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Abstract 
After a historical reconstruction of the main Boltzmann’s ideas on mechanical 
statistics, a discrete version of Boltzmann’s H-theorem is proved, by using ba-
sic concepts of information theory. Namely, H-theorem follows from the cen-
tral limit theorem, acting inside a closed physical system, and from the maxi-
mum entropy law for normal probability distributions, which is a conse-
quence of Kullback-Leibler entropic divergence positivity. Finally, the relev-
ance of discreteness and probability, for a deep comprehension of the rela-
tionship between physical and informational entropy, is analyzed and dis-
cussed in the light of new perspectives emerging in computational genomics. 
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1. Introduction 

Entropy appeared in physics, in the context of thermodynamics. However, after 
Boltzmann, it became a crucial concept for the statistical mechanics and for the 
whole physics. Since Shannon’s paper of 1948 [1], information entropy was the 
basis of information theory on which current IT technology relies. It is really 
impressive that physical and informational entropies are essentially the same 
thing, and probably this common essence is so far not completely and properly 
understood. Physicist John Archibald Wheeler claimed in his speculations [2]: 
“It from bit” (all things physical are information-theoretic in origin). Namely, 
many open problems raised by modern physics will probably be clarified in a 
more general framework where informational concepts will be the main part of 
new physical theories. Entropy is directly related to information, probability, 
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complexity, and time. Boltzmann’s investigations were aimed at reducing ther- 
modynamical entropy to mechanical concepts, by integrating Newton’s me- 
chanics with statistical distributions. The focus of this reduction was the deter- 
mination of a microscopical representation of entropy through which explaining 
the arrow of time implied by thermodynamics. This explanation was the so 
called H-Theorem that Boltzmann introduced in 1872 [3], showing that physical 
time is oriented as the decrease of the H-function (the entropy, apart from addi- 
tive and multiplicative constants and the change of sign). A satisfactory proof of 
this property was never completely found by Boltzmann. 

In this paper, we prove a discrete version of the H-Theorem by using basic 
physical and informational concepts. Namely, Boltzmann’s difficulties to prove 
the H-Theorem are due to the information-theoretic nature of this theorem, 
more than fifty years before the foundation of Information Theory. 

The present paper is mainly of methodological nature. In this perspective any 
discipline based on information-theoretic concepts may benefit from the analy- 
sis developed in the paper as it concerns with the link between the physical and 
the informational perspectives of entropy.  

2. From Physical to Informational Entropy 

In 1824, Sadi Carnot wrote a book about the power of fire in producing energy 
[4]. It was known that heat can provide mechanical energy. Moreover, as it was 
experimentally later shown by Joule [3], mechanical energy can be entirely 
transformed into heat (first law of thermodynamics). However, it is impossible 
entirely transforming heat into mechanical energy. In fact, this is a way to 
formulate the second law of thermodynamics, which is also equivalent to the 
impossibility of spontaneous processes where heat passes from a colder body to a 
hotter body. Carnot introduced some ideal heat engines, called reversible 
engines, reaching the optimal efficiency in heat-work transformation. In this 
way, he proved a theorem giving an evaluation of the heat quantity that 
necessarily cannot be transformed into mechanical energy by heat engines. 
Namely, when an engine M  takes a quantity 2Q  of heat from a heat source 
(boiler) at constant temperature 2T , then a quantity 1Q  has to be released to a 
colder body (condenser) at temperature ( )1 2 1T T T> , and only the difference 

2 1Q Q−  can be transformed into mechanical work. For reversible engines 
working between 2 1,T T , the released heat quantity 1Q  reaches the minimum 
(positive) value, and the following equation holds [5]:  

1 2

1 2

Q Q
T T

=                           (1) 

therefore, if we denote by S  the heat quantity 1Q  when 1T  is the unitary 
temperature and 2T T=  we obtain: 

.S Q T=                           (2) 

S  corresponds to a thermodynamical quantity, later called by Clausius [3] the 
entropy (of M ), corresponding to the minimum heat quantity that necessarily a 
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heat engine, working between temperatures T  and 1 has to release (to the 
unitary condenser) and that cannot be transformed into mechanical work. 

