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Abstract 
 
Ferroresonance is a complex and little known electrotechnical phenomenon. This lack of knowledge means 
that it is voluntarily considered responsible for a number of unexplained destructions or malfunctioning of 
equipment. The mathematical framework most suited to the general study of this phenomenon is the bifurca-
tion theory, the main tool of which is the continuation method. Nevertheless, the use of a continuation proc-
ess is not devoid of difficulties. In fact, to continue the solutions isolats which are closed curves, it is neces-
sary to know a solution belonging to this isolated curve (isolat) to initialise the continuation method. The 
principal contribution of this article is to develop an analytical method allowing systematic calculation of this 
initial solution for various periodic ferroresonant modes (fundamental, harmonic and subharmonic) appear-
ing on nonlinear electric system. The approach proposed uses a problem formulation in the frequency do-
main. This method enables to directly determine the solution in steady state without computing of the tran-
sient state. When we apply this method to the single-phase ferroresonant circuits (series and parallels con-
figurations), we could easily calculate an initial solution for each ferroresonant mode that can be established. 
Knowing this first solution, we show how to use this analytical approach in a continuation technique to find 
the other solutions. The totality of the obtained solutions is represented in a plane where the abscissa is the 
amplitude of the supply voltage and the ordinate the amplitude of the system’s state variable (flux or voltage). 
The curve thus obtained is called “bifurcation diagram”. We will be able to then obtain a synthetic knowl-
edge of the possible behaviors of the two circuits and particularly the limits of the dangerous zones of the 
various periodic ferroresonant modes that may appear. General results related to the series ferroresonance 
and parallel ferroresonance, obtained numerically starting from the theoretical and real cases, are illustrated 
and discussed. 
 
Keywords: Transformer, Ferroresonance, Fundamental Mode, Harmonic Mode, Subharmonic Mode, 

Fractional Mode, Isolat, Limit Point, Bifurcation, Dangerous Zone 

1. Introduction 

The ferroresonance is a nonlinear resonance phenome-
non that can affect the electrical transmission and distri-
bution networks. It indicates all oscillating phenomena, 
generally periodic, which particularly appear on all net-
works at capacitive dominant (single-phase or polyphase) 
in interaction with a ferromagnetic nonlinear element 
(unloaded transformer). 

This phenomenon is characterized by the possibility of 
existence of several stable steady states for a given con-
figuration and parameter values. These various operating 
modes, except the normal state, are obviously undesir-
able. They lead indeed either to out-of-tolerance over-

voltages with values several times in excess of the net-
work nominal voltage (case of fundamental or harmonic 
ferroresonance), or to overcurrents not less dangerous for 
the material (case of subharmonic ferroresonance) [1-4]. 

Modeling a ferroresonant circuit leads to a set of 
nonlinear differential Equations depending on various 
physical parameters. The mathematical framework ada- 
pted to the study of these dynamic systems is the bifurca-
tion theory [4-7]. The essential tool within this frame-
work is the continuation method. It makes it possible to 
obtain a global view of the phenomenon and to answer to 
concrete problems faced by the power system operator. 

However, in order that this continuation method can 
function correctly, we must have an initial solution be-
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longing to the type of studied mode (fundamental, har-
monic or subharmonic). This difficulty is particularly 
obvious in the case of the follow-up of a solutions isolat: 
no trivial solution is available to start the continuation. 
We thus need a systematic method of determination of 
this initial solution for the various ferroresonant modes 
[6-8].  

In this study, we are interested uniquely in permanent 
periodic solutions (fundamental, harmonics and subhar-
monics) in single-phase. Our objective is to develop an 
analytical approach which enables us to solve the ini-
tialization problem, on the one hand, in the iterative cal-
culation of the Galerkin method (very effective method 
to detect the occurrence conditions of the permanent fer-
roresonance) [4-7] and, on the other hand, in the con-
tinuation techniques used in the bifurcation methods. 

At the beginning, we present the studied ferroresonant 
system, which corresponds to a series or parallel sin-
gle-phase circuit, in mathematical form. We carry out a 
change of variables in order to simplify the study and to 
obtain a system of normalized Equations with a reduced 
number of unknowns. Then, we present the systematic 
stages of calculation of the various types of periodic 
modes, solutions of the standardized system. Finally, we 
show that this approach can be used in a continuation 
technique, which enables to give information on the ex-
istence limits of phenomenon when a parameter varies. 
We detail the influence of the supply voltage and the 
losses. 

