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Abstract 
This paper presents an accurate and efficient algorithm for solving the 
generalized elastic net regularization problem with smoothed 0  penalty for 
recovering sparse vector. Finding the optimal solution to the unconstrained 

0  minimization problem in the recovery of compressive sensed signals is an 
NP-hard problem. We proposed an iterative algorithm to solve this problem. 
We then prove that the algorithm is convergent based on algebraic methods. 
The numerical result shows the efficiency and the accuracy of the algorithm. 
 

Keywords 
Sparse Vector, Compressed Sense, Elastic Net Regularization,  

0  Minimization 

 

1. Introduction 

Compressive sensing (CS) has been emerging as a very active research field and 
brought about great changes in the field of signal processing during recent years 
with broad applications such as compressed imaging, analog-to-information 
conversion, biosensors, and so on [1] [2] [3]. Meanwhile, the 0  norm based 
signal recovery is attractive in compressed sensing as it can facilitate exact 
recovery of sparse signal with very high probability [4] [5]. Mathematically, the 
problem can be presented as  

0min ,  subject to  ,
Nx R

x Ax y
∈

=                     (1) 

where ,m m Ny R A R ×∈ ∈  is a measurement matrix, 
2⋅  denotes the Euclidean 

norm and 0x , formally called the quasi-norm, denotes the number of the 
nonzero components of ( )T

1 2, , , N
nx x x x R= ∈ , and the 0λ >  is a regulari- 

zation parameter.  
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We can then solve the unconstrained 0  regularization problem  

2

2 0

1min ,
2Nx R

Ax y xλ
∈

 − + 
 

                     (2) 

A natural approach to this problem is to solve a convex relaxation 1  re- 
gularization problem [6] [7] as following  

2

2 1

1min ,
2Nx R

Ax y xλ
∈

 − + 
 

                     (3) 

where the 
11

N
iix x

=
= ∑  is the 1  norm. Undoubtly, the 1  regularization  

has many applications [8] [9] and can be solved by many classic algorithms such 
as the iterative soft thresholding algorithm [7], the LARs [10], etc. An effective 
regression method, Lasso [11], has a very close relationship with the 1  re- 
gularization as well. In 2005, Zou et al. proposed the following algorithm, which 
called the elastic net regularization [12]  

2
1 22 1 2

1min ,
2Nx R

Ax y x xλ λ
∈

 − + + 
 

                (4) 

where the 1 2, 0λ λ >  are two regularization parameters. It is proved in many 
papers that the elastic net regularization outperforms the Lasso in prediction 
accuracy. Cands proved that as long as A satisfies the RIP condition with a 
constant parameter, the 1  minimization can yield an equivalent solution as 
that of 0  minimization [13]. So in general, the 1  regularization problem can 
be regard as an aproach to the 0  regularization. Therefore, we shall consider a 
generalized elastic net regularization problem with 0  penalty:  

2 2
1 22 0 2

1min ,
2Nx R

Ax y x xλ λ
∈

 − + + 
 

               (5) 

Unfortunately, the 0  norm minimization problem is NP-hard [14]. And 
due to the sparsity of the solution x, we could turn out to calculate the following 
generalized elastic net regularization with smoothed 0  penalty:  

2 2
1 22 0, 2

1min ,
2Nx R

Ax y x x
δ

λ λ
∈

 − + + 
 

              (6) 

where 
2

210,
N i
i

i

x
x

xδ δ=
=

+∑ , the 0δ >  is a parameter which approaches zero in  

order to approximate 0x . 
In this paper,we propose an iterative algorithm for recovering sparse vectors 

which substitute the 0  penalty with a function [15]. And by adding an 2  
term, we can prove that the algorithm is convergent based on the algebraic 
methods. In the experiment part, we compare the algorithm with the 1  soft 
thresholding algorithm (ITH) [16]. And the output results show an outstanding 
success of the new method. 

The rest of this paper is organized as follows. We develop the new algorithm 
in Section 2 and prove its convergence in Section 3. Experiments on accuracy 
and efficiency are reported in Section 4. Finally, we conclude this paper in 
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Section 5. 

2. Problem Reformulation  

The reconstruction method discussed in this paper is for directly approaching 
the 0l  norm and obtaining its minimal solution with suitably designed 
objective functions. We denote by ( )1 2, ,C xδ λ λ  the objective function of the 
minimization problem (6).  