The famous formulation of the second law of thermodynamics, by means of 
entropy S , asserts that in a closed system (that does not exchange energy with 
the external environment) the entropy cannot decrease in time. 

In this scenario, in 1870s years, Ludwig Boltzmann started a research aimed at 
explaining the second law of thermodynamics in terms of Newtonian mechanics 
[6] [7] [8]. The main question was: “Where does time arrow came from?”. In 
fact, in mechanics all the laws are symmetric with respect to time and the same 
equations tell us what happens in the future, but also what happened in the past. 
In no equation there is an explicit indication about the direction of events in 
time (the first Chapter of Wiener “Cybernetics” [9] is devoted to the different 
notions of time in Newtonian mechanics and in biology). 

The first step of Boltzmann’s project was a mechanical formulation of entropy. 
This formulation can be found by starting from the fundamental law of ideal 
gases, where P  is the pressure, V  the volume, T  the absolute (Kelvin) 
temperature, N  the number of gas moles, and R  is the gas constant:  

.PV NRT=                           (3) 

If we pass from the gas moles N  to the number of molecules n  in the gas 
(by the relation Na n=  where a  is the Avogadro constant), we get an equi- 
valent formulation, where k Ra=  is now called the Boltzmann constant: 

.PV nkT=                          (4) 

Now, let us assume that the gas takes some heat by expanding from a volume 

1V  to a volume 2V . Then, the quantity Q  of this heat is given by: 
2

1
d

V

V
Q P v= ∫                          (5) 

and by expressing P  according to Equation (3), we get: 

( )2 2
2 1

1 1
d 1 d ln ln .

V V

V V
Q nkT V v nkT V v nkT V V= = = −∫ ∫         (6) 

Let assume to start from a unitary volume 0 1V = . If in Equation (6) 1 0V V= , 

2V V=  and T  is moved to the left member, then we obtain:  

lnQ T nk V=                        (7) 

that, according to Carnot’s equation (2), gives:  

lnS nk V=                          (8) 

that is:  

ln nS k V=                          (9) 

where nV  expresses the number of possible ways of allocating the n  mole- 
cules in V  volume cells. The passage from constant R  to constant k  and 
from N  moles to n  molecules, accordingly, is crucial to the microscopic 
reading of the formula (very often this is not adequately stressed when 
Boltzmann’s argument is analyzed).  
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We can assume that the gas is spatially homogeneous, that is, the same 
number of molecules are in any volume cell, so that spatial positions of cells do 
not matter. Therefore, an allocation of n  molecules in V  volume cells, is 
completely determined by the (molecule) velocities allocated in each volume cell , 
apart from multiplicative constants (factorials expressing the indiscernibility of 
molecules and cells), which in logarithmic terms are additive constants that are 
omitted. In conclusion, velocities partition the n  molecules of gas in a number 
of different velocity classes: the intervals 1 2, , , mv v v± ∆ ± ∆ ± ∆  (with ∆  a 
fixed increment value, and 1 2, , , mn n n  the numbers of molecules having ve-
locities in the 1 2, , , mv v v  centered intervals, respectively). Hence, all the 
number of allocations of n molecules in the volume V corresponds to the num-
ber of different ways W that n molecules can be distributed into m different ve-
locity classes (the number of different micro-states associated to a given thermo- 
dynamic macro-state). Whence, the final famous equation is obtained:  

ln .S k W=                          (10) 

Equation (10) is reported in Boltzmann’s tomb in Wien. In this form, the 
equation was later given by Max Planck, who followed Boltzmann’s approach in 
his famous conference on December 14, 1900, from which Quantum Theory 
emerged [10]. The importance of this microscopic formulation of Entropy is the 
statistical approach that stemmed from it and that became crucial in the whole 
physics of twentieth century. 

