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Abstract 
The recent explosion of high-throughput technology has been accompanied 
by a corresponding rapid increase in the number of new statistical methods 
for developing prognostic and predictive signatures. Three commonly used 
feature selection techniques for time-to-event data: single gene testing (SGT), 
Elastic net and the Maximizing R Square Algorithm (MARSA) are evaluated 
on simulated datasets that vary in the sample size, the number of features and 
the correlation between features. The results of each method are summarized 
by reporting the sensitivity and the Area Under the Receiver Operating Cha-
racteristic Curve (AUC). The performance of each of these algorithms de-
pends heavily on the sample size while the number of features entered in the 
analysis has a much more modest impact. The coefficients estimated utilizing 
SGT are biased towards the null when the genes are uncorrelated and away 
from the null when the genes are correlated. The Elastic Net algorithms per-
form better than MARSA and almost as well as the SGT when the features are 
correlated and about the same as MARSA when the features are uncorrelated. 
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1. Introduction 

Discovering prognostic or predictive signatures is a worthwhile endeavor as it is 
well known that the effect of a treatment is largely heterogeneous. The medical 
research has witnessed a recent explosion of high-throughput technology, ren-
dering the measurement of a large number of genetic features possible. Corres-
pondingly, new analytical techniques are constantly being developed to process 
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and draw associations from this daunting amount of information. However, the 
rapid development of both aspects—the measurement and analysis of features— 
has made it difficult to determine the best analytical technique for finding a ge-
netic signature. 

To find a genetic signature, an algorithm is applied which ultimately com-
bines several features into a single risk score, associated with the outcome [1] [2] 
[3] [4] [5]. The strength of the association between the risk score and the out-
come depends heavily on the features which defines it. If the selected genes have 
little or no value in explaining the outcome, it is unlikely that a signature created 
using their values would be useful. Thus, the selection process is of paramount 
importance in the process of defining a signature. The selected features are typi-
cally studied in the laboratory (in vitro and in vivo). Thus, a well-chosen subset 
of features is contributing to a rapid development of new treatment strategies.  

In this paper, we present several algorithms for feature selection for a time-to- 
event outcome. By using simulated data, we know which features are associated 
with patient outcome and therefore are able to assess the performance of a tech-
nique by calculating the sensitivity and the Area Under the Receiver Operating 
Characteristic Curve (AUC). Throughout the paper, we use the term “gene” to 
represent the feature of a high-throughput analysis, which can be a probe set, 
clone, gene expression or any other molecular feature measured in a continuous 
manner. The primary aim of this paper is to evaluate the performance of the se-
lection process and not the performance of the signature itself. 

Three algorithms are chosen for evaluation (Figure 1): single gene testing 
(SGT), Least Absolute Shrinkage and Selection Operator (LASSO) [6] and its 
extension, the Elastic Net [7] and the Maximizing R Square Algorithm (MARSA, 
[5]). Each algorithm is applied to the same simulated data in which a number of 
genes are known to be associated with patient survival. 

These algorithms were chosen because they are commonly used in the litera-
ture [8] and they are considered substantially different from each other. SGT is 
used extensively by itself or in combination with other strategies. LASSO and 
Elastic Net are well-defined statistical algorithms which have been recently 
gaining in popularity. MARSA is an in-house strategy developed at the Princess 
Margaret Cancer Centre. This strategy was used to find a signature which could 
separate patients with low vs. high risk of dying from non-small lung cancer [9]. 
The signature found using this strategy was validated in 5 independent datasets 
[9]. 

When the selection is based on the p-value unadjusted for multiple compari-
sons the SGT is a marginal technique which does not depend on the number of 
genes tested. This technique is usually employed on the total number of the 
genes and it supplies a subset of reasonable size for other algorithms. The rest of 
the algorithms (SGT when the selection is based on the false discovery rate, 
LASSO, Elastic Net or MARSA) are usually applied to a relatively smaller group 
of genes. Thus, in this paper the number of genes simulated is between 250 and  
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Figure 1. The diagram of the algorithms used. 
 

750 which is a reasonable number of genes to start any of the latter selection al-
gorithms.  

