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Abstract 
In order to find out the effect of human (sexual) behavior change and immi-
gration in spreading the HIV/AIDS, a deterministic model of HIV/AIDS with 
infective immigration is formulated. First, basic properties of the model, in-
cluding non-negativity and boundedness of the solutions, existence of the en-
demic equilibrium and the basic reproduction number, 0  are analyzed. The 
geometrical approach is used to obtain the global asymptotic stability of en-
demic equilibrium. Then the basic model is extended to include several con-
trol efforts aimed at reducing infection and changing behavior. Pontryagin’s 
maximum principle is used to derive the optimality system and solve the sys-
tem numerically. Our numerical findings are illustrated through simulations 
using MATLAB, which shows reliability of our model from the practical point 
of view. 
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1. Introduction 

Mathematical models used extensively to study the dynamics of epidemics both 
from the cellular level to the population level by many researchers [1]-[6]. Early 
models concerned immigration of infective individuals are studied by many 
researchers [7]-[12]. In terms of epidemiology, the wild prevalence of HIV/AIDS 
has often been associated with the the movement of people, especially, the 
movement of infected persons. For example, in China, internal migrants exceeds 
260 million [13] and the size of this population is expected to continue to grow. 
The whole migration process offers ready environment to transport the 
HIV/AIDS disease from one place to another and vulnerability of migrants may 
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end up with certain HIV/AIDS related risky behaviors. Unlike traditional 
infectious disease, the process of transmission of HIV/AIDS mostly requires the 
exchange of the body fluids, this often associated with the decision making 
process in which the participants can either choose to quit or to proceed. 
Spontaneously the human sexual behavior comes to the equation. All these 
aspects have featured a large number of new problems. 

To cope with these problems, Megan Coffee et al. [10] studied the dynamics of 
HIV/AIDS with infective immigration both clinically and mathematically. A 
nonlinear mathematical model consisted of two stages of infection before 
full-blown AIDS with constant inflow of HIV infectives are developed by Ram 
Naresh et al. [8]. But they did not consider direct inflow of pre-AIDS individuals, 
also not consider HIV infectives who received treatment. Agraj Tripathi et al. [9] 
proposed a HIV/AIDS model with infective immigrants and time delay. But they 
have not take the protective measures and gradual behavioral change into 
consideration. In the absence of an effective and affordable vaccine and due to 
the non-curative nature of current antiretroviral therapy, behavioral and 
psychosocial prevention with the goal of limiting risky sexual behaviors remain 
central to the efforts to decrease the sexual transmission of HIV [4]. Swarnali 
Sharma and G. P. Samanta [2] also analyzed six compartmental HIV/AIDS 
model which is closely influential to our set of work. 

The optimal control theory has been applied to quite a few HIV models (see 
[1] [4] [6]). Baba Seidu and Oluwole D. Makinde [1] stress their emphases on 
the optimally reducing the spread of the disease and the increasing productivity 
in workplace and show the positive effect of applying a multifaceted approach in 
the fight against HIV/AIDS. Tunde T. Yusuf and Francis Benyah [4] formulated 
an optimality system for controlling HIV/AIDS. They consider the change in 
risky sexual habits and antiretroviral (ARV) therapy as control measures. Their 
results show that if more and more susceptible individuals practise safe sex, then 
we can ease the spread of the disease remarkably. In the light of literatures [2] 
[4] [7] and references therein we formulated an optimal control problem that 
considers behavioral change and screening as major control strategies. The 
reviews about the non-mathematical studies of transmission disease and the 
comments of recent mathematical works about HIV/AIDS have shaped the 
context of this paper. 

The paper organized as follows: In section 2, we have developed our model and 
the non-negativity and the boundedness of the solutions are shown as a basic 
property of the system. Also, we have discussed existence of endemic equilibrium. 
We derive basic reproduction number 0R , when there is no influxion of infective. 
The analysis of GAS of the endemic equilibrium is given in Section 3, while our 
modification of the basic model into an optimal control problem presented in 
Section 4. In the section 5, we give results of our numerical simulations. 

2. The Mathematical Model 

We divided the sexually active population ( )N t  into six compartments, namely, 
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susceptible individuals ( )S t , infected individuals who unaware of their 
HIV/AIDS infection ( )1I t , infected individuals who aware of their HIV/AIDS 
infection ( )2I t , infected individuals who receive treatment ( )T t , full-blown 
AIDS group ( )A t  and removed class ( )R t  at any time t . The population 
dynamics is given by the following set of ordinary differential equations:  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( )

1 2 0 1 1 2 2

1 1 0 1 1 2 2 1 2 1

2 1 0 1 1 3 1 2

1 2 2 2

2 1 3 2 2 1

2 0

1 ,
,

1 ,
,

,
.

