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Abstract 
The object of our present study is to develop a piecewise constant hazard 
model by using an Artificial Neural Network (ANN) to capture the complex 
shapes of the hazard functions, which cannot be achieved with conventional 
survival analysis models like Cox proportional hazard. We propose a more 
convenient approach to the PEANN created by Fornili et al. to handle a large 
amount of data. In particular, it provides much better prediction accuracies 
over both the Poisson regression and generalized estimating equations. This 
has been demonstrated with lung cancer patient data taken from the Sur-
veillance, Epidemiology and End Results (SEER) program. The quality of the 
proposed model is evaluated by using several error measurement criteria. 
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1. Introduction 

Precise prediction of the survival and the hazard has been a challenging task 
through-out the past years. Research scientists have used parametric methods 
quite often to serve this purpose. However, they impose certain distributional 
assumptions on the hazard functions [1]. Cox proportional hazard [2] model is 
an another well-known approach which has been used extensively in the survival 
analysis. Though this model allows flexible modeling of the hazard with unspecified 
baseline hazard function, the assumption of time-independence of the hazard 
ratio may not always be correct [3]. Use of this model without verification of 
those assumptions can lead to misleading results. A more intuitive approach is 
to assume the hazard ratio to be independent of time, just for smaller periods, 
partitioning the whole time period into several intervals and introducing the 
piecewise constant hazard model. This has been advocated as a flexible and 
parsimonious tool in the literature [4] [5] [6] [7] and is generally useful for 
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interpreting cancer survival and to facilitate the treatments and diagnoses [8]. 
There exist several other techniques for flexible modeling of the hazard function. 
For example, Boracchi et al. [9] have developed a model with cubic splines, 
whereas Diehl et al. [10] have developed a nonparametric model based on kernel 
density estimation approach. 

Artificial intelligence neural networks (ANNs) have been extremely popular in 
almost every field, including computer science, engineering and in the biomedical 
field among others. They have the strength of making predictions based on both 
individual attributable variables and possible complex interactions among them. 
In addition to that, ANNs have the capability of handling nonlinear functions 
and non-additive effects. Moreover, they are free of any statistical assumptions. 
Thus, ANN based survival analysis models serve as efficient alternatives to the 
conventional survival analysis models with enhanced predictive power. One of 
the earliest work in survival analysis with ANN was introduced by Faraggi and 
Simon [11] where they have used ANN as a basis for a nonlinear proportional 
hazard model. Another work, Biganzoli et al. [12] have used ANN to predict the 
smoothed discrete hazards as conditional probabilities of failure. Ravdin and 
Clark [13] have shown that ANN can be used to predict the patient outcome 
with censored survival data including time as a covariate. ANN has also been 
used in modeling cause-specific hazards [14]. Modeling of the piecewise exponential 
model (piecewise constant hazard) using ANN (PEANN) is proposed by Fornili 
et al. [15]. This method accommodates a greater flexibility in modeling the 
complex hazard functions. However, when using this model for a large amount 
of data, the analysis becomes difficult or even impossible due to the high data 
redundancy involved with the modeling. 

In the present study, we have modified the PEANN model by combining it 
with another ANN model introduced by Mani et al. [16] to develop a more 
efficient model. As we mentioned earlier, the proposed model has the capability 
of handling a large amount of data. Importantly, it improves the prediction 
accuracies. This has been demonstrated by using lung cancer patients’ data, and 
their hazards were predicted in the presence of competing risks. A compre- 
hensive evaluation of the proposed model is conducted by using several error 
measurements including Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), Mean Percentage Error (MPE) and Root Square Error (RSE). We compare 
our model results with the Generalized Estimating Equations (GEE). The results 
of the proposed model are much better than the competing models. 

This paper is structured as follows. In Section 2, we introduce the new ANN 
system and related theory along with other models which we used for com- 
parison. Following to that, we present our results. The final section discusses the 
implication and limitations. 