The computation of W  was obtained from Boltzmann by means of the so 
called Maxwell-Boltzmann statistics, related to the “Wahrscheinlichkeit” prin- 
ciple, and can be described by the following deduction. Namely, Let us consider 
all the molecules within the same velocity class as undistinguishable, then the 
different distributions of molecules into the m  velocity classes are given by the 
following multinomial expression:  

1 2

!
! ! !m

nW
n n n

=


                     (11) 

therefore, by Equation (10): 

1 2

!ln
! ! !m

nS k
n n n

=


                    (12) 

that is, by using Stirling approximation ! 2π n nn n n e≈  [11], ln ! lnn n n≈  
and we get: 

( )1 1 2 2ln ln ln lnm mS kn n k n n n n n n= − + +  

if, for 1, ,i m=  , we express in  by means of i ip n n= , that is, i in np= , then 
we get (remember that 1 2 1mp p p+ + + = ): 

( )1 1 2 2ln ln ln lnm mS kn n k np np np np np np= − + + +  

( ) ( ) ( )1 1 2 2ln ln ln ln ln ln lnm mS kn n kn p n p p n p p n p = − + + + + + +   

[ ] ( )1 2 1 1 2 2ln ln ln ln lnm m mS kn n kn n p p p kn p p p p p p= − + − + + − + + +   
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1 ln .m
i iiS kn p p

=
= − ∑  

A discrete version of function H  can be defined as:  

1
ln

m

i i
i

H n n
=

= ∑                         (13) 

hence the equations above show that, apart from additive and multiplicative 
constants, S H= − , therefore the second law of thermodynamics, asserting the 
non-decrease of entropy (for closed systems) is equivalent to the law of non- 
increasing H  function. 

This was the first time that probability become an essential conceptual 
framework for physical representations. Surely, Maxwell’s anticipations on gas 
velocity distribution and on the microscopic interpretation of temperature in 
terms of average velocity [10] were fundamental to Boltzmann’s speculations, 
but in his approach the probabilistic setting is intended as an essential key for 
explaining what otherwise was impossible to explain. The forthcoming physics 
will be strongly based on probability and almost all the important achievements 
of quantum physics would have been impossible without an extensive and 
innovative use of probability [10]. 

If we consider the following informational entropy SH  introduced by 
Shannon [1] for a discrete probability distribution { } 1,i i m

p p
=

=  (its extension 
to continuous probability distributions is obtained by replacing sum with 
integral):  

1
lg

m

S i i
i

H p p
=

= −∑                        (14) 

then, it results from equations above that SH  coincides with the thermody- 
namical entropy apart from a multiplicative constant. 

The next Boltzmann’s result was the “H-Theorem”, which he tried to prove 
since 1872. However, all his attempts of finding a satisfactory proof of this 
theorem were not completely successful. The reason of these failures is the 
information-theoretic character of H-Theorem. Therefore, we need to enter in 
this theory that started in 1948 with the famous Shannon’s paper [1] “A mathe- 
matical theory of communication”. 

3. Shannon’s Entropy 

Shannon’s idea was entirely probabilistic. In fact, we can measure the infor- 
mation of an event e  by means of a function ( )eF p  of its probability ep , 
because the more rare an event is, the more we gain information when it occurs. 
Moreover, this function has to be additive for events that are independent, that 
is:  

( ) ( ) ( )1 2 1 2,I e e I e I e= +                     (15) 

if 
1 2
,  e ep p  are the respective probabilities of 1 2,  e e , this means that the 

function ( ) ( )eF p I e=  has to verify:  

( ) ( ) ( )1 2 1 2e e e eF p p F p F p× = +  
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and the simplest functions satisfying this requirement are the logarithmic 
functions. Therefore, if we use the logarithmic in base 2, denoted by lg , as it is 
customary in Information Theory, then we can define the information of an 
event e  with probability ep  as:  

( ) ( )lg .eI e p= −                      (16) 

With this probabilistic notion of information, given a discrete probability 
distribution { } 1,i i k

p p
=

= , also called by Shannon an information source (a set 
where a probabilities are associated to its elements), information entropy ex- 
presses the probabilistic mean of the information quantities associated to the 
events { } 1,i i k

e
=

, with respect to the probability distribution p . 
An anecdote reports that when Shannon asked John von Neumann to suggest 

him a name for the quantity S , then von Neumann promptly answered: 
“Entropy. This is just entropy”, by adding that with this name the success of 
information theory was quite sure, because only few men knew exactly what 
entropy was. 

