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Abstract 
In this paper, the researcher explored and analyzed the function between 
integral indices of derivative. It is proved that getting half-derivative twice is 
equivalent to first derivative. Also getting the triple of one-third derivative is 
equal to first derivative. Similarly, getting four times of one-fourth derivative 
is equal to first derivative. 
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1. Introduction 

Fractal is a general term used to express both the geometry and the procedures 
which display self-similarity, scale invariance, and fractional dimension [1]. Geo-
metry deals with shapes or objects described in integral dimension. A point has 
0-dimension, a line having 1-dimension, a surface has 2-dimension and the solid 
has 3-dimensions [2]. However, there are phenomena that are suitably characte-
rized their dimension between any two integral dimensions. A straight line has 
dimension of 1 and a zigzag has dimension ( ){ }. . 1 , 2n d s t d= ∈ . Here, the 
dimension is indicated as fractional dimension—a dimension whose value lies 
between integral values. Similarly, derivative process is an integral index in na-
ture, such as first, second, third and up to nth derivative. The function obtained 
from derivative process is very useful in the field of physical science and tech-
nology. Thus, it is interesting to describe and analyze the function between 
integral indices of derivatives. Specifically, the study aimed to explore derivative 
process using fractal indices k that equals one-half, one-third, and one-fourth.  

2. The Derivative Process 

The derivative of y  with respect to x  is itself a function of x , and may in 
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turn be differentiated [3]. The derivative of the first derivative is called second  

derivative and is written 
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Repeating the process up to k times, we have 

( )( )( )( )d 1 2 3 1
d

k
n k

k

y n n n n n k x
x

−= − − − − +  kth derivative      (1) 

3. Derivatives Using Fractal Indices 

Let us consider the function between 0 and first derivative or between first and 
second derivative. The index fraction indicates that the derivative process is called 
fractal. These can be denoted as follows: 

1 2

1 2

d
d

y
x

 or 1 2y ′  one-half derivative (between zero derivative and first deriva-

tive) 
3 2

3 2

d
d

y
x

 or 3 2y ′  three-halves derivative (between first derivative and second 

derivative)  
and so on………. 
Let ny x=  be the function, then 

For kth derivative, where k is an element of 1 . . s t a N
a

∈ , using Equation (1). 

( ) ( )( ) ( ) ( )
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−= − − − + =
−

        (2) 

Factorial is equivalent to gamma function [4] as 

( ) ( )! 1n n n n= ⋅Γ = Γ +                      (3) 

Thus, in gamma function 
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For negative integer power, ,ny x−=  the derivative are as follows: 
Let ny x−=  be the function, then 
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− −= −        first derivative 
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... 
Repeating the process to k times, we have 
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In factorial form: 
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It is equivalent to gamma function as: 
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Thus, 
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4. Gamma Function 

Definition 1. [4] [5] Gamma function is defined as ( ) 1

0

e dx nn x x
∞

− −Γ = ∫ , for 

n Z +∈ , then, 
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we can express in terms of other variable. 
Thus,  
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Getting the product of the two above equations, we have 
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Thus, ( )1 2 π 1.77245.Γ = =  
The gamma function of fraction with multiple of one-half will be obtained as 

follows: 

( ) ( )1 !n n n nΓ + = = Γ  
3 1 1 1 1! 1
2 2 2 2 2

       Γ = = Γ + = Γ       
         

3 1 1! π 0.88623
2 2 2
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and ( )5 3 0.88623 1.32934.
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Since the solution of gamma function using integral is complex, the Burn-

side’s approximate solution [6] [7], 1! e 2π 1
12

x xx x x
x

−  = +  
, { }s. t. x 0R∈ ﹨  

can be used. 
Table 1 shows the actual values of gamma function and the approximate 

Burnside’s solution. The absolute percentage of error was computed, which it is 
ranges between 0.06 to 1.5 percent, so Burnside’s equation found acceptable. 

Using Burnside’s formula, 
1
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Table 1. Comparison of values of gamma function of R+. 

( )kΓ  Actual Value Burnside’s Formula Absolute Percentage of Error 

( )1 2Γ  1.77245 1.77374 0.07278 

( )3 2Γ  0.88623 0.88557 0.07447 

( )5 2Γ  1.32934 1.32884 0.03761 

( )7 2Γ  3.32335 3.32263 0.02166 

( )1 4Γ  3.62561 3.68104 1.52885 

( )3 4Γ  1.22542 1.22431 0.09058 

( )5 4Γ  0.90640 0.90559 0.08936 

( )13 4Γ  2.54926 2.54863 0.02471 

( )15 4Γ  4.42299 4.42214 0.01922 

( )1 3Γ  2.67894 2.67897 0.00112 

( )2 3Γ  1.35412 1.35321 0.06720 

( )4 3Γ  0.89298 0.89222 0.08511 

( )10 3Γ  2.77816 2.77751 0.02340 

( )11 3Γ  4.01220 4.01140 0.01994 

 

then, 1 1 1!
2 2 2

 = Γ 
 

 or we have 1 1.77374
2
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12
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then, 3 0.88557.
2
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5. Roots of Negative 1 

The roots of −1 such as square roots, cube roots, fourth-roots, etc. can be ob-
tained using the roots of complex numbers. 