( )
2

2 2
1 2 1 222 2

1

1, , .
2

N
i

i i

x
C x Ax y x

xδ λ λ λ λ
δ=

= − + +
+∑             (7) 

Our goal is to minimize the objective function. For any 0δ >  and 1 2, 0λ λ > , 
the minimization problem is convex coercie, thus it has a solution. So the 
optimal solution of (7) can be given according to the optimal condition.  

( )
( )

T 1
222

1

ˆ2ˆ ˆ2 0.
ˆ

i

i i N

x
A Ax y x

x

λ δ
λ

δ
≤ ≤

 
 − + + =
 +  

              (8) 

Then we can present the following iterative algorithm to solve the above 
minimization problem.  

 

Algorithm 1 Iterative Algorithm for Generalized Elastic Net Regularization with Smoothed 0  
Penalty (IAGENR-L0) 

0: Given vector y, matrix A, choose parameters 1 20, , 0δ λ λ> >  and initialize 0
Nx R∈   

1: for 1k =  do  

2: Compute the following system for ( )1kx +   

( )( )
( )

1
1 T 1 1

2 22

1

2
2 0

k
j k k

k
j

j N

x
A Ax y x

x

λδ
λ

δ

+
+ +

≤ ≤

 
  + − + = 

+  

                  (9) 

3: Or compute the equivalent equation  

( )( )
T 1 T1

22

2Diag , 1,2, , k

k
i

A A i N x A y
x

λδ

δ

+

  
  + = =  

+    

               (10) 

4: Stop when 1

2

k kx x δ+ − <    

5: end for 
6: Output the vector 0

Nx R∈  

3. Convergence of the Algorithm  

In this section, we prove that the algorithm is convergent. Firstly, we start from 
the lemma 1 [17] which we can deduce the inquality directly by using the mean 
value theorem.  

Lemma 1. Given 0δ >  , then the inequality  

( )
( )

( )
( )

22 2

2 2 2 22 2

2 x y y x yx y
x y x x

δ δ
δ δ δ δ

− −
− − ≥

+ + + +
           (11) 

holds for any ,x y R∈ .  
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Proof. We first denote ( )
2

2
2

xf x
x δ

=
+

, then by the mean value theorem, we  

have  

( ) ( ) ( )( )2 2 2 2 2 2   where  between  and .f x f y f x y x yξ ξ′− = −       (12) 

So we have  

( )
( )

( ) ( )
( )

2 2 22 2

2 2 2 22

2
.

x y x y y x yx y
x y x

δ δ δ
δ δ ξ δ δ

− − + −
− = =

+ + + +
       (13) 

Thus, we can simplify the inequality as follow:  

( )
( )

( )
( )

2 2 22 2

2 2 2 22 2

2
.

x y x yx y
x y x x

δ δ
δ δ δ δ

− −
− − ≥

+ + + +
 

This inequality of (11) holds no matter 2 2x y> , 2 2x y<  or 2 2x y= . And 
the next Lemma proves that the sequence ( )kx  drives the function ( )1 2, ,C xδ λ λ  
downhill.                                                        □  

Lemma 2. For any 0δ >  and 1 2, 0λ λ > , let ( )1kx +  be the solution of (9) for 
1,2,3,k =   Then we can have  

( ) ( )( )21 1
1 2 1 22

2 , , , , .k k k kAx Ax C x C xδ δλ λ λ λ+ +− ≤ −          (14) 

Furthermore,  

( ) ( )( )21 1
1 2 1 22

, , , , .k k k kx x c C x C xδ δλ λ λ λ+ +− ≤ −           (15) 

where c is a positive constant that depends on 2λ .  
Proof.  

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )

( ) ( )

2 21
1

1 2 1 2 1 2 211

2 2 2 21 1
2 2 2 2 2

2 21

1 2 211

2 21 1
22 2

T1 1 1
2

, , , ,

1 ( )
2

1 
2

 2

k kN i ik k

k ki
i i

k k k k

k kN i i

k ki
i i

k k k k

k k k k k

x x
C x C x

x x

x x Ax y Ax y

x x

x x

Ax Ax x x

x x x Ax Ax

δ δλ λ λ λ λ
δ δ

λ

λ
δ δ

λ

λ

+
+

+=

+ +

+

+=

+ +

+ + +

 
 − = −  + + 

+ − + − − −

 
 = −  + + 

+ − + −

+ − + −

∑

∑

( )T 1 .kAx y+ −

 (16) 

Using (9). The last term in (16) can be simplified to be  

( ) ( ) ( ) ( )
( )( )

( )
( )( )

( )

1T T 11 1 1 1 1
2 22

1 1
1 1 1

2221

2
2

2
2 .