Another remarkable fact is the paradoxical nature of entropy, due to its 
intrinsic probabilistic nature. This paradox is apparent at the beginning of 
Shannon’s paper [1]. In fact, Shannon says that he is searching for a measure of 
the Entropy (information) or uncertainty of events. But how can we consider 
these notions as equivalent? It would be something like searching for a measure 
of knowledge or ignorance. Can we reasonable identify a measures for opposite 
concepts? The answer to these questions can be found in the intrinsic orien- 
tation of events in time. When an event e  can happen with a probability p , 
we can measure its information by a function of its a priori uncertainty p , but 
after it happens, we gain, a posteriori, the same amount of information asso- 
ciated to p , because a priory uncertainty was transformed into a gain of cer- 
tainty. The same kind of opposite orientation is always present in all informa- 
tional concepts and it is often a source of confusion when the perspective of 
considering them is not clearly defined [12]. 

4. Boltzmann’s H-Theorem 

A concept related to entropy is the entropic divergence between two probability 
distributions ,  p q :  

( ) ( ) ( ) ( )( )lg .
x X

D p q p x p x q x
∈

= ∑               (17) 

The following proposition (see [13] for a proof) is a basic property of entropic 
divergence. 

Proposition 1. ( ) 0D p q ≥  for any two probability distributions.  
In an ideal gas the collisions between molecules are elastic, that is, the sum of 

the kinetic energies of two colliding molecules does not change after collision. 
Proposition 2. In an isolated ideal gas the variance of velocity distributions is 

constant in time. 
Proof. If the gas is isolated then its temperature is constant, and as Maxwell 
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proved [3] its temperature is uniquely related to its average velocity. Therefore, 
the average kinetic energy is constant in time, and being the gas ideal, its whole 
kinetic energy is constant, that is, also the second order momentum of velocity 
distribution is constant. Therefore a fortiori the variance is constant too.   

Let ( )N x  denote the normal probability distribution ( )
2

221 e
2π

x

N x σ

σ

−
= ,  

and ( )S f  be the Shannon entropy of a probability distribution f  (here 
( )D f N  is the continuous version of Kullback-Leibler divergence). The fol- 

lowing propositions are proven in [13], but we report their proofs for reader’s 
convenience. 

Proposition 3. 

( ) ( )21 ln 2π
2

S N eσ=                     (18) 

Proof. ([13]). 

( ) ( ) ( )

( )

( )

( ) ( )

( )

2

22

2

2
2

2

2
2

2

2
2

2

2

2

ln d

eln d
2π

ln 2π d
2

d ln 2π d
2

ln 2π 1
2

1 1= ln 2π
2 2
1= ln 2πe .
2

x

S N N x N x x

N x x

xN x x

N x x
x N x x

E x

σ

σ

σ
σ

σ
σ

σ
σ

σ

σ

+∞

−∞

−
+∞

−∞

+∞

−∞

+∞ +∞

−∞ −∞

= −

= −

 
= − − − 

 

= +

= + ×

+

∫

∫

∫

∫ ∫   

Proposition 4. Normal distributions are those for which entropy reaches the 
maximum value in the class of probability distributions having the same 
variance.  

Proof. ([13]). Let f  denote any probability distribution of variance 

( ) 2Var f σ= .  