2. Materials and Methodology  
2.1. The Piecewise Constant Hazard Model  

Let T be the survival or the follow-up time for subjects 1, 2, ,i N=   where T = 
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min {Survival Time, Censoring Time}, and X  be the covariates. We consider 
different types of competing risks, R, which causes the subject to observe the 
same event of interest [17]. Equation (1) defines the hazard function for the rth 
risk, 
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Then the corresponding survival function and the probability density function 
can be obtained by Equation (2) and Equation (3) as given below.  
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where iδ  is equal to 0 if the subject i is censored and 1 otherwise. Under the 
piecewise constant hazard model, the follow up time T is divided into several 
disjoint time intervals, 0 1, , , ja a a , where 0 0a =  and Ja →∞  and the hazard 
function for the rth risk is assumed to be constant in the jth time period )1,j ja a− . 
Hence, we have,  

( ) ( )., , ., ,i it jλ λ=X X  

where ( ) ( )1., , , ,R
i irj r jλ λ

=
= ∑X X  for each subject. Then, the modified likeli- 

hood function can be written as in Equation (5), 

( )
( )( )

( )( )
( )( )

1

1 1 11 11

., ,., , 1
!exp ., ,exp ., ,

ij ijiji
i

i iji

J
JN N i ijij

N JJ
i i J ij i ijiji ij i jj

jj
L

jj

δ δδ

δ

λ τλ

δ λ ττλ τ
=

= = =
= ==

= =
∏

∏ ∏∏
∏ ∏∑

XX

XX
 (5) 

where  

th th1, if the subject is deceased during the interval
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iJ  is the last interval that the subject i is observed and ijτ  is the corres- 
ponding exposure time which is defined by 
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The kernel given in Equation (5) corresponds to the likelihood of the Poisson 
random variable ijδ  with mean ( )., ,ij i ijjµ λ τ= X . Applying the logarithm on 
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both sides, we obtain 

( ) ( )( ) ( )log log ., , log .ij i ijjµ λ τ= +X                (6) 

It has been shown that, ( )., , ijλ X  in Equation (6) can be modeled with a 
Poisson log linear model of the form ( )( )log ., , i j ij xλ α β′= +X  as given in [18] 
[19]. However, this model is not effective in handling large amount of subjects 
over a longer period. Sometimes, the analysis even becomes impossible, due to 
the vast amount of ijδ  observations that is created. 

An alternative method is to group the exposure times and the similar ijδ  
values for each interval j and then use the Poisson regression. Nevertheless, 
overdispersion might be a problem with this kind of a Poisson model due to the 
correlated nature of the data. As a possible solution, we can use generalized 
estimating equations, which is an extension of the generalized linear model [20]. 

2.2. The Proposed ANN Model  

In this section, we introduce an efficient method of modeling the hazard function 
with artificial neural networks. ANNs allow flexible modeling of the hazard function 
without any probability distributional assumptions. Moreover, it captures the 
nonlinear effects of the risk factors. 

Preceding our model, Fornili et al. [15] have used ANN to model the  
( )., , ijλ X  in Equation (6) where they referred it as PEANN. However, this 

model uses the same data structure as in the Poisson log linear model, and hence, 
not very effective due to the high data redundancy. As a solution, we introduce a 
new ANN model with a different network architecture. The new ANN model 
has several output nodes; each corresponds to a different time interval. This 
structure is similar to the ANN model used by Mani et al. [16]. The proposed 
model is a competent alternative to the PEANN model, especially when we need 
to deal with large number of subjects or/and longer follow up periods. 

2.2.1. Data Preprocessing 
Prior to using the proposed ANN model, data need to be preprocessed. This 
process can be explained using a simple example. Consider three subjects, called 
A, B and C who have been observed for J number of years. Suppose we have 
information about their risk factors 1X  and 2X , the risk type, their survival 
time and whether they were censored or not, as given in Table 1. We have 
considered two different risk types, 1R  or 2R  where each subject can decease 
due to one of them. The “censor” variable indicates whether a subject has lost 
follow up somewhere during the study period or not. Hence, for all deceased 
subjects during the study period, it is set to zero. As can be seen, subject A and B 
were deceased due to risk types, 1R  and 2R  after 3 and 4 years respectively. 
According to Table 1, subject C has lost follow-up after 2 years. 

In order to use the new ANN model, this information needs to be pre- 
processed as given in Table 2. An ANN consists of several layers; input, hidden 
and output. Input and the output nodes are usually determined by the nature 
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Table 1. Sample data. 

Subject 1X  2X  Survival Time Risk Type Censor 

A 1 0 3 1R  0 

B 1 1 4 2R  0 

C 1 1 2 1R  or 2R  1 

 
Table 2. Preprocessed data. 

Subject 1X  2X  1R  2R  h(1) h(2) h(3) h(4) h(5) ... h(J) 

A 1 0 1 0 0 0 1 1 1 ... 1 

B 1 1 0 1 0 0 0 1 1 ... 1 

C 1 1 1 0 0 0 0.31 0.24 0.12 ..... 0.01 

C 1 1 0 1 0 0 0.42 0.57 0.45  0.63 

 
of the data. In this example, we have four inputs, the covariates 1X  and 2X  
and two indicator variables 1R  and 2R  which we used to denote the risk type 
of the subject. For censored subjects like C, we need to consider the possibility of 
exposing into each of these risk types. Hence, those data are repeated twice as 
given in Table 2. Assuming a constant hazard for each year, we have J number 
of output nodes in the ANN. For each subject i, we have a vector of outputs with 
the following values. 