k
k k k k k T k

k

k k kN Ti i i k k k

i k

xAx Ax Ax y Ax Ax A x
x

x x x
x x x

x

λ δ
λ

δ

λ δ
λ

δ

+−+ + + +

+ +
+ +

=

  
  

− − = − − +  
  +    

+ −
= − − −

+
∑

 (17) 
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Substituting (15) into (16) and using (11),  

( ) ( )

( )
( )

( )
( )

( )
( )( )

( )
( )( )

1
1 2 1 2

2 21 1 1

1 2 2 2211

2 21 1
22 2

21
2 21 1 1

22 2 221

, , , ,

2

1 
2

1 .
2

k k

k k k k kN i i i i i

k ki k
i i

k k k k

k kN i k k k k

i k

C x C x

x x x x x

x x x

Ax Ax x x

x x
Ax Ax x x

x

δ δλ λ λ λ

δ
λ

δ δ δ

λ

δλ
λ

δ

+

+ + +

+=

+ +

+
+ +

=

−

 
 −

= − − 
 + + + 
 

+ − + −

−
≥ + − + −

+

∑

∑

       (18) 

□  

Since 
( )
( )( )

21
1

21 2
0

k k
iN

i
k

x x

x

δλ

δ

+

=

−
≥

+
∑  for any kx  and 1kx + . From (18) we can  

obtain the results of (14) and (15) with 
2

1C
λ

= .  

Lemma 3. ([18], Theorem 3.1) Let ( ), 0P z w =  to be given, and let  
( ) ( )( ), , 0Q z a c =  be its corresponding highest ordered system of equations. If 
( ) ( )( ), , 0Q z a c =  has only the trivial solution 0z = , then ( ), 0P z w =  has 

1
m

ii qβ
=

=∏  solutions, where iq  is the degree of iP .  
Theorem 1. For any 0δ >  and 1 2, 0λ λ > . Then the iterative solutions kx  

in (9) converge to *x , that is *lim k
k x x→∞ =  and *x  is a critical point of (6).  

Proof. Here, we need to prove that the sequence kx  is bounded. We assume 
that ikx  is one convergent subsequence of kx  and its limit point is *x . By 
(15) we know that the sequence 1ikx +  also converges to *x . If we replace kx ,

1kx +  with ikx , 1ikx +  in (10) and letting i →∞  yields. 
□  

( )( )
( )

*
1 T * *

222*

2
2 0.j

j

x
A Ax y x

x

λ δ
λ

δ
+ − + =

+
              (19) 

And this implies that the limit point which converges to any convergent 
subsequence of kx  is the critical point of (8). In order to prove the convergence 
of sequence kx , we need to prove that the limit point set M, which contains all 
the limit points of convergent subsequence of kx  is a finite set. So we have to 
prove that the following equation has finite solutions.  

( )( )
( )1 T

222

1

2
2 0.j

i
i N

u
A Au y u

u

λ δ
λ

δ
≤ ≤

 
  + − + = 

+  

           (20) 

where ( )T
1 2, , , N

Nu u u u R= ∈ . We can rewrite (20) as follow:  

( )( )
( )1 T T

222

1

2
2 0.j

N

i
i N

u
A A I u A y

u

λ δ
λ

δ
≤ ≤

 
  + + − = 

+  

           (21) 
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It is obvious that T
22 NA A Iλ+  is a positive definite matrix, T NA y R∈  is the 

N N×  identity matrix. Then the (21) can be rewritten as the following eq- 
uation:  

( )( )T T
1 22 2 0.Nu B A A I u A yλ δ λ+ + − =                (22) 

where B is an N N×  diagonal matrix with diagonal entries  
( )( )22 , 1, 2,3, ,ii iB u i Nδ= + = 

. We denote ( )T
22 N ii N N

A A I aλ
×

+ =  and  
( )TT

1 2, , , NA y q q q=  . Then  

( )( )
( )( )

( )( )

22
1 1 11 1 12 2 1 1 1

22
1 2 21 1 22 2 2 2 2

22
1 1 1 2 2

2 0,

2 0,

      

2 0.

N N

N N

N N N NN N N N

u a u a u a u q u

u a u a u a u q u

u a u a u a u q u

λ δ δ

λ δ δ

λ δ δ

 + + + + − + =


+ + + + − + =



 + + + + − + =









      (23) 

If we want to prove that (23) has finite solutions, then we can prove the (22) 
system has finite solutions. According to lemma 3, if we prove that the highest 
ordered system of (23) has only trivial solution, then it's easy to conclude that 
the Equation (23) has finite solutions.  