To our knowledge, the MARSA technique has not been properly evaluated 
until now and this paper is the first to compare feature selection algorithms for 
time-to-event outcomes using completely simulated datasets with varying sam-
ple sizes, with both positive and negative association with outcome and different 
levels of correlations between predictors. 

Several papers have attempted to compare feature selection algorithms. In 
general, when the algorithms are compared on real datasets, there is no way to 
compare the accuracy of the signatures. Other papers propose a new algorithm 
and compare it to other techniques under specific conditions. For example, Song 
and Liang [8] proposed a split-and-merge algorithm and compared it to pena-
lized regression techniques using both simulated data as well as real datasets. 
However, the simulated scenario considered only a low between-feature correla-
tion of 0.25. Pavlou et al. [10] compared penalized regression models with algo-
rithms based on maximum likelihood estimation for binary outcomes on semi-
synthetic datasets. That is, the authors utilized the real data, but varied the pre-
valence of the event and created training datasets such that the ratio between the 
number of events and the number of predictors was 3 or 5. While this paper 
discusses the penalized regression models, the set of predictors is somewhat li-
mited, and they do not discuss extreme cases such as when the numbers of pre-
dictors are much larger than the number of events. On the other hand, 
Bühlmann and Mandozzi [11] discuss penalized regression methods when the 
set of predictors is high-dimensional and the outcome is continuous. The au-
thors use semisynthetic datasets in which they vary the size of the predictor set, 
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the association between the predictors and the outcome and the strength of cor-
relation between predictors. Their conclusion was that in general, LASSO was 
preferable, but the differences between the algorithms were small.  

In the next section, we present the theoretical formulation for each of these 
algorithms. The details on simulations can be found in Section 3 and the results 
in Section 4. In Section 5, we summarize the results and provide conclusions. 

2. Description of the Three Strategies 
2.1. Single Gene Testing (SGT) 

Single gene testing (SGT) is a simple algorithm in which each gene is tested for 
its association with patient survival separately using the most common tech-
nique for survival analysis: the Cox proportional hazards (PH) model [12]. In 
this approach, the hazard for developing the outcome is assumed to have the 
form: 

( ) ( )0| ix
ih t x h t eβ=                       (1) 

where h0(t) refers to the baseline hazard, xi is the value for the gene expression 
for a specific patient i and β is the coefficient obtained by maximizing the partial 
likelihood: 
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with Ri being the risk set at time ti. In this paper, all genes with a Likelihood Ra-
tio Test (LRT) p-value of less than a particular value α (0.05 and 0.001 [13]) are 
considered significant and henceforth retained as part of the signature. A stricter 
α level would have a higher rate of false negative genes while a more relaxed al-
pha will have a higher rate of false positives. Alternatively, the genes are also se-
lected based on the False Discovery Rate (FDR) [14] using a FDR of 0.05 and 0.1. 
In this paper, the analysis is performed using the survival package in R but any 
standard statistical software can be employed.  

2.2. Least Absolute Shrinkage and Selection Operator (LASSO)  
and the Elastic Net 

LASSO is a penalized likelihood regression model introduced originally by Tib-
shirani (1997). This method has exhibited increased popularity as a feature se-
lection technique in the biomedical field with more than 30 articles using this 
method either alone or in combination with another method [15]-[45]. This 
method is applied to the Cox PH model with the following restriction imposed 
on the coefficients: 

1
p

jj sβ
=

≤∑                        (3) 

where p is the number of covariates and s is a parameter specified by the user 
and controls the amount of penalization used. With this restriction, all the coef-
ficients are shrunk towards zero and some will be exactly zero, functioning in 
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this way as a selection process. A larger s will allow fewer non-zero coefficients 
as compared to a smaller s.  

More recently [7], LASSO was extended to incorporate ridge regression using 
the following restriction: 

( ) ( )2

1 11p p
j jj j cα β α β
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+ − ≤∑ ∑                (4) 

The parameter α balances how much LASSO restriction is involved in com- 
parison to ridge-type restriction. When α=1 there is a purely LASSO restriction 
and when α = 0 there is a ridge-type restriction. When 0 < α < 1, this technique 
is known as Elastic Net. As α decreases and the ridge restriction component in-
creases, more covariates are selected. 