( )
th th
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, is the Kaplan-Meier [21] hazard probabilities of rth  
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subject is deceased, then ( ) 1h j =  and if the subject is censored, then  
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j
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n
= . With this approach, we can significantly reduce the data redun- 

dancy. 

2.2.2. Network Training 
In developing the proposed ANN model, we used the hyperbolic tangent and the 
exponential activation functions in the hidden and the output layers. The proposed 
ANN structure is represented in Figure 1. The network output, ( ),y j r X , gives 
the hazard for each time interval j, as in Equation (7) 
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Figure 1. The proposed ANN structure. 
 
where 1, 2, ,j J=  . Moreover, 1, , px x  are the inputs, and ( )1

lkw  and ( )2
kjw  

are the hidden and output layer weights. 
During the training, we minimized the regularized canonical error function 

given by Equation (8), where α  is the non-negative weight decay penalty term. 
By adding a weight decay term, we expect to minimize the network overfitting, 
[22]. As per [23], we trained several ANN models with different weight decay 
values. 
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We used a k-fold cross validation technique to find the optimal number of 
hidden nodes in each network. When using a k-fold cross validation technique, 
the training dataset is divided into k folds, where 1k −  folds are used to train 
the model while the remaining set is used for the validation. This process is 
repeated k times until each fold is used for validation. Other model selection 
criteria like Akaike Information Criterion and Bayesian Information Criterion 
are not suitable for model selection as the error function, E is not a linear 
function of the network weights. The optimal networks are selected based on the 
minimum average validation error, and each of them is used to make the hazard 
rate predictions in the testing data set. Scale conjugate algorithm is used for 
weight optimization. Then, the corresponding survival probabilities are obtained 
using Equation (9). We evaluated the models using several error measurements 
calculated based on the predicted median survival time and the actual survival 
time of the non-censored subjects in the testing data. 
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2.3. The Lung Cancer Data  

The data for our study is selected from the Surveillance, Epidemiology and End 
Results (SEER) program [24], and it contains details of 38,262 white lung cancer 
patients data who have been diagnosed from 2004 to 2009. Among these, 23,332 
subjects were deceased due to lung cancer and 4652 were deceased due to some 
other causes. The rest were considered as censored due to missing information 
or lost in the follow-up. 

In our analysis, four risk factors were used: age at diagnosis, tumor size, histology 
and the stage of the cancer. As can be seen from Table 3, a higher amount of 
patients were between the ages of 65 - 75 and most of them had distant metastasis. 
The majority of the patients were diagnosed with adeno or squamous cell carcinoma. 
The overall median follow-up time for males was 1.33 years and 2 years for 
females, while median tumor size is about 38 mm and 32 mm for the two groups 
respectively. 
 
Table 3. Lung cancer patient information. 

 Male Female 

Cause of Death   

Lung 13,029 (64%) 10,303 (58%) 

Other 2724 (13%) 1928 (11%) 

Censored 4767 (23%) 5511 (31%) 

Age at Diagnosis   

45 - 49 years 635 (3%) 705 (4%) 

50 - 54 years 1320 (6%) 1161 (7%) 

55 - 59 years 2206 (11%) 1747 (10%) 

60 - 64 years 3208 (16%) 2515 (14%) 

65 - 69 years 3757 (18%) 3127 (18%) 

70 - 74 years 3723 (18%) 3086 (17%) 

75 - 79 years 3187 (16%) 2837 (16%) 

80 - 84 years 1793 (9%) 1826 (10%) 

85+ years 691 (3%) 738 (4%) 

Stage of the Cancer   

Localized 5536 (27%) 5525 (31%) 

Regional 7028 (34%) 5816 (33%) 

Distant 7956 (39%) 6401 (36%) 

Histology Type   

Adeno 9162 (45%) 10,056 (57%) 

Squamous 8492 (41%) 5054 (28%) 

Large Cell 917 (4%) 691 (4%) 

Small-cell 1949 (10%) 1941 (11%) 

Total 20,520 17,742 
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We found that the survival time between males and females to be significantly 
different from each other, which was already a known fact [25], and hence, two 
separate analysis were conducted for each of them. In order to develop the piecewise 
constant hazard model, we partitioned the time into six disjoint intervals each 
with a 12-month period (1 year). Then we carried our analysis using GEE and 
ANN models using in SAS and MATLAB. 