S t Q I I S d S
I t Q I I S k k d I
I t Q k I k d I
T t I A d T
A t k I k I d A
R t Q S dR

ε ε β β θ
δε β β

δ ε µ
µ µ σ

µ σ
ε θ

 = − − − + − +
 = + + − + +
 = − + − + +
 = + − +
 = + − + +


= + −













           (1) 

with initial conditions  

( ) ( ) ( ) ( ) ( ) ( )1 20 0,  0 0,  0 0,  0 0,  0 0,  0 0.S I I T A R> > > ≥ ≥ ≥       (2) 

There are a brief description of the model parameters: 
Q0: Total number of newly recruited individuals by birth (who come of age) 

and by immigration; 
ε1: The proportion of infected individuals in the recruited population; 
ε2: The proportion of susceptible individuals who changed their sexual habits 

in the recruited population; 
δ: The proportion of unaware infected individuals and ( )1 δ−  the proportion 

of aware infected individuals in the recruited population; 
β1: The horizontal transmission rate for contact with the 1I  class; 
β2: The horizontal transmission rate for contact with the 2I  class; 
d: The natural death rate of population; 
θ: Proportion of susceptible individuals who changed their sexual habits; 
κ1: Proportion of unaware infected individuals who are screened; 
κ2: Progression rate of unaware infected individuals to the full-blown AIDS 

group; 
κ3: Progression rate of aware infected individuals to the full-blown AIDS 

group; 
μ1: Proportion of the 2I  class receiving treatment; 
μ2: Proportion of the A  class receiving treatment; 
σ1: Disease-induced death rate for full-blown AIDS individuals; 
σ2: Disease-induced death rate for the individuals who receive the treatment. 
The model is formulated based on following assumptions: 

• Since our purpose in this model is to see what effect the human behavior 
(including movement, sexual habits) can play in the dynamics of HIV/AIDS 
disease, we avoid to consider detailed clinical stages of HIV/AIDS infection, 
instead we classed the population in two ways, uninfected and infected 
group. Uninfected group divided into two different compartments according 
to their behavior towards safe sex. Infected individuals divided four different 
compartments according to whether the infected individual aware of his/her 
HIV infection status, whether the infected individual received treatment and 
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whether the infected individual has developed the last stage of the disease, the 
full blown AIDS. 

• Susceptible individuals are assumed to get infected by sexual contact with 
both aware and unaware infected individuals with different transmission 
rates. The assumption that aware infected individuals also take part in the 
transmission process is based on the fact that some aware infected 
individuals may practise low-efficiency safe sex measures (and a few of them 
may transmit the disease intentionally), and susceptible individuals may not 
be aware of the infected situation of his/her partner, which make them more 
vulnerable to the disease. So the new generated infected individuals by aware 
infective individuals are assumed to be not aware of his/her infection at first 
and go to the unaware infected individuals class. 

• The simplest conceptual framework based on homogeneous behavior gives 
us clear insights into how community based chemotherapy can influence 
epidemiological pattern and transmission success. Here the mixing of 
susceptibles with infectives is considered to be homogeneous and accordingly 
the incidence rate is assumed to be bilinear [2] [5]. 

• All new born are susceptible, i.e., in our model vertical transmission do not 
account for. 

• We assumed that individuals in the treatment class not only to receive the 
ART therapy, but also to be served with knowledge about the HIV/AIDS 
disease so that they were persuaded to avoid unsafe sexual behaviors. Full- 
blown AIDS individuals are assumed too ill to sexually active, So the suscep- 
tibles do not get infected through sexual contacts with individuals from these 
two groups. 

• Inclusion of compartment R : It is true that an appreciable number of 
people are now changing their sexual habits sufficiently due to the awareness 
of the widespread nature of disease in society, the monumental deaths resulting 
from the disease, increasing knowledge of the agony and psychological 
trauma experienced by the infected individuals, and better enlightenment 
due to intense HIV/AIDS educational campaigns [4]. 

2.1. Basic Properties of the Model 

The model system (1) describes human population and therefore it is necessary 
to prove that all the variables ( )S t , ( )1I t , ( )2I t , ( )T t , ( )A t  and ( )R t  
are non-negative for all time. Solutions of the model system (1) with positive 
initial conditions (2) remains positive for all time 0t ≥  and are bounded in 
G , where  

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

6 0
1 2

1 2

0
1 2

, , , , , ,

          

Q
G S t I t I t T t A t R t

d

Q
S t I t I t T t A t R t

d

σ σ+


= ⊆

+ +

< + + + + + ≤ 




 

is defined based on biological considerations and positively invariant with 
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respect to the model system (1). 
Hence the theorem  
Theorem 2.1 Every solution of the system (1) with initial conditions (2) exists 

in the interval [ )0,t∈ ∞  and ( ) 0S t > , ( )1 0I t > , ( )2 0I t > , ( ) 0T t ≥ ,  
( ) 0A t ≥  and ( ) 0R t ≥ , for all 0t ≥ . For the model system (1), the region G  

is positively invariant and all solutions starting in G  approach, enter, or stay in 
G . 