In essence, the estimate of the coefficients are found as [46]: 

( )1

2ˆ arg max log j

i

xm
ii j Rx e P

n
β

β αβ β λ β
= ∈

   = − −      
∑ ∑


       (5) 

where ( ) ( ) 2
1 1

1 1
2

p p
i ii iPαλ β λ α β α β

= =

 = + − 
 
∑ ∑ , m is the number of events, 

nthe number of observations and p the number of covariates. The bold items 
represent vectors and the xT represents the transpose of vector x. 

The parameter λ is chosen such that it maximizes the K-fold cross validation 
log partial likelihood (CVL) introduced by Verveij and van Houwelingen [47]. 
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where the subscript (-k) indicates that the k-th subset of the data is left out.  
LASSO and Elastic Net are recommended when the number of covariates in 

the model is large, often exceeding the number of observations, and the cova-
riates are correlated. To mimic a real life scenario only the genes with a p-value 
<= 0.2 were considered for this algorithm. By choosing a relaxed α level of 0.2 we 
want to ensure that all the genes with some potential are included while keeping 
the false negative rate to a minimum. 

The two methods can be performed using the glmnet package in R. The pa-
rameter λ̂  is based on cross-validation. Since each run of the cross-validation 
will produce a slightly different value for λ, the cross-validation was repeated 5 
times and the median of the 5 resulting values was the one utilized in the subse-
quent steps. 

2.3. Maximizing R Square Algorithm (MARSA) 

The MARSA algorithm was developed at the Princess Margaret Cancer Centre 
and used successfully [5] [48] to find a signature. In the first step, all genes are 
tested, one by one in a Cox PH model and the coefficients are preserved. Using 
these coefficients as weights, a risk score is calculated by multiplying each gene 
by its coefficient and summing across all the genes. The resulting risk score can 
then be tested in a CoxPH model. As a measure of predictability, the approxima-
tion of the Kent and O’Quigley’s for the R-squared [49] was used: 
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where β is the coefficient obtained in the CoxPH model and S is the variance of 
the covariate.  

The first step is to select a number of candidate genes. To order the genes, we 
used the LRT p-value when each single gene is tested and selected the first p = 50 
genes when 10 genes were associated with outcome (case A) and p = 60 when 20 
genes were associated with outcome (case B) and p = 120 when 60 genes were 
associated with outcome (case C, please Section 3 for the description of the cases 
A-C). The run-time for the algorithm increases (approximately n2) with the 
number of genes included. The selection process starts with a risk score based on 
all genes. In a backward selection fashion, all risk scores which are based on all 
genes but one (that is, p − 1 genes) are fitted using Cox proportional hazards 
model and the set with the best R-squared is kept. Next, all the risk scores based 
on the sets of p − 2 genes obtained from the winner of the p − 1 sets is calcu-
lated, tested and the model with the highest R-squared is kept. This process is 
repeated until the risk score is based on just a single gene. A forward selection is 
then applied by starting with this one gene and adding each one of the genes not 
yet in the risk score. At each step the R-squared is retained. In this way, a series 
of R-squared values are obtained for each number of genes from p to 1 in the 
backward phase of selection and another series in the forward phase of the selec-
tion. The smallest set of genes for which the R-squared value does not drop by 
adding another gene is selected as the constituent parts of the signature. Figure 2 
presents a graphical display of this criterion. Although the highest R-squared is 
at B with approximately 18 genes in the risk score, our algorithm would choose 
point A with approximately 6 genes in the risk score. When the R-squared de-
creases as the number of genes increases, it is a sign that the R-squared has 
reached its full potential. The high value at point B is due to overfitting rather 
than due to a real signal (Figure 3). 
 

 
Figure 2. An example of the R-squared values vs. the number of genes in the risk score. A 
and B are local maxima, but the algorithm chooses A which is the local maximum with 
the smallest number of genes. 
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Figure 3. The steps for MARSA algorithm. 