Based on real and theoretical circuit cases, we show 
the wealth of information to acquire by this analytical 
approach. Several results of continuation (bifurcation 
diagrams) concerning the fundamental mode, harmonics 
3, 5 and 7 modes and subharmonics 3, 5, 7, 9 and 5/3 
modes, are presented. That enables us to provide a global 
vision of the phenomena and their occurrence zones.  

2. Presentation of the Proposed Analytical 
Method 

As the solutions in steady state are generally periodic, 
one seeks a formulation in frequency mode of the prob-
lem. The proposed analytical approach applies the same 
principle used in the Galerkin method. The idea is to 
seek a periodic solution in the form of Fourier series. For 
that, a circuit modeling is adopted, without the nonlinear 
element, based on the equivalent Thevenin model (Fig-
ure 1). 

The magnetic characteristic i() of nonlinear induc-
tance, often modelling an unloaded transformer, consti-
tutes the most significant point in the occurrence of fer-
roresonance. It is described by the following univocal  

  Eth 
i()

 Zth 

  v 

  i 

 

Figure 1. Equivalent study circuit. 
 
relation between the current i and flux  : 

  2 1; , ,qi a b q a b               (1) 

This is an approximate but satisfactory representation 
permitting the study of ferroresonance. 

For each frequency k, the complex Equation of the cir-
cuit (Figure 1) will be written as follows:  

0k k k k kj Z I E                  (2) 

where k is the pulsation at frequency k, k, Ik, Ek, and Zk 
are the complex components of the flux, current, supply 
voltage and Thevenin equivalent impedance at the har-
monic frequency k. 

In simple cases, it is possible to give an analytical ex-
pression to the relations of the current harmonic compo-
nents Ik in function of those of flow k. Such a procedure 
can be appropriate if the harmonic rate of the periodic 
modes is limited to the signals having only one or two 
spectral components. The Equations are then sufficiently 
simple so that one can analytically find a solution. It is 
even possible in this case to find all the problem solu-
tions. These simplified solutions can be used to initialize 
the Galerkin method and the continuation techniques 
used in the bifurcation methods [4-7]. 

2.1. Equivalent Circuit Equations 

Considering (t) an approximate solution limited at order 
2: 

  1 cos( ) cos ; 1ht t h t        h       (3) 

where  is the pulsation at 50 Hz of the excitation. Ex-
cept the fundamental ferroresonance, the row h can be a 
multiple of the unit (case of the harmonic ferroresonance) 
or a fraction of this one (case of the subharmonic fer-
roresonance).  

The Equation (2) is converted into a nonlinear alge-
braic system of 4 Equations, as follows:  

0hc h hs h hch R I X I               (4a) 

0hs h hc h hsh R I X I               (4b) 

1 1 1 1 1 1c s cR I X I E s               (4c) 

1 1 1 1 1 1s c sR I X I E c              (4d) 
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where e1 and e2 are the coefficients of the Thevenin 
equivalent voltage. The harmonic components of the 
current are calculated from (1); they are expressed in 
function of those of flux. The obtained system (4) has 
four Equations with four unknown variables (1, h,  
and ). In order to limit this number of unknowns, it is 
interesting to normalize this system. 

2.2. Normalization of the System 

To determine a particular solution of a system periodic 
mode (4), it is preferable to transform it as follows: by 
adding member to member the Equation (4a) multiplied 
by cos and the Equation (4b) multiplied by sin, we 
obtain the Equation (5a). By subtracting member to 
member the Equation (4a) multiplied by sin and the 
Equation (4b) multiplied by cos, we obtain the Equation 
(5b). We proceed in the same way for the Equations (4c) 
and (4d) but in multiplying them by cos and sin, we 
thus obtain the Equations (5c) and (5d). The Equations 
system (4) becomes:  

   1 1 2 1, , , , , , 0h h h h hh R G X G             (5a) 

   2 1 1 1, , , , , , 0h h h hR G X G              (5b) 

   
 

1 1 3 1 1 4 1

2 2
1 2

, , , , , ,

sin

h hR G X G

E e e

        

 

 

  
     (5c) 

   
 

1 4 1 1 3 1

2 2
1 2

, , , , , ,

cos

hR G X G

E e e
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 



 
       (5d) 

with: 
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   

2

1

tan
e

e
    

This system (5) can still be written in the following 

form:  
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       



 
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

 




   

   

  2 2
1 2e e

  (6) 

In order to reduce the number of unknowns in (6), it is