Proof Since the right hand side of system (1) is completely continuous and 
locally Lipschitzian on C (space of continuous functions), the solution ( ( )S t , 
( )1I t , ( )2I t , ( )T t , ( )A t , ( )R t ) of (1) with initial conditions (2) exists and is 

unique on [0; ξ), where 0 ξ< ≤ +∞ . Under the given initial conditions (2), it is 
easy to prove that the components of solutions of the model system (1) are 
positive; if not, we assume a contradiction: that there exists a first time  

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 2inf 0 0 0 0 0 0t t S t or I t or I t or T t or A t or R t= = = = = = =  

If ( )1 0S t = , ( ) 0S t > , ( )1 0I t > , ( )2 0I t > , ( ) 0T t > , ( ) 0A t >  and 
( ) 0R t >  for ( )10;t t∈ , then we have ( )1 0S' t < , but from the first equation of 

system (1) we have  

( ) ( )1 1 2 0' 1 0S t Qε ε= − − >  

which is a contradiction meaning that ( )S t  remains positive; the other cases 
where ( )1 1 0I t = , ( )2 1 0I t = , ( )1 0T t = , ( )1 0A t =  and ( )1 0R t =  can also be 
discussed similarly as above. Thus in all cases ( )S t , ( )1I t , ( )2I t , ( )T t , ( )A t  
and ( )R t  remain positive for all 0t ≥ . Since ( ) ( ) ( )N t A t T t≥ + , then  

( ) ( )0 1 2 0 1 2 0Q d N N t Q dN A T Q dNσ σ σ σ− + + ≤ = − − − ≤ −  

which implies that ( )N t  is bounded and all the solutions starting in G approach, 
enter or stay in G. 

This completes the proof. 
Since the variables T , A  and R  of the system (1) do not appear in the first 

three equations of the system (1), in the subsequent analysis we only consider 
the following subsystem:  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 0 1 1 2 2

1 1 0 1 1 2 2 1 2 1

2 1 0 1 1 3 1 2

1 ,
,

1 ,

S t Q I I S d S
I t Q I I S k k d I
I t Q k I k d I

ε ε β β θ
δε β β

δ ε µ

 = − − − + − +


= + + − + +
 = − + − + +







          (3) 

with initial conditions  

( ) ( ) ( )1 20 0,   0 0,   0 0.S I I> > >                   (4) 

2.2. Existence of Endemic Equilibrium 

The system (3) does not exhibit a disease-free equilibrium due to direct inflow of 
population at a constant rate. However, there exists only one non-negative 
equilibrium point of the model (3), i.e., endemic equilibrium ( )1 2, ,E S I I∗ ∗ ∗ ∗ , 
where S∗ , 1I

∗ , 2I ∗  are positive solutions of the following system of algebraic 
equations,  
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( ) ( ) ( )1 2 0 1 1 2 21 0,Q I I S d Sε ε β β θ∗ ∗ ∗ ∗− − − + − + =            (5) 

( ) ( )1 0 1 1 2 2 1 2 1 0,Q I I S k k d Iδε β β∗ ∗ ∗ ∗+ + − + + =              (6) 

( ) ( )1 0 1 1 3 1 21 0.Q k I k d Iδ ε µ∗ ∗− + − + + =                (7) 

By solving Equations (5)-(7), we get  

( )1 2 0

1

1
,

Q
S

AI B
ε ε∗

∗

− −
=

+
                      (8) 

1 1
2

2 3 1

,k ICI
k dβ µ

∗
∗ = +

+ +
                      (9) 

1I
∗  is a positive solution of following quadratic equation  

( )2

1 1 0,a I bI c∗ ∗+ + =                      (10) 

where  

( ) ( )2 1 0 2 1 02 1
1

3 1 3 1 3 1

1 1
,   ,   ,

Q QkA B d C
k d k d k d

β δ ε β δ εββ θ
µ µ µ

− −
= + = + + =

+ + + + + +
 

and  

( )
( ) ( )
( )

1 2

1 1 2 0 1 2

1 1 2 0

,

1 ,

1 .

a k k d A

b Q A k k d B

c B C Q

δε ε ε

δε ε ε

= − + +

= + − − − + +  
= + − −  

 

Obviously a  is always negative and c  is always positive. By applying the 
Descartes’ rule of signs, one positive root of Equation (10) exists, whatever is the 
sign of b , i.e., we always get a positive equilibrium of the system (3). Above 
discussions can be summarized as: 

Theorem 2.2 The system (3) has a endemic equilibrium ( )1 2, ,E S I I∗ ∗ ∗ ∗ , 
which exists for all parameter values. 