3. Description of the Simulation 

In this paper, the term “correlated genes” refers to the genes which are corre-
lated among themselves and “association with survival” refers to the relationship 
of the genes with patients’ survival. The number of generated genes is realistic as 
all algorithms, except the SGT based on the p-value, are usually applied on a 
subset of the genes and not on the whole array. 

3.1. Case A (Table 1) 

To investigate the performance of the three algorithms described above in rela-
tion to the sample size and the number of genes in the dataset, nine datasets 
were generated from a standard normal distribution with different number of 
genes (p = 250, 500 and 750) and different number of patients (n = 50, 100 and 
200). The genes were simulated to be independent of each other. For each of 
these sets, survival data were generated such that the first 10 genes were asso-
ciated with survival with a coefficient of 0.45. The rest of p-10 genes were not 
associated with survival. 

3.2. Case B (Table 1) 

For the situation p = 250 and n = 200, we also considered the possibility that 
some genes may be correlated with varying degree of correlation (0, 0.4, 0.6, 0.8).  
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Table 1. Summary of the parameters used for the simulations. 

 
Number of 

observations 

Total  
number  
of genes 

Number of independent 
genes associated  

with survival  
(theoretical coefficient) 

Number of correlated 
genes associated  

with survival  
(theoretical coefficient) 

Case A 50, 100, 200 250, 500, 750 10 (0.45) 0 

Case B 200 250 10 (0.45) 10 (0.45) 

Case C 200 250 20 (0.45), 20 (−0.45) 10 (0.45), 10 (−0.45) 

 
Thus, it was considered that 20 genes were associated with survival (coefficient 
0.45) and 10 of these were correlated among themselves. 

3.3. Case C (Table 1) 

For the same situation of p = 250 and n = 200 we considered the situation where 
60 genes were associated with survival; 30 positively associated with death (coef-
ficient 0.45) and 30 negatively associated with death (coefficient −0.45). Ten of 
the first 30 were correlated among themselves as well as 10 of the second group 
of 30. The correlation coefficients varied as before (0, 0.4, 0.6, 0.8). 

3.4. Generating the Survival Times 

The survival times were generated as exponentially distributed with the hazard: 

( )
10

1| 0.2 i ii xh t X e β=∑=  

with βi the coefficient of the ith covariate. To obtain approximately 50% events in 
each dataset, the censoring time was generated as uniformly distributed between 
2 and 5, representing an accrual time of 3 years and a follow-up time of 2 years. 
The coefficients (0.45 and −0.45) were chosen such that the power to detect sig-
nificance for one covariate with 50, 100 and 200 records varies and reflects real- 
life situations. For α = 0.001 the power for n = 50, 100 and 200 is 15%, 46% and 
89% respectively and for alpha = 0.05 the power is 61%, 89% and 99% respec-
tively.  

All simulations were performed 2000 times. Each algorithm (SGT, LASSO, 
Elastic Net (α = 0.3), Elastic Net (α = 0.7), and MARSA) was applied to each of 
the simulated dataset. Data presented in this paper is based solely on simulation 
and do not contain any piece of information collected from patients. As such, 
consent was not necessary. 

4. Evaluation of the Simulation 

The goal of the selection process is to choose as many genes as possible from the 
set of those truly associated with survival and to choose as few genes as possible 
from the set of those which are independent of outcome. To judge the perfor-
mance of each strategy and each scenario, two metrics were calculated: sensitivi-
ty and the Area Under the Receiver Operating Characteristic (AUC). The sensi-
tivity is the proportion of selected genes out of the truly associated genes. The 
AUC measures an overall performance with the intent to minimize both the false 
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positive and false negative genes. Arguably, of the two types of false results, the 
false negative may be more damaging since the false positive genes could be 
weeded out through a second process of validation using a different platform 
(like Polymerase Chain Reaction (PCR)). On the other hand, the false negative 
genes are lost completely. Sensitivity is a good measure to assess which scenarios 
would minimize the false negative genes.  

A gene was considered as selected if it was significant and the direction of the 
detected association corresponded to the theoretical one. A disregard of the di-
rection of significance would inappropriately inflate the results. For example if 
one of these methods has the tendency to select a positive gene but to estimate 
the effect in the opposed direction then it may appear that it is better than 
another method which selects fewer genes but with the correct direction. 