( )
( )

( )

4
11 1 12 2 1 1

4
21 1 22 2 2 2

4
1 1 2 2

0,
0,

      
0.

N N

N N

N N NN N N

a u a u a u u
a u a u a u u

a u a u a u u

 + + + =


+ + + =


 + + + =









               (24) 

We prove the system (24) has only trivial solution. We assume that  
( )T

1 2, , , ,0, ,0 N
su u u u R= ∈   is a nonzero solution of (24), 0iu ≠  for  

1,2, ,i s=  , 1 s N≤ ≤ . Then we have  

0.sCu =                            (25) 

where ( )ii s s
C a

×
=  is the s s×  leading principle submatrix of matrix  

T
22 NA A Iλ+  is the positive definite, therefore the matrix C is positive definite 

as well. So we have 0iu =  for 1,2, ,i s=  . This contradicts the assumption of 
0iu ≠ , 1,2, ,i s=  , 1 i s≤ ≤ . 

Therefore, the system (24) has only trivial solution. So the Equation (20) has 
finite solutions. Since all the limit points of convergent subsequence of ( )kx  
satisfies the Equation (20) and we have proved that (20) has finite solutions. So 
the limit point set M is a finite set. Combining with ( ) ( )1

2
0k kx x+ − →  as 

k →∞ , we thus obtain that the sequence ( )kx  is convergent and limit *x  is a 
critical point of problem (7). 

4. Numerical Experiments  

In this section, we present some numerical experiments to show the efficiency 
and the accuracy of the Algorithm 1 for sparse vector recovery. We compare the 
performance of Algorithm 1 with 1  IST [3]. In the test, the matrix A had the 
size of 100 250× , which is 100m =  and 250N = . All the experiments were 
performed in Matlab and all the experimental results were averaged over 100 
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independent trials for various sparsity s. 
The experiment results contain two parts: the first one focuses on the 

comparison of the two algorithms in accuracy; the other one focuses on the 
efficiency of the two algorithms. In the experiments, the mean squared error of 
the original vector and the result is recorded as  

20

2
MSE kx x N= −                     (26) 

4.1. Comparison on the Accuracy  

The matrix 100 250A R ×∈  and the original sparse vector 0 250x R∈  was gene- 
rated randomly according to the standard Gaussian distribution with N-length 
and s-sparse, which varies as 2, 4, 6, 8, ···, 48. The location of the nonzero 
elements were randomly generated. The regularization parameters were set as 

610δ −=  and 3 5
1 210 , 10λ λ− −= = . All the other parameters of the two al- 

gorithms were set to be the same.The results are shown in Figure 1. 
The Figure 1 shows that the convergence error MSE for the two algorithms 

tends to be stable at last for different sparsity s. We can also observe that the 
MSE of the LAGENR-L0 is lower than the IST which demonstrates that our 
algorithm is not only convergent,but also outperforms the IST in accuracy. 

4.2. Comparison on the Efficiency  

In this subsection, we focus on the speed of the two algorithms. We conduct 
various experiments to test the effectiveness of the proposed algorithm. Table 1 
report the numerical results of the two algorithms for recovering vectors for 
different sparsity level. From the results, we can see that the IAGENR-L0 
performs much better than IST in efficiency and the accuracy. 
 

 

Figure 1. Comparison of the convergence error 
20

2
MSE kx x N= −  for 

both IAGENR-L0 and IST. 
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Table 1. The iteration time of the IAGENR-L0 and the IST for different sparsity level. 

Sparsity Algorithm Time MSE 

2 IAGENR-L0 0.038234 s 7.35e−007 

 IST 0.721920 s 1.68e−006 

4 IAGENR-L0 0.088917 s 1.03e−006 

 IST 0.943177 s 2.21e−006 

8 IAGENR-L0 0.031317 s 1.83e−007 

 IST 2.146079 s 3.95e−003 

16 IAGENR-L0 0.046566 s 1.35e−009 

 IST 2.368845 s 9.78e−002 

32 IAGENR-L0 0.501139 s 8.24e−003 

 IST 1.608879 s 1.14e−001 

5. Conclusion  

In this paper, we consider an iterative algorithm for solving the generalized 
elastic net regularization problems with smoothod 0  penalty for recovering 
sparse vectors. Then a detailed proof of convergence of the iterative algorithm is 
given in Section 2 by using the algebraic method. Additionally, the numerical 
experiments in Section 3 show that our iterative algorithm is convergent and 
performs better than the IST on recovering sparse vectors.  
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