Especially when 1 0ε = , we can easily obtain basic reproduction number 0R  
of the system (3) by using the next generation method as  

( ) ( )
( ) ( )

1 3 1 2 12 0
0

1 2 3 1

1 k d kQ
R

d k k d k d
β µ βε

θ µ
+ + +−

=
+ + + + +

. 

3. Global Stability Analysis of the Endemic Equilibrium 

In this section we shall discuss the global stability of the endemic equilibrium

( )1 2, ,E S I I∗ ∗ ∗ ∗ . 
Theorem 3.1 The endemic equilibrium ( )1 2, ,E S I I∗ ∗ ∗ ∗  of the system (3) is  

globally asymptotically stable, if 1 1
1

0
1

1
2

d dR Q
d

δ ε

β θ

+
>

+


, where { }1 min ,1δ δ δ= − .  

Before start our proof, we first recall the following lemma by Li and Muldowney 
[14]. 

Lemma If the system  

( )d ,
d
x f x
t
=  
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where ( ) nx f x ∈ , be a 1C  function for x  in an open set 1
nΓ ⊂   

such that  
1) has a unique equilibrium x∗  in 1Γ  and  
2) there exists a compact absorbing set 1K ⊂ Γ ,  

then the equilibrium x∗  is globally asymptotically stable provided that a  
2 2
n n
   

×   
   

 matrix valued function ( )P x  and a Lozinskii measure   of B  

with respect to a vector norm ⋅  in N
 , 

2
N

n
 

=  
 

 exist such that  

( )( )( )0

1 , d 0lim supsup
t

t x K
B x s x s

t→∞ ∈

  < 
 ∫   

Here  

[ ]21 1,fB P P PJ P− −= +  

the matrix fP  is obtained by replacing each entry ijP  of P  by its derivative 
in the direction of f  and [ ]2J  is the second additive compound matrix of the 
Jacobian matrix J , i.e., ( ) ( )J x Df x=  and  

( )
0

1
lim .
h

I hB
B

h→

+ −
=  

Proof of Theorem 3.1 The system is uniformly persistent in G  (given in 
Theorem 2.1). The uniform persistence of system (3) in the bounded set G  is 
equivalent to the existence of a compact set K G⊂  that is absorbing for system 
(3). Therefore the system (3) satisfies the conditions ( )i  and ( )ii  of the pre- 
vious Lemma. 

The Jacobian matrix of system (3) is given by  

( )
( )

( )

1 1 2 2 1 2 11 12 13

1 1 2 2 1 1 2 2 21 22 23

1 3 1 31 32 330

I I d S S J J J
J I I S k k d S J J J

k k d J J J

β β θ β β
β β β β

µ

 − + + + − −  
   = + − + + =   

  − + +   

 

where ijJ  is the corresponding entry of the matrix J .  
The second additive compound matrix of J  is given by  

[ ]

(
)

(
)

(
)

11 22 23 13
2

32 11 22 12

31 21 22 33

1 1 1 2 2
2 2

1 2

1 1 2 2
1 1

3 1

1 1 2
1 1 2 2

3 1

            

    

0
          

J J J J
J J J J J

J J J J

S I I d
S S

k k d

I I d
k S

k d

S k k d
I I

k d

β β β θ
β β

β β θ
β

µ

β
β β

µ

+ − 
 = + 
 − + 

 − + + +
 
 + + +
 

− + + + 
= − 

+ + + 
 − + + + + + 

 

Consider the function  
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( ) 1 1
1 2

2 2

, , diag 1, ,I IP P S I I
I I

 
= =  

 
 

then  

1 2 2

1 1

1 2 1 2 1 2 1 2
2 2
2 2

diag 1, , ,   

diag 0, ,f

I IP
I I

I I I I I I I IP
I I

−  
=  

 

 ′ ′ ′ ′− −
=  

 

 

Therefore  

1 1 2 1 2

1 2 1 2

diag 0, ,f
I I I IP P
I I I I

− ′ ′ ′ ′ 
= − − 

 
 

and  

[ ]

(
)

(
)

(
)

1 1 1 2 2 2 2
2 2

1 11 2

1 1 2 22 1 1
1 1

2 3 1

1 1 2
1 1 2 2

3 1

           

.
    