5. Results of the Simulation 

The performance of each of these algorithms depends heavily on the sample size. 
Regardless of the number of genes entered in the analysis, the AUC is higher for 
n = 200 than for lower n, while the difference made by the number of genes en-
tered in the analysis has a much more modest impact. The number of genes con-
sidered for each of these analyses is small in comparison to any high throughput 
data. This choice is considered realistic as FDR, MARSA and the penalized like-
lihood methods are typically applied to a subset of features, chosen through a 
marginal method as the unadjusted p-value of the SGT method. Figure 4 shows 
the distributions of the AUC for the 9 situations of Case A for each of the algo-
rithms. 

Choosing α = 0.001 seems overly conservative with AUC around 0.7 even for 
n = 200 while for the rest of the algorithms the AUC is around 0.9 for n = 200 
and around 0.6 for n = 50. With the exception of the SGT strategy, the other four 
algorithms exhibit a modest decrease in performance with the number of genes 
entered in the analysis. The performance increases slightly with the amount of 
ridge regression included in the Elastic Net. Choosing the genes based on FDR = 
0.1 seems to be an excellent choice when the number of observations is adequate. 
It is important to note that the specificity is in general high (>0.8) and thus the 
level of AUC depends greatly on the level of sensitivity (Supplementary Tables 
1(a)-(c)). In most cases, the sensitivity is tremendously poor (<0.4) for n = 50. 
This low sensitivity suggests that the sample size is extremely important and ar-
gues against dividing an already small dataset into two subsets for training and 
validation. 

Of utmost importance is the fact these algorithms most often do not produce 
the same set of significant genes. Figure 5 gives the results for two simulated 
datasets, one with 50 records and one with 200 records. The two Venn Diagrams 
show that the set of genes selected by SGT 0.05, FDR 0.1, Elastic Net 70% ridge 
regression or MARSA are quite different. When the dataset is small (n = 50) only 
one gene is common to all and 6 of the 10 genes truly associated with the out-
come are not selected by any of these algorithms. Of the 13 genes chosen only by  
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Figure 4. AUC under the different scenarios of Case A. 
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(a) 

 
(b) 

Figure 5. Examples of two datasets and the number of selected genes by each algorithm: 
(a) the number of records is 50; (b) the number of records is 200. 

 
the Elastic Net none are truly significant. Twenty genes are selected by both 
MARSA and the ElasticNet of which only 3 are truly associated with the out-
come. When the number of records is large (n = 200, power > 90% for testing 
one gene only) then 9 of the 10 genes associated with the outcome are selected 
by all algorithms. The unselected gene of the 10, has the uniariable p-value > 
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0.05. However, the number of genes selected by at least one of the algorithms but 
not associated with the outcome is quite large (43). 

It was observed that the estimated coefficients for each strategy are sometimes 
biased, depending on the number of genes theoretically associated with outcome 
and on the correlation structure between these genes (Figure 6). When the genes 
were independent of each other, the estimated coefficients were always smaller 
in absolute value than the theoretical coefficient. As the number of genes asso-
ciated with the outcome increased, the estimated coefficients were further from 
the theoretical value. Figure 6 presents the averages over the 2000 simulations of 
the estimated coefficients (based on SGT) when 10, 20 and 60 genes were asso-
ciated with the outcome. In this figure all genes were independent of each other. 
The horizontal lines are drawn at the theoretical coefficients of ±0.45. The 
thicker vertical broken lines divide the different datasets. 

The coefficients obtained from SGT for the correlated genes were biased away 
from the null while for those uncorrelated (but in the presence of some corre- 
lated genes) the bias was slightly towards the null (Figure 7 for Case B and Sup-
plementary Figure 1 for Case C).  

Thus, in the presence of correlated genes, the overall performance is mislead- 
ing as it will average the performance of the correlated genes more likely to be 
selected with the performance of the uncorrelated genes less likely to be selected. 
Table 2 shows the sensitivity for Case B for the two groups of genes: 10 corre-
lated and 10 independent. As expected, the SGT algorithms have a sensitivity of 
1 when the genes were correlated, but the sensitivity was very poor when the 
genes were independent. Note that for the SGT algorithms even a poor correla-
tion like 0.4 can have a tremendous effect on the significance of the correlated  
 

 
Figure 6. The average of the coefficients for the genes associated with outcome over the 
2000 simulations when the genes are independent among themselves. 
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Table 2. The sensitivity for Case B. 