Definition 2. [8] Let z C∈ , then ( )cos sin cis eiz x yi r i r r θθ θ θ= + = + = = , 
sine θ  is a multiple of 2π , then the general form is ( )2πei kz r θ += , where 
k Z∈ .  

Definition 3. [8] Let 0z  be the nth root of complex number ( )2πei kz r θ +=  
then ( )2π1

0 ei k nnz r θ += for 0,1,2,3 1k n= − . 
The principal root is the root at k = 0, hence the principal nth-root is 

1
0 e .n i nz r θ=  Let ( )π 2π1, 1ei k nz += − =  

Taking the square-root, we have 
( )

( )
π 2π

π 2 π21e 1e
k

i i k
+

+=  where k = 0 and 1.  
Thus, the roots are: i  and i−  and the principal root is i . 

Taking the cube-roots, we have 
( )π 2π

3 1e
k

i
+

, where { }0,1,2 .k =   

Thus the roots are  1 2 3 2 , 1,1 2 3 2i i+ − −  and the principal root is  
1 2 3 2 .i+  
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Taking the fourth-roots, we have 
( )π 2π

41e ,
k

i
+

 where { } 0,1, 2,3 .k =   

Thus the roots are  
2 2 2 2 ,  2 2 2 2 ,  2 2 2 2 ,  2 2 2 2 ,i i i i+ − + − − −  and the prin-

cipal root is 2 2 2 2i+ . 

6. Main Result 

For 1 2k = ,  
let the function 3 2 , 3,y x n= =  suppose 1 2k =  then 
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2 2,  y y′ ′′  are the first 

and second half-derivative. 
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Thus, getting half-derivative twice is equivalent to first derivative 
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Let the function 32 , 3,y x n−= =  suppose 1 2,k =  then 1 2 1 2,  y y′ ′′  are the 
first and second half-derivative. 
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     ■  

This completes the proof that twice of half derivative is equivalent to first de-
rivative. 

For 1 3,k =  



S. A. Loria 
 

459 

let 32 , 3,y x n= =  suppose 1 ,
3

k =  then 1 3 11 3 3,  ,  y y y′′ ′′′′ , are the first, second, 

and third 1 3  derivatives respectively. 

( ) ( )
( )

1 3 3 1 3 8 3 8 33 1 4
2 2 2.99089

1 11 33 1
3

y x x x′ −Γ + Γ
= = =

Γ Γ − + 
   

8 1 7 7
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8 1 101
3 3 3
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   Γ − + Γ   
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1 3

7 1
23 3

10
34.31942 6
3

y x x′′′ −

 Γ 
 = =
Γ

              ■  

Thus, triple of one-third derivative is equal to first derivative. 

Let 32 , 3,y x n−= =  suppose 1
3

k = , then 1 3 11 3 3,  ,  y y y′′ ′′′′  are the first, second, 

and third ⅓ derivative respectively. 
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          ■  

This completes the proof that the triple of one-third derivative is equal to first 
derivative 

For 1 4k =  

Let 32 , 3,y x n= =  suppose 1 ,
4

k =  then 1 4 1 41 4 1 4,  ,  ,  y y y y′′ ′′ ′′′′′′  are the first, 

second, third and fourth 1 4  derivatives respectively. 
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2 2 2.71310
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4

x x xy ′ −Γ + Γ
= = =
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7 2
y x x′′ Γ

= =
Γ  
( )
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9 4 9 41 4 7 2
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13 4
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( )
( )

1 4 2 213 4
4.70726 6

3
y x x′′′′ Γ

= =
Γ

                          ■  

This completes the proof that four times of one-fourth derivative is equivalent 
to first derivative. 

Let 32 , 3,y x n−= =  suppose 1 4,k =  then 1 4 1 41 4 1 4,  ,  ,  y y y y′′ ′′ ′′′′′′  are the 
first, second, third and fourth 1 4  derivatives respectively. 
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7
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−

′′
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y i i x
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−
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( ) ( )
( )

( )

41 4

4 2
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2 2 15 4

4.42298 1.35655 6

y i i x

x x

′′′

−

′ −  Γ
= − + +   Γ 
= − = −

            ■  

This completes the proof that getting the one-fourth derivatives four times is 
equivalent to one whole or first derivative.  

7. Conclusion 

The study explored and analyzed the function between integral indices of deriv-
ative based on the theoretical deduction of the gamma function. The above solu-
tions and proofs confirmed that derivatives using fractal indices exist every-
where. Derivatives contributed significantly to the field of physical science. It is 
very interesting to describe and analyze the behavior of functions obtained 
through derivative process using fractal indices. Likewise, the process being used 
in this paper can be extended to analyze derivatives of different transcendental 
functions. 
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