3. Results  

For both males and females, we created a training data set of 70% and a testing 
data set of 30%. The training set was used to train the models while the testing 
dataset was used to evaluate the prediction accuracies of the proposed models. 

We started our analysis with Poisson regression models. However, according 
to the deviance and the Pearson chi-square statistics, none of those models were 
adequate [26]. This might be due to the high correlation among data. We even 
tried to use several other models, a Poisson model with an overdispersion 
parameter and a negative binomial model. There was no significance difference; 
results remain unchanged with models being inadequate. Therefore, we chose an 
alternative method, generalized estimating equations. Using this approach, we 
came up with two different statistical models for males and females. We found 
the interaction between the stage and histology to be significant in both males 
and females. Applying these two models, we were able to predict the hazard and 
to obtain the corresponding survival probabilities for our lung cancer testing 
data. 

Following to that, we proceeded with building ANN models. We created both 
PEANN and our proposed ANN models. As mentioned earlier, we considered 
five different weight decay values: 0.01, 0.025, 0.05, 0.075, 0.1 and 10-fold cross 
validation was used to find the optimal number of hidden nodes in each case. 
The optimal network is selected based on the minimum average validation error. 
By using each optimal network, we predicted the hazard and corresponding 
survival probabilities for the testing data. In order to evaluate the prediction 
accuracies of ANN and GEE, we used the actual survival times and their predicted 
median survival times of non-censored subjects. For a better comparison, several 
prediction errors were considered, including the root mean square error (RMSE): 
average differences between actual and the predicted values, mean absolute error 
(MAE): average of the absolute errors, mean percentage error (MPE): average of 
percentage errors, and relative squared error (RSE): total squared error nor- 
malized by the total squared error of the simple predictor for both males and 
females as given in Table 4 and Table 5. We can get a better idea of using these 
different error measurements as they serve various aspects of the model predictions. 
For example, RMSE and MAE are conventional measures of prediction accuracies 
while MPE acts as a good measure of bias in the predictions. RSE gives the 
relative error to what it would have been if a simple predictor (the average of the 
actual values) had been used. 

As can be seen from Table 4 and Table 5, the proposed ANN method is better  
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Table 4. Model evaluation for males. 

Male GEE 
Weight Decay 0.01 Weight Decay 0.025 Weight Decay 0.05 Weight Decay 0.075 Weight Decay 0.1 

NewANN PEANN NewANN PEANN NewANN PEANN NewANN PEANN NewANN PEANN 

RMSE 4.0986 2.3253 3.5967 2.2416 3.6277 2.2693 3.5190 2.2144 3.7136 2.3444 3.5561 

MAE 3.5155 1.69 2.8767 1.6226 2.9106 1.6412 2.7791 1.6174 3.0070 1.7292 2.8226 

RSE 8.4539 2.721 6.4604 2.5287 6.5724 2.5916 6.1844 2.4676 6.8873 2.7659 6.3154 

MPE −2.5349 −0.6645 −1.6856 −0.6137 −1.7456 −0.6125 −1.5952 −0.5819 −1.8934 −0.7077 −1.6561 

Data Count 4659 4659 4659 4659 4659 4659 4659 4659 4659 4659 4659 

 
Table 5. Model evaluation for females. 

Female GEE 
Weight Decay 0.01 Weight Decay 0.025 Weight Decay 0.05 Weight Decay 0.075 Weight Decay 0.1 

NewANN PEANN NewANN PEANN NewANN PEANN NewANN PEANN NewANN PEANN 

RMSE 4.3146 2.5209 3.9056 2.5232 3.9682 2.4737 3.8961 2.4969 3.9611 2.4871 3.9256 

MAE 3.8683 1.8927 3.2999 1.8896 3.3834 1.8529 3.2912 1.8700 3.3714 1.8655 3.3240 

RSE 8.6342 2.9475 7.0751 2.9529 7.3036 2.8383 7.0407 2.8916 7.2776 2.869 7.1476 

MPE −2.9081 −0.8038 −1.9276 −0.811 −2.0216 −0.7844 −1.9000 −0.7757 −2.0242 −0.7689 −1.9494 

Data Count 3568 3568 3568 3568 3568 3568 3568 3568 3568 3568 3568 

 
than both GEE and PEANN with respect to RMSE and MAE for both genders. 
In addition to that, RSEs for new ANNs are smaller than those two types of models. 
Although the predictions of new ANNs have negative biases which indicate 
underestimations of the survival, it is significantly less than the other two models. 
In particular, we found the smallest error values for the new ANN models with 
weight decay 0.05 and 0.075 for females and males respectively. Further analysis 
of the hazard rates was carried out using those two models. 