 
SGT 

MARSA 
Penalized likelihood 

α = 0.05 α = 0.001 FDR = 0.05 FDR = 0.1 LASSO ELASTA5* ELASTA3** 

CCorrelation 0 
10 genes 0.649 0.17 0.554 0.702 0.692 0.85 0.852 0.854 

10 genes 0.654 0.171 0.564 0.71 0.696 0.853 0.856 0.857 

Correlation 0.4 
10 correlated genes 1 1 1 1 0.585 0.981 0.994 0.998 

10 independent genes 0.334 0.04 0.106 0.227 0.551 0.588 0.596 0.598 

Correlation 0.6 
10 correlated genes 1 1 1 1 0.479 0.955 0.986 0.996 

10 independent genes 0.274 0.026 0.045 0.128 0.493 0.515 0.524 0.528 

Correlation 0.8 
10 correlated genes 1 1 1 1 0.331 0.874 0.97 0.994 

10 independent genes 0.224 0.018 0.019 0.069 0.443 0.459 0.47 0.473 

*Elastic Net with 50% ridge regression. **Elastic Net with 70% ridge regression. 

 

 
Figure 7. The average of the coefficients for the first the 20 genes associated with out-
come (10 correlated among themselves and 10 independent) over the 2000 simulations 
for Case B. 
 
gene. On the other hand, the LASSO and Elastic Net algorithms perform better 
than MARSA and almost as well as the SGT algorithms for the correlated genes 
and about the same as MARSA for the uncorrelated genes. The pattern is the 
same for the Case C (Supplementary Table 2) and the direction of the associa-
tion with outcome has no influence on the sensitivity. 

6. Conclusions 

The existence of high-throughput datasets containing genetic information at 
multiple levels facilitates a broader and deeper understanding of the patients’ 
ability to cope, be resistant or sensitive to treatments for diseases. Benefits of this 
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knowledge are at the patient level as well as the social and economic level. How-
ever, extracting this information from a large amount of data can be challenging. 
Several statistical algorithms exist which attempt to find important genetic fea-
tures to describe a specific condition or to explain an outcome. This paper 
presents a comparison of three major strategies for feature selection with surviv-
al as outcome. The SGT strategy is present either as the main strategy or as part 
of a more elaborate algorithm in the majority of papers analyzing high- 
throughput data. The alpha level of 0.001 is considered more informative as it 
guards against inflated type I error, ubiquitous in this type of data. This paper 
also presents the results for an alpha level of 0.05 which is traditionally used in 
medical statistics as well as 2 levels for FDR (0.05 and 0.1). As the need for more 
elaborate techniques increases, the LASSO/Elastic Net technique gains populari-
ty. It was created specifically to mitigate the disparity between the large number 
of covariates included in a model and the relatively small number of observa-
tions. MARSA is an algorithm created in Princess Margaret Cancer Centre to 
obtain a genetic signature which explains the difference in survival for appar-
ently homogeneously non-small cell lung cancer patients. While not widely used, 
this algorithm proved to be valuable as the genetic signature found with this 
technique was successfully validated in independent datasets.  

Using simulated data the AUC and the sensitivity for each method under sev-
eral scenarios are calculated and presented, suggesting under which conditions 
each of these strategies is most beneficial. The specificity (for case A, Supple-
mentary Table 1(c)) is high in general due to the large number of genes gener-
ated under the null hypothesis (no association with survival).  

To replicate realistic datasets, several parameters were varied in the process of 
simulation: the number of observations, the number of genes entered in the al-
gorithm, the number of associated genes, the strength and the direction of asso-
ciations of the genes with survival and the level of the correlation between genes. 
The combination of the different sample sizes, the different strengths of associa-
tion with survival and the level of significance, α, covers a wide range of the sta-
tistical power with which a gene can be detected (15% to 99%).  