0
           

S I I d I IS S
I Ik k d

I I dIPJ P k S
I k d

S k k d
I I

k d

β β β θ
β β

β β θ
β

µ

β
β β

µ

−

 − + + +
 

+ + + 
 − + + + = − + + + 
 − + +
 + + + + 

 

Therefore,  

[ ]2 11 121 1

21 22

,f

B B
B P P PJ P

B B
− −  

= + =  
 

 

where  

( )11 1 1 1 2 2 1 2

2 2
12 2 2

1 1

1
1

221

,

,

0

B S I I d k k d

I IB S S
I I

I k
IB

β β β θ

β β

= − + + + + + +

 
=  
 

 
 =  
 
 

 

(

)

(

)

1 2
1 1 2 2

1 2 1

3 1
22

1 2
1 2

1 21 1 2 2

3 1

                 

                 

I I I I d
I I S

k d
B

I I k k d
I II I

k d

β β θ
β

µ

β β
µ

′ ′ − − + + + − 
 + + +
 =

′ ′ − − + + + 
 + + + 

 

Let ( ), ,u υ ω  be a vector in 3
  and its norm ⋅  is defined as  

( ) { }, , max , .u uυ ω υ ω= +  

Let ( )   be the Lozinskii measure with respect to this norm. Then we 
choose  

( ) { }1 2sup , ,g g≤   
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where  

( ) ( )1 1 11 12 2 1 22 21,   ,g B B g B B= + = +   

where 12B , 21B  are matrix norms with respect to the 1L  vector norm and 

1  denotes the the Lozinski measure with respect to the 1L  norm.  
Therefore, 

( ) ( )

( ) ( ) ( )

( ) ( ){ }

1 11 1 1 1 2 2 1 2

2
12 2

1

1
21 1

2
' ' ' '
1 2 1 2

1 22 3 1 1 1 2 3 1
1 2 1 2

' '
1 2

3 1 1 1 2
1 2

,

,

,

max , 2 .

max ,2

B S I I d k k d
IB S
I
IB k
I

I I I IB d k d S k k d k d
I I I I

I I d k d S k k
I I

β β β θ

β

θ µ β µ

µ θ β

= − + + + + + +

=

=

 
= − − + + + + − + − + + + + + 

 

= − − + + + + − − +





 

So, we have  

( ) ( )

( ) ( )

( )

( )

( ) ( ) ( ){ }

2
1 1 11 12 1 1 1 2 2 1 2 2

1

2
1 2 1 2 1 1 2 2

1

1 01
1 1 2 2

1 1

01
1 1 1 2

1 1 2

1 2 1
2 1 22 21 3 1 1 1 2 1

1 2 2

,

max ,2

Ig B B S I I d k k d S
I

IS S k k d I I d
I
QI I I d

I I
QI d d

I d
I I Ig B B d k d S k k k
I I I

β β β θ β

β β β β θ

δε
β β θ

δ ε β β θ
σ σ

µ θ β

= + = − + + + + + + +

= + + + + − + + +

′
= − − + + +

′
≤ − − + − −

+ +
′ ′

= + = − − + + + + − − + +

′
=





( ){ } ( )

( ){ } ( )

( ){ } ( )

1 2 1
1 1 2 3 1 1

1 2 2

1 01
1 1 2

1 2

1
1 1 2 1

1

01
1 1 1

1

max ,2

1
max ,2

max 0, 2 1

2

I I Id S k k k d k
I I I

QI d S k k
I I
I d S k k d
I

QI d d
I d

θ β µ

δ ε
θ β

β θ δ ε

β θ δ ε

′
− + − − + − − + + +

−′
= − + − − + −

′
≤ − + + − + − −

′
≤ − + + −

 

where { }1 min ,1δ δ δ= − . 
Furthermore, we obtain  

( ) { }

( )

( )

1 2

0 01 1
1 1 1 2 1 1 1

1 1 2 1

0 01
1 1 1 2 1

1 1 2

01
1 1 1

1

sup ,

sup , 2

max ,2

2 ,

g g

Q QI Id d d d
I d I d

Q QI d d d
I d d

QI d d
I d

δ ε β β θ β θ δ ε
σ σ

δ ε β β θ β θ
σ σ

δ ε β θ

≤

′ ′ 
≤ − − + − − − + + − 

+ + 

′  
= − − + − + − − + 

+ + 
′

= − − + +

 
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then  

( )

( )

01
1 1 10 0

1

01
1 1 1

1

1 1d 2 d

1ln 2 .
0

t t QIB d d
t t I d

QI d d
t I d

ζ δ ε β θ ζ

δ ε β θ

′ 
≤ − − + + 

 

= − − + +

∫ ∫

 

Therefore  

( )( )( ) ( )1 10
0

1

1 1, d 1 0,    if    1lim supsup
2

t

t t K
B x s x s R RQt

d
β θ→∞ ∈

  < − < > 
  +
∫   

Then based on Theorem 3.5 of [14] the endemic equilibrium E∗  of the system 
(3) is globally asymptotically stable. Hence the theorem. 

4. Optimal Control Problem Formulation 
4.1. Existence of an Optimal Control Pair 

In this section we give following optimal control problem.  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( )

1 2 0 1 1 1 2 2 2

1 3 1 0 1 1 1 2 2 4 2 1

2 3 1 0 4 1 3 1 2

1 2 2 2

2 1 3 2 2 1

2 0 2

1 1 ,

1 ,

1 ,
,

,
.