( ) ( ) ( )
( )

ln d
f x

D f N f x x
N x

+∞

−∞
= ∫   

( ) ( ) ( ) ( ) ( )ln d ln dD f N f x f x x f x N x x
+∞ +∞

−∞ −∞
= −∫ ∫   

( ) ( ) ( ) ( )

2

22

2

eln d ln d
2π

x

D f N f x f x x f x x
σ

σ

−
+∞ +∞

−∞ −∞
= −∫ ∫  

( ) ( ) ( ) ( )
2

2 22ln e d ln 2π d
x

D f N S f f x x f x xσ σ
−+∞ +∞

−∞ −∞
= − − +∫ ∫   
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( ) ( ) ( ) 2 2
2

1 1d ln 2π 1
22

D f N S f f x x x σ
σ

+∞

−∞
= − + + ×∫   

( ) ( ) ( ) ( ) ( )( )2 2
2

1 1Var ln 2π   Var
22

D f N S f f fσ σ
σ

= − + + ≤   

( ) ( ) ( )21 1 ln 2π
2 2

D f N S f σ≤ − + +   

( ) ( ) ( )( )21= ln e ln 2π
2

D f N S f σ− + +  

( ) ( ) ( )21 ln 2πe
2

D f N S f σ≤ − +  ( ( ) 0D f N ≥  by Proposition 1)  

therefore ( ) ( ).S f S N≤    
Proposition 5. In an isolated ideal gas, for each cartesian component, the 

velocity distribution, when normalized as a probability distribution, tends, in 
time, to reach the normal distribution (of a given variance). 

Proof. The proposition is a consequence of the central limit theorem [11]. In 
fact, if molecules collide randomly, the velocity of each molecule is a random 
variable. Let us consider the velocity intervals 1 2, , , mv v v± ∆ ± ∆ ± ∆  (of radius 
∆ ). Then, a boolean random vector ( ), 1 2, , ,g t mX x x x=   can be associated to 
each gas molecule g  and to any time point t  taking values in a set of discrete 
time steps, in such a way that, if at time t  molecule g  has velocity in the 
interval iv ± ∆ , then 1ix =  and 0jx = , for every ,  1j i j m= ≤ ≤/ . In this 
way, the velocity distribution is the the sum ,, g tg tX∑ . Therefore, a large 
number of random variables are cumulated in the cartesian components of 
velocity distribution.   

From the previous propositions Boltzmann’s H-theorem follows. 
Proposition 6. (H-Theorem) In an isolated ideal gas the H  function 

cannot increase in time. 
Proof. By Proposition 5, velocities tend to distribute according to a normal 

law, and they keep the variance constant, according to Proposition 2. But, 
according to Proposition 4, this distribution is that one having the maximum 
entropy in the class of all probability distributions with a given variance.   

4.1. Pythagorean Recombination Game 

A simple experimental validation of the above proposition can be obtained with 
a simple game, which we call Pythagorean Recombination Game (PRG), based 
on the following rules [14]. Chose a “large” multiset G  of random numbers 
(numbers can occur in G  with repetitions) and execute, at each step, the 
following operations: 

1) Randomly choose two numbers ,  a b  in G ;  
2) Randomly split a  into 1a  and 2a , in such a way that 2 2

1 2a a a= + ; 

3) Randomly split b  into 1b  and 2b , in such a way that 2 2
1 2b b b= + ; 

4) Replace in G  the pair ,  a b  with the pair 2 2
1 2a a b′ = + , 2 2

1 2b b a′ = + . 

The idea of PRG is that of representing a two-dimensional gas where any 



V. Manca 
 

9/15 OALib Journal

number is a velocity and the rules 2) and 3) define a collision axis and the 
exchange the velocity component with respect to this axis. If we play this game 
for a sufficiently number of steps and we compute the H-function at each step, 
we can easily check that H approaches to a minimum value, and at same time, 
the distribution of numbers (velocities within some intervals) clearly appro- 
ximates to a χ  distribution of freedom degree 2. This distribution corresponds 
to that of a random variable 2 2X Y+  where both ,X Y  follow a normal 
distribution. 