Our simulations indicate that the number of observations is extremely impor-
tant when analyzing this type of data. Thus, regardless of the chosen strategy or 
number of genes the AUC is higher when the sample size is 200. The ability to 
select the correct genes is affected by the number of genes when MARSA or one 
of the Elastic Net methods is used. Therefore, there is no real advantage to divide 
a small dataset into two very small datasets to obtain training and validation da-
tasets. A far better choice is to obtain another independent sample on which to 
validate the results. Increasingly, datasets with genetic and outcome information 
can be found in the public domain, and can be used for validation. In the ab-
sence of such a dataset, applying more than one method and utilizing a cross- 
validation technique might help in choosing the appropriate algorithm. 

Based on these simulations it was observed that when multiple independent 
genes are associated with patient outcome, their univariate coefficients tend to 
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be lower than the theoretical coefficients. This attenuation implies that the SGT 
technique is unlikely to select these genes and an algorithm which considers 
more genes at the same time in the model is more desirable (like MARSA or pe-
nalized likelihood). On the other hand, the correlation between genes (even a 
poor correlation of 0.4), when each one of them contributes to the outcome, 
could make each gene appear more interesting than it really is, due to an overes-
timation of the real coefficient. Thus, the correlations between the genes which 
are entered into MARSA or penalized likelihood need to be calculated. 

As in any simulation study, it was possible to judge the efficiency of a method 
because we had information on the true underlying relationship in the data, in-
formation which is not usually available in the process of analyzing a real data-
set. However, this study could give information on how these methods behave 
such that one could interpret the results easier.  

It was not considered necessary to present examples as each of these strategies 
has been applied to real datasets in the past. Moreover, the main objective for 
this paper was to determine the suitability of these strategies in correctly select-
ing as many of the associated genes as possible. The underlying assumption is 
that the appropriate set of features would also validate in an independent study. 
In addition, we do not wish to recommend a specific strategy for use in all situa-
tions as, indeed, this is unrealistic, but present situations when each of these 
strategies may be more suitable than another. We also recommend that any new 
strategy needs to be thoroughly investigated in simulated environment and eva-
luated against other common strategies.  

In conclusion, one has to employ not only methodologies which test for asso-
ciation with outcome but also for correlations between the features considered. 
This paper is intended to guide a statistician or bioinformatician in the daunting 
task of finding genes associated with outcome. 
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Supplementary 

Table 1. (a) The average AUC for each scenario of Case A; (b) The average sensitivity for 
each scenario of Case A; (c) The average specificity for each scenario of Case A. 

(a) 

n p 
SGT 

MARSA 
Penalized likelihood 

α = 0.05 α = 0.001 FDR = 0.05 FDR = 0.1 LASSO ELASTA5* ELASTA3** 

50 

250 0.634 0.517 0.542 0.601 0.585 0.588 0.644 0.675 

500 0.631 0.517 0.54 0.602 0.56 0.548 0.585 0.638 

750 0.633 0.517 0.541 0.598 0.551 0.533 0.554 0.594 

100 

250 0.752 0.557 0.709 0.789 0.716 0.783 0.805 0.808 

500 0.751 0.556 0.705 0.788 0.675 0.698 0.756 0.794 

750 0.748 0.556 0.702 0.785 0.652 0.646 0.7 0.756 

200 

250 0.899 0.687 0.914 0.95 0.894 0.914 0.905 0.897 

500 0.897 0.683 0.912 0.948 0.873 0.927 0.916 0.907 

750 0.896 0.683 0.911 0.949 0.853 0.926 0.92 0.911 

*Elastic net with 50% ridge regression; **Elastic net with 70% ridge regression. 