S t Q I u I S d u S

I t u Q I u I S u k d I

I t u Q u I k d I
T t I A d T
A t k I k I d A
R t Q u S dR

ε ε β β

ε β β

ε µ
µ µ σ

µ σ
ε

 = − − − + − − +  
= + + − − + +   

 = − + − + +


= + − +
 = + − + +
 = + −













      (11) 

satisfying initial conditions given in (2). We consider following optimal control 
parameters 

1) 1u  is the control effort aimed at reducing the infection of susceptible 
individuals; 

2) 2u  is the control effort aimed at persuading people to change or moderate 
their sexual behaviour; 

3) 3u  is the control effort aimed at screening new arrivals; 
4) 4u  is the control effort aimed at screening. 
The objective functional [1] [4] is defined as 

( )
1 2 3 4

2 2 2 2
1 2 1 3 2 4 1 1 2 2 3 3 4 40, , ,

1min d
2

ft

u u u u
J a S a I a I a A u u u u tω ω ω ω  = + + + + + + +    

∫ (12) 

the weight constants 1a , 2a , 3a , 4a , 1ω , 2ω , 3ω  and 4ω  are the relative 
weights and help to balance each term in the integrand so that any of the terms 
do not dominate. ft  is the final time. Our aim is to minimize the objective 
functional or cost function ( )1 2 3 4, , ,J u u u u  given in (15) so that the infective as 
well as the cost of implementing the control strategies can be minimized. So, we 
seek a set of optimal control ( )1 2 3 4, , ,u u u u∗ ∗ ∗ ∗  such that  

( ) ( ) ( ){ }1 2 3 4 1 2 3 4 1 2 3 4, , , min , , , : , , , ,J u u u u J u u u u u u u u U∗ ∗ ∗ ∗ = ∈  

the admissible control set is given as  
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( ){ }1 2 3 4, , ,  is Lebesgue measurable with 0 1, 0, .i i fu u u u u u t t = ≤ ≤ ∀ ∈  U (13) 

Theorem 4.1 Given the objective function ( )1 2 3 4, , ,J u u u u  as (15) with 
admissible control set U , subject to the system (14) with initial conditions (2), 
then there exist an optimal control set ( )1 2 3 4, , ,u u u u∗ ∗ ∗ ∗ , such that (16), if the 
following conditions are satisfied: 

1) The class of all initial conditions with the corresponding control functions 
in U  is non-empty; 

2) The admissible control set U  is closed and convex; 
3) Each RHS of the system (14) is continuous and is bounded above by sum of 

bounded control and state and can be written as a linear function of the control 
variables with coefficients dependent on time and state variables; 

4) The integrand L  in equation J  is convex on U  and additionally satisfies 
( ) ( )1 2 1 1 2 3 4 2, , , , , , , , ,L t S I I A T R c u u u u c

α
≥ − , where 1c , 2 0c >  and 1α > . 

Proof 1) We refer to Theorem 3.1 proposed by Picard-Lindelof in [15]. based 
on this theorem, if the solutions to the state equations are priori bounded and if 
the state equations are continuous and Lipschitz in the state variables, then there 
exists a unique solution, corresponding to the every admissible control set in 
U . Using the fact that for all ( )1 2, , , , , ,L t S I I A T R G∈ , all the model states are 
bounded below and above, the solutions to the state equations are bounded. In 
addition, the boundedness of the partial derivatives with respect to the state 
variables in the system can be directly shown, and this shows that the system is 
Lipschitz with respect to the state variables. 

2) The control set U  is convex and closed by definition. 
3) We observe that the integrand L  in our objective functional is convex, 

since it is quadratic in the controls. 

4) 

( )

( )

( )

{ }( )
( )

2 2 2 2
1 2 1 3 2 4 1 1 2 2 3 3 4 4

2 2 2 2
1 1 2 2 3 3 4 4

2 2 2 2 2
1 1 2 2 3 3 4 4 1 1 1 1

2 2 2 2
1 2 3 4 1 2 3 4 1

2
1 2 3 4 1

1
2

1   since  , 0, 1, 2,3, 4
2
1   since  0
2
1 min , , ,
2

, , , ,

i i

L a S a I a I a A u u u u

u u u u a i

u u u u u

u u u u

W u u u u

ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω

ω

= + + + + + + +

≥ + + + > =

≥ + + + − − ≤

≥ + + + −

≥ −

 

where { }1 2 3 4
1 min , , ,
2

W ω ω ω ω= . 

The above establishes a bound on L . 
Thus, we have a unique solution of the optimality system for small time 

intervals due to the opposite time orientations of the state equations and the 
adjoint equations [4]. Moreover, the uniqueness of the solution of the optimality 
system guarantees the uniqueness of the optimal control if it exists. 