Proposition 7. In Pythagorean Recombination Game H-function does not 
increase and the distribution of velocity components tend to a normal distri- 
butions as the game goes on.  

Proof. All the hypotheses of Proposition 6 are verified in PRG. In fact, 
collisions are elastic, because after each “collision” the kinetic energy remain 
unchanged. Moreover, the system is isolated because no energy is exchanged 
with the external world, and the numbers of colliding velocities and steps can be 
assumed to have values for which “large number laws” are acting in the process 
of velocity recombinations during the game.   

The proposition above was experimentally verified by a suitable Matlab 
program implementing PRG (for suitable numerical parameters). Figure 1 
shows the shape of velocity distributions after only 1000 steps. A detailed 
description of this experiment, with the data and the obtained curves can be 
found in [14]. 

4.2. Entropy Generalizations and Applications 

The schema of H-function definition from Boltzmann’s formula lgS k W=  is 
well known studied and presented in a lot of papers of physical and infor- 
mational entropy. But there is an hidden aspect that has never properly inve- 
stigated. The H function that is proportional to SH  Shannon entropy coincides, 
up to Stirling approximation, with:  

{ }1

!lg .
{ !S

i i m

nH
n

≤ ≤

=
Π

                      (19) 

 

 
Figure 1. Left: Velocities after 1000 steps of PRG (50 collisions per step, 4000 particles, 
range of initial random velocities 500 - 600, level of approximation 2 ( 2v v′= ± ). The 
shape of χ  distribution of two freedom degrees appears. Right: H-function along the 
steps. 
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Here we briefly suggest a possible generalization of entropy that could be 
useful in the analysis of entropy for finite structures, that is something very 
relevant in the context of Machine Learning approach and computational geno- 
mics investigations [15] [16]. First, let us give a proposition about digital repre- 
sentability.  

Proposition 8 (Digital Information Bounds) The total number ( )digitk n  
of digits necessary to encode n  objects as strings, over an alphabet of k  digits, 
verifies the following condition:  

( )( ) ( ) ( )( )lg 1 digit lg 1 .k k kn n n n n+ ≥ ≥ −                   (20) 

Proof. We present a simple geometric proof of this proposition. Assume to 
place the n  object we want to encode over k  digits along a top line at level 0 
(encoding n  with a segment of n  unitary lengths). Under it, we place shorter 
lines such that the line of level i  has the length of the line above it minus ik . 
We can depict this by means of the following line arrangement (here lengths are 
not proportional to the values): 

------------------------------------------------ Level 0 ( n  objects) 
-----------------------------------------     Level 1 ( n k−  objects) 
--------------------------------            Level 2 ( 2n k k− −  objects) 
. 
. 
. 
-----------------------                   Level ( ) 1lg k n −    

-----------                            Level ( )lg k n    

Now, the minimum number of digits that we need for encoding n  objects is 
given by the sum of the lengths of all the lines of the arrangement. In fact, first 
line counts the initial number of digits that we need to assign at least one digit to 
each of the n  objects. The second line assigns n k−  digits to the objects that 
need at least two digits to be encoded. Then, iteratively, at the ( ) 1lg k n +    step 
we add the last number of digits for the objects encoded with strings of 
maximum length. More formally we have that: 

( )
( )

( )
lg

0
digit

nk

k n
i

n F i
  

=

= ∑                      (21) 

where, for ( )0 ki lg n≤ ≤    , ( )0iF n= , ( ) ( ) 11 i
iF i F i k ++ = − . 