(b) 

n p 
SGT 

MARSA 
Penalized likelihood 

α = 0.05 α = 0.001 FDR = 0.05 FDR = 0.1 LASSO ELASTA5* ELASTA3** 

50 

250 0.322 0.034 0.083 0.203 0.218 0.208 0.377 0.486 

500 0.314 0.036 0.079 0.204 0.145 0.106 0.205 0.361 

750 0.32 0.035 0.082 0.197 0.118 0.071 0.123 0.232 

100 

250 0.555 0.114 0.418 0.578 0.496 0.65 0.734 0.767 

500 0.553 0.114 0.411 0.576 0.382 0.428 0.584 0.708 

750 0.548 0.113 0.404 0.571 0.326 0.307 0.438 0.596 

200 

250 0.848 0.374 0.828 0.901 0.856 0.954 0.955 0.955 

500 0.844 0.368 0.823 0.895 0.781 0.943 0.95 0.953 

750 0.843 0.367 0.822 0.897 0.73 0.912 0.935 0.944 

*Elastic net with 50% ridge regression; **Elastic net with 70% ridge regression. 

(c) 

n p 
SGT 

MARSA 
Penalized likelihood 

α = 0.05 α = 0.001 FDR = 0.05 FDR = 0.1 LASSO ELASTA5* ELASTA3** 

50 

250 0.947 0.999 1 1 0.951 0.967 0.912 0.864 

500 0.947 0.999 1 1 0.976 0.99 0.966 0.915 

750 0.947 0.999 1 1 0.984 0.995 0.985 0.956 

100 

250 0.949 0.999 1 1 0.937 0.917 0.875 0.848 

500 0.949 0.999 1 1 0.968 0.969 0.928 0.881 

750 0.948 0.999 1 1 0.978 0.985 0.962 0.917 

200 

250 0.949 0.999 1 1 0.932 0.875 0.855 0.84 

500 0.95 0.999 1 1 0.965 0.911 0.882 0.86 

750 0.949 0.999 1 1 0.976 0.939 0.906 0.877 

*Elastic net with 50% ridge regression; **Elastic net with 70% ridge regression. 
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Figure 1. Average of the coefficients over the 2000 simulations for the 60 genes associated 
with outcome with the first 20 being correlated. 
 

Table 2. The sensitivity for all scenarios of Case C. 

 
SGT 

MARSA 
Penalized likelihood 

α = 0.05 α = 0.001 FDR = 0.05 FDR = 0.1 LASSO ELASTA5* ELASTA3** 

Correlation 0 

10 corr.* 0.32 0.033 0.08 0.204 0.387 0.53 0.549 0.558 

10 corr** 0.317 0.034 0.081 0.201 0.394 0.538 0.557 0.567 

20 indep.* 0.315 0.034 0.076 0.197 0.385 0.531 0.551 0.561 

20 indep.** 0.321 0.035 0.088 0.203 0.388 0.536 0.555 0.565 

Correlation 0.4 

10 corr.* 0.998 0.955 0.998 0.999 0.343 0.845 0.904 0.94 

10 corr** 0.999 0.952 0.999 1 0.346 0.848 0.907 0.942 

20 indep.* 0.18 0.013 0.006 0.027 0.341 0.34 0.368 0.382 

20 indep.** 0.179 0.013 0.004 0.025 0.34 0.338 0.366 0.38 

Correlation 0.6 

10 corr.* 1 0.999 1 1 0.238 0.796 0.887 0.935 

10 corr** 1 0.999 1 1 0.238 0.801 0.891 0.938 

20 indep.* 0.149 0.009 0.002 0.01 0.298 0.294 0.324 0.34 

20 indep.** 0.148 0.008 0.001 0.007 0.295 0.29 0.32 0.336 

Correlation 0.8 

10 corr.* 1 1 1 1 0.125 0.688 0.853 0.933 

10 corr** 1 1 1 1 0.126 0.688 0.853 0.932 

20 indep.* 0.129 0.008 0.001 0.005 0.212 0.26 0.292 0.307 

20 indep.** 0.129 0.007 0.001 0.004 0.213 0.263 0.294 0.309 

*Theoretical coefficient is 0.45; **Theoretical coefficient is (−0.45). 
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List of Abbreviations 

AUC = Area Under the Receiver Operating Characteristic Curve  
SGT = Single Gene Testing 
LASSO = Least Absolute Shrinkage and Selection Operator  
MARSA = Maximizing R Square Algorithm 
LRT = Likelihood Ratio Test  
FDR = False Discovery Rate  
PCR = Polymerase Chain Reaction 
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