗

∗  are ob-
tained in Corollaries 3.1 and 3.2. However, the conditions for permanence and 
extinction of the model that we propose are not perfect. The threshold value has 
not been determined. These will be our future work for the perfection of the 
model. 

Finally, we will perform some numerical simulations to show the importance 
of contact rate σ. For system (1.2), in which all the coefficients are time-dependent, 
we then also discuss the effect of the mean value of contact rate σ on the dyna- 
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mics of the system. Let us fix ( ) ( )2 1.5sinA t t= + ; ( ) ( )0.436 0.1sind t t= + , 
( ) ( )0.5 0.05cosc t t= + , ( ) ( )0.4 0.08sine t t= + , ( ) ( )2 0.2sinh t t= + , 

0.85ρ = , ( ) ( )0.8 0.3sinr t t= + , ( ) ( )1.5 0.1sinb t t= + , ( ) ( )0.2 0.1sine t t= + , 
( ) ( )0.2 0.03sint tα = + , and 2πT = . As σ varies in [0.01, 0.3], we obtain the 

graph for the relation of the upper threshold value R∗  to σ (see Figure 4). This 
figure shows that decreasing the amplitude of periodic contact rate will reduce 
the risk of epidemic prevalence. 
 

 

Figure 3. The existence of periodic solution of system (1.2), where ( ) 0.5 0.2sind t t= + , 

( ) 0.6 0.5sinK t t= + , ( ) 3 sinb t t= + , ( ) 0.6 0.2sine t t= + , ( ) 0.05 0.045sinf t t= + . The 

periodic solution is globally attractive. 
 

 
Figure 4. The graph of the upper threshold value R∗  versus σ . 
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