Therefore, the exact number of digits is given by Equation (21), while the 
condition stated by the proposition follows from the fact that the number of 
digits used from level 0 to level lg n    is surely less than ( )( )1kn lg n +   , 
while the number of digits used from level 0 to level lg n    is surely greater 
than lgn n    minus the missing parts (the gap with respect to n) of levels from 
1 to lg 1n −   , and this missing part provides a sum less than n  (as it easily  
results by evaluating ( ) ( )lg 12 2 nk k k k k n −  + + + + + + +  ). Therefore, the  

number of digits used from level 0 to level lg 1n −    is greater than lgn n n−   , 
so the condition is proved.   
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The proof of H-Theorem given in the present paper substantially differs from 
classical proofs of the same type. In particular, Jaynes [17] developed a reinter- 
pretation of Statistical Mechanics in terms of information-theoretic concepts. In 
this analysis key concepts are the principle of maximum-entropy in the 
probability estimation (MEP) and Shannon’s Asymptotic Equipartition Principle 
(AEP). In [18] a proof of H-theorem is given where the informational approach 
to physical analysis provides (in a restricted case) important consequences about 
the relationship between Boltzmann and Gibbs approaches to the microscopic 
representation of thermodynamical states. However, a number of important 
differences can be individuated between papers [17] [18] and the analysis of the 
present paper. First, in both Jaynes’ papers the theoretical setting is the classical 
continuous framework of physics. Moreover, the proof of H-theorem in [18] is 
not purely informational, but rather a physical proof where physical concepts are 
informationally reinterpreted, and the conclusions do not directly follow from 
properties of informational entropy. Other main differences are in the focus and 
in the perspectives, also due to the dates of papers [17] [18]. In fact, no efficient 
Montecarlo methods were available at that times, which could give simple 
numerical evidences of H-function behavior as coherent with Boltzmann 
intuition (exactly in the opposite direction of [18], where Gibbs’ formulation is 
preferred). Contrarily, the Pythagorean Recombination Game given in Section 
4.1 easily shows that the arrow toward the H-decrease is completely informa- 
tional and corresponds exactly to Boltzmann’s H-function trend. The discrete 
representation of H-function provides in a very simple way the essence of the 
theoretical proof and of its numerical validation. Although Boltzmann’s intui- 
tion was surely based on a discretization of thermodynamical states, starting 
from Equation (9), the physical tradition prevailed in Boltzmann’s search for 
physical arguments supporting the H-Theorem. Therefore, Boltzmann’s revo- 
lution was in the crucial role of statistical distributions. Discreteness appeared as 
a theoretical necessity at the birth of Mechanical Statistics, but it becomes a key 
ingredient of physical modeling when Max Plank found the solution to the black 
body irradiation formula (starting from Boltzmann’s logS k W=  equation) 
[10], where the discrete nature of quanta appears linked to the energy pro- 
bability distribution. In conclusion, both probability and discreteness have 
crucial roles in the comprehension of conceptual roots of statistical mechanics 
and were the conceptual seed of the subsequent development of the whole 
modern physics. This is the reason for which discrete proofs of H-Theorem 
provide a more general comprehension of the relationship between physical and 
informational entropy. 

In many applications, where entropy is the empirical entropy computed from 
observed frequencies, the probability estimation is not the main aspect of the 
problem [15] [16]. For example, when we deal with genomic information as 
obtained by k -mer sequences of genomes [15] [19] other crucial aspects 
emerge such as: i) efficient methods for computing entropy, which is com- 
putationally prohibitive when k  increases, and ii) the use of random genomes 
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for determining anti-random aspects that concern with the biological functions 
emerging during evolution. In conclusion, the discrete and computational per- 
spectives are ingredients that are missing in classical discussions about infor- 
mation and physical entropies. But, exactly these perspectives are urgently re- 
quested in many contexts of application, where entropic concepts promise to 
disclose new possibilities of interpretation, especially in biological and medical 
fields. The next section wants just to give a broad idea of a possible discrete 
approach to entropic generalizations that, when combined with suitable algo- 
rithms, could provide useful tools for data analysis and interpretation [16]. 