4.2. Characterization of the Optimal Control 

Using Pontryagin’s Maximal principle [16], we obtain  
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( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

1 1 1 1 1 2 2 1 2 2 1 2 6

2 2 1 1 2 4 2 2 4 3 2 5
1

3 3 3 2 1 2 3 1 3 1 4 3 5
2

4 4

5 4 2 4 2 1 5

6

1 ,

,  

1 ,

 ,

,

H a I u I d u u
S
H a S u k d u k
I
H a u S k d k
I
H d
T

H a d
A
H d
R

λ β β λ λ λ λ

λ β λ λ λ λ λ

λ β λ λ µ λ µ λ λ

λ σ λ

λ µ λ µ σ λ

λ λ

∂′ = − = − + + − − + + −  ∂
∂′ = − = − + − + + + − −
∂
∂′ = − = − + − − + + + − −
∂
∂′ = − = +
∂
∂′ = − = − − + + +
∂
∂′ = − =
∂ 6 ,

















   

(14) 

where Hamiltonian is defined as  

( )
( ) ( ) ( ){ }

( ) ( ){ }
( ) ( )

1 2 1 3 2 4 5 6

2 2 2 2
1 2 1 3 2 4 1 1 2 2 3 3 4 4

1 1 2 0 1 1 1 2 2 2

2 3 1 0 1 1 1 2 2 4 2 1

3 3 1 0 4 1 3 1 2

4 1 2 2

1
2

 1 1

 1

 1

 

H L S I I T A R

a S a I a I a A u u u u

Q I u I S d u S

u Q I u I S u k d I

u Q u I k d I

I A

λ λ λ λ λ λ

ω ω ω ω

λ ε ε β β

λ ε β β

λ ε µ

λ µ µ

= + + + + + +

= + + + + + + +

+ − − − + − − +  

+ + + − − + +  

 + − + − + + 
+ + −

    

( )
( )

[ ]

2

5 2 1 3 2 2 1

6 2 0 2

 

 .

d T

k I k I d A

Q u S dR

σ

λ µ σ

λ ε

+  
+ + − + +  
+ + −

 

 

( )

( )

( )

( )

1 1 1 2 2 2 1 1
1

2 2 6 1 2 2
2

3 3 2 3 1 0 3 3
3

4 4 3 2 1 4 4
4

0,  at  ,

0,  at  ,

0,at   ,

0,at  .

H u I S u u
u
H u S u u
u
H u Q u u
u
H u I u u
u

ω λ λ β

ω λ λ

ω λ λ ε

ω λ λ

∗

∗

∗

∗

∂
= + − = =

∂

∂
= + − = =

∂

∂
= + − = =

∂

∂
= + − = =

∂

 

Hence solving for 1u∗ , 2u∗ , 3u∗  and 4u∗  we get  

( )

( )

( )

( )

2 2 2 1
1

1

1 6
2

2

1 0 3 2
3

3

1 2 3
4

4

,

,

,

,

I S
u

S
u

Q
u

I
u

β λ λ
ω

λ λ
ω

ε λ λ
ω

λ λ
ω

∗

∗

∗

∗

−
=

−
=

−
=

−
=

 

We can now impose the bounds max0 , 1, 2,3, 4,i iu u i≤ ≤ =  on the controls to 
get  
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( )

( )

( )

( )

2 2 2 1
1 1max

1

1 6
2 2max

2

1 0 3 2
3 3max

3

1 2 3
4 4max

4

min max 0, , ,

min max 0, , ,

min max 0, , ,

min max 0, , ,

I S
u u

S
u u

Q
u u

I
u u

β λ λ
ω

λ λ
ω

ε λ λ
ω

λ λ
ω

∗

∗

∗

∗

 −  =   
   
  − =   
   
  − =   
   
  − =   
   

 

or  

( )
2 1

1 2 2 2 1
1max 2 1

1

0 when  0,

min , when  0,
u I S

u

λ λ

β λ λ
λ λ

ω

∗

− >
= −  − < 

 

 

( )
1 6

2 1 6
2max 1 6

2

0 when  0,

min , when  0,
u S

u

λ λ

λ λ
λ λ

ω

∗

− >


=  −   − <    

 

( )
3 2

3 1 0 3 2
3max 3 2

3

0 when  0,

min , when  0,
u Q

u

λ λ

ε λ λ
λ λ

ω

∗

− >


=  −   − <    

 

( )
2 3

4 1 2 3
4max 2 3

4

0 when  0,

min , when  0.
u I

u

λ λ

λ λ
λ λ

ω

∗

− >


=  −   − <    

 

5. Numerical Simulations 

In this section, first we present some numerical results of the system (1), when

1 1.622 1R = >  using initial conditions and parameter values given in Table 1(a)  
 
Table 1. (a) Initial states; (b) parameter values. 