Figure 2 and Figure 3 represent the hazard variation among male and female 
patients according to different tumor sizes while keeping the other categorical 
risk factors in their mode categories. It is important to note that we have chosen 
different tumor size ranges for males and females depending on the available 
training data. We followed this precaution to increase the validity of our results, 
as ANNs are data driven models, and hence depend heavily on the amount of 
training data with each tumor size. According to Figure 2, we can see that the 
hazard rate for males increases over the follow-up years for smaller tumor sizes 
while it slightly decreases for higher tumor sizes. Males seem to have a high risk 
within the first two years of diagnosis. As opposed to males, there are significant 
differences in the hazard rate with the tumor sizes among females (Figure 3). 
For smaller tumors, hazard rate increases over the years while for larger tumors, 
it increases during the first three years and then decreases. The above graphs 
reveal that our ANN models are capable of capturing the complex shapes of the 
hazard functions, which was one of the main advantages of ANN over conven- 
tional survival analysis models. Despite some unusual findings, overall these hazard 
functions capture the indwelling patterns in the data. 



H. Rodrigo, C. P. Tsokos 
 

42 

 
Figure 2. Hazard variation according to tumor size (mm) for males. 
 

 
Figure 3. Hazard variation according to tumor size (mm) for females. 
 

Figure 4 represents the variation in the hazard rates according to the age group 
and histology types, for both males and females. From that, we can observe that 
there are noticeable differences in the hazard. Nevertheless, we did not find the 
interaction between age group and the histology to be significant from our GEE 
model. This depicts the capability of detecting nonlinear patterns by ANN models. 
In accordance with [27] as, we observed a comparatively higher hazard for elderly 
patients than for younger patients, regardless of their gender. Usually, for elder 
patients, hazard seems to be elevated soon after the diagnosis while for younger 
patients, hazard tends to increase over time. 

Figure 5 and Figure 6 represent the variation in the hazard function according 
to the histology and stage for males and females respectively. These graphs reveal 
the fact that there exist significant differences in the hazard according to the 
histology and stages among males and females. We can see that the hazard for 
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Figure 4. Hazard variation according to age group and histology types: (a) Small male, (b) Small female, (c) Adeno male, (d) 
Adeno female, (e) Large male, (f) Large female, (g) Squamous male, (h) Squamous female. 

 
small cell carcinoma is higher in females than in males for all stages as con- 
firmed by the [28]. 

4. Discussion  

We have introduced a new neural network architecture to model the piecewise 
constant hazard model. This provides a more convenient approach to handle a  
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Figure 5. Hazard variation among males according to histology and stage. 
 

 
Figure 6. Hazard variation among females according to histology and stage. 
 
large amount of observations over longer periods. In particular, our ANN model 
captures the complex shapes of the hazard functions, in the presence of com- 
peting risks. Moreover, these ANN models can handle nonlinear and non-additive 
effects among the risk factors. The new method overcomes several limitations 
associated with the traditional piecewise constant hazard model. Our ANN model 
is capable of modeling the hazard functions even with a large amount of data 
where the equivalent Poisson regression model of the piecewise constant hazard 
model fails. Importantly, the prediction accuracy of the survival times given by 
the proposed ANN model is higher than both generalized estimating equation 
models and the PEANN model. However, PEANN model is much suitable than 
our ANN model when there are time-dependent risk factors, as it is specially 
designed to deal with that kind of data. Our findings confirm the fact that elder 
patients have relatively higher hazard compared to younger patients. Their hazard 
is usually at the greatest around the first two years of diagnosis while for younger 
patients it tends to vary. However, we advise doing further analysis before making 
any clinical decisions. 
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In developing the proposed ANN model, we use the nonlinear Poisson regression 
model used in [29]. Network parameters are trained using the back propagation 
algorithm. In order to compute the Hessian matrix, which contains the derivatives 
of the error function with respect to the weights and biases, we used a special 
algorithm developed by Pearlmutter [30]; a similar approach is that of Nabney 
[31]. We have used the cross-validation technique to identify the optimal number 
of hidden nodes in the neural networks. There is a possibility of incorporating 
Bayesian learning techniques in our model selection, like the evidence procedure. 
This is one of possible future research. 
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