In [15], a biological complexity measure, called biobit, is introduced for any 
genome  , where two entropic components are combined: 1) the entropic 
component ( )EC   and 2) the anti-entropic component ( )AC  . The com- 
ponent ( )EC   is the empirical entropy of genomes computed with respect to 
the word length ( )2lg n  ( n  is the length of  ), whereas the anti-entropic 
component is the gap between ( )2lg n  and ( )EC  , where ( )2lg n  results to 
be an upper bound to any empirical entropy of a genome long n  (corre- 
sponding to a suitable Kullback-Leibler divergence). It results that along evolu- 
tion the biobit measures of genomes increase. In a sense, this trend seems to 
contradict the law of increase for physical entropy. In fact, genomes are gigantic 
molecules that have to obey to the laws of physics, therefore, their biological 
complexity shows an evolutionary trend toward an opposite direction. The way 
of escaping from this paradox is given by the intrinsic symbolic nature of 
informational entropy of genomes, which transcends the physical limits of 
molecules. In fact, even if individual genomes are physical objects, the genomes 
of species are abstract symbolic sequences keeping their identity beyond their 
physical instances into individual genomes. 

From the above Proposition it follows that the average length of strings 
encoding n  objects is between ( ) 1lg k n +    and ( ) 1lg k n −   , therefore 

( )log k n  can be assumed as (a good approximation to) the average amount of 
digital information that is intrinsically related to a set of n  objects. Now, if we 
go back to Equation (19), in the light of proposition above, we discover that 
Shannon Entropy is proportional to the minimal digital information of the set of 
permutations of n  objects into m  classes that leave unchanged the cardi- 
nalities of these (disjoint) classes. This phenomenon can be easily generalized in 
many ways, by providing new simple methods for computing other kinds of 
entropies over finite structures. 

Let us shorty outline a general notion of Structural Entropy directly related to 
Equation (19). Let us consider a finite structure Z  (of some type) defined over 
a set A , called the support of Z . Let us consider the class A  of 1-to-1 
functions from A  to A . The subet Z  of A  is the set of iso-confi- 
gurations of Z  sending Z  in itself (or in an equivalent structure with respect 
to a suitable notion of structural equivalence). Therefore, we define the 
Structural Entropy of Z  (of base k ) as the average digital information of the 
isoconfigurations Z  (see Proposition 8, ||  is set cardinality): 
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( ) ( ) ( )digit .lgk Z Z ZkH Z = ≈                  (22) 

The above definition tells us that Boltzmann’s H-function corresponds to the 
Structural Entropy of a partition of n  undistinguishable objects into m  
distinct sets, when   is the class all n -permutations. Topological entropy [20] 
is defined, following a similar idea, as the logarithm of a suitable set cardinality, 
but according to a limit process making hard its computational evaluation. New 
notions of structural entropies over finite structures, with efficient algorithms 
for computing them, are surely of great interest in all the cases where classical 
information entropy requires to be modified, for coping with the specific needs 
of many applicative contexts [21]. 

5. Conclusions 

The arrow of time is a consequence of central limit theorem plus the infor- 
mational law of maximum entropy of normal distributions (deduced from 
Kulback-Leibler entropic divergence positivity). For this reason, time irreversi- 
bility emerges when physical systems are complex enough and “large numbers” 
phenomena can act on them. This complexity, which is typical in living systems, 
is the origin of the intrinsic direction of biological time. Here a discrete version 
of H-theorem is proved, which shows the informational mechanisms on which it 
is based. 

The proof of H-Theorem by means of concepts from probability and 
information theory has an interest going beyond the technical aspects of the 
proof. Namely, the focus is not on the result in itself (today many demonstrative 
approaches are known [22]), but it is in the discrete and informational approach 
here outlined, which is mainly aimed at motivating and suggesting investigations 
toward the interplay between information and energy in their specific me- 
chanisms of interaction. This ambit remains mostly dense of enigmas, often 
related to concepts of quantum physics or of complex systems. In contexts where 
emergence phenomena occur, classical interpretations of the second laws seem 
to contradict the mechanisms of complexity, evolvability and autonomy related 
to new paradigms of informational inference and of distributed autonomous 
agent computations. The genomic laws given in [15] are an indication toward 
more comprehensive ways of considering entropic concepts, where the infor- 
mational perspective seems to provide new keys for the analysis of complex 
phenomena. 
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