(a) 

Variable ( )0S  ( )1 0I  ( )2 0I  ( )0T  ( )0A  ( )0R  

Value 15,932,420 9124 27,373 18,751 8058 358,751 

(b) 

Parameter Value Parameter Value 

0Q  20,000 population/year 1k  0.031/year 

1ε  0.0016/year 2k  0.032/year 

2ε  0.06/year 3k  0.07/year 

δ  0.85/year 1µ  0.05/year 

1β  0.0000000000288/population/year 2µ  0.45/year 

2β  0.000000000000284/population/year 1σ  0.63/year 

d  0.0024/year 2σ  0.16/year 

θ  0.001/year   
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and Table 1(b). In our simulations, we consulted some stastical reports [17] [18] 
and similar works [2] [9] in the field for the parameter values Q0, d, μ1, 1σ  and 

2σ . All the other parameter values are fitted. The stability of the model (1) is 
presented in Figure 1(a) and Figure 1(b). In these figures we choose to separate 
the disease classes from the non-disease classes for their different population 
scales, we also provide the graphics for the different time scales to clarify the 
numerical findings. These figures shows that all model variables approaches to 
the endemic equilibrium of the model (1), namely,  

( )6 65.52 10 , 416.919,144.81,104.69, 21, 2.8 10E∗ = × × . 
Now we solved the optimality system numerically by using fourth-order 

iterative Runge-Kutta scheme and presented some graphical results which mostly 
are comparative figures of susceptibles ( )( )S t , unaware infectives ( )( )1I t , 
aware infectives ( )( )2I t  and infectives who receiving treatment ( )( )T t . We 
investigated the dynamics of compartments for varying combination of control 
measures 1u , 2u , 3u  and 4u  and present some graphics that show the most 
explicit difference between variables before and after applying the control meas-
ures.. The numerical results for optimality system obtained by using the 
parameter values given in Table 1(a) and Table 1(b), and for weight constants 
from the objective function, we set 1 35a = , 1 100a = , 1 50a = , 1 50a = , 

1 70ω = , 2 10ω = , 3 10ω =  and 4 100ω = . 
In Figures 2(a)-(c), we present some graphics when we apply all combination 

of control measures to the system. By comparison its easy to see that we have 
some positive results immediately after the time break. The decrease in number 
of susceptible ( )S  and unaware infectives ( )1I  can be interpreted as there are 
less people get infected and less people to spread the disease with higher 
transmission probability. In the contrary, population of recovered class ( )R  
increased and this is very anticipated, ideal state in the war against HIV/AIDS 
which has no cure. These effects of control measures to the above three classes 
may explicitly show the essence of this paper. Because persuading more people  
 

 
(a)                                                           (b) 

Figure 1. (a) The global asymptotically stability of E*. (b) The global asymptotically stability of E*. 
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(a)                                                           (b) 

 
(c)                                                            (d) 

 
(e)                                                             (f) 
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(g)                                                             (h) 

 
(i) 

Figure 2. (a) The control figure for susceptibles (S); (b) the control figure for unaware infectives (I1); (c) the control figure for 

aware infectives (I2); (d) the control figure for treatment class (T); (e) the control figure for recovered class (R); (f) the control u1; 

(g) the control u2; (h) the control u3; (i) the control u4. 
 

to practise safe sex measures and efficient medical testing is far more cost- 
efficient. From Figure 2(c) and Figure 2(d), as an immediate effect of control 
measures, we depicted a tolerable increase in the number of aware infectives 

( )2I  and infectives who receiving treatment ( )T . 
In Figures 3(a)-(c), we consider implying two control measures 2u  and 3u . 

In this case, number of susceptible significantly reduced and recovered class 
expand rapidly. The main characterization of this combination of control 
measures would be the static increase of aware infectives than the one there is no 
control. 

6. Conclusion 

In this paper, we formulated a deterministic model for controlling HIV/AIDS 
disease. we proved that our system only has one endemic equilibrium and it’s  
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(a)                                                             (b) 

 
(c)                                                           (d) 

 
(e)                                                           (f) 

Figure 3. (a) The control figure for susceptibles (S); (b) the control figure for unaware infectives (I1); (c) the control figure for 
aware infectives (I2); (d) the control figure for recovered class (R); (e) the control u2, (f) the control u3. 
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globally asymptotically stable if threshold-like conditions satisfied. And then we 
presented an optimal control problem. Our aim is to investigate combined role 
of the human behavior change and medical screening in the transmission of 
HIV/AIDS. We proved the existence and uniqueness of the optimal control and 
characterized the controls using Pontryagon’s Maximal Principal. In the end we 
solved the optimality system numerically, and results once again shows us that 
the optimal way of preventing further prevalence of HIV/AIDS is practicing safe 
sexual behaviors and conducting efficient, affordable testing as soon as possible 
for all people. The initial conditions we used in our simulations come from the 
statistical data, we have fixed some parameters and introduced some of the 
parameter values from similar works in this field to show our analytical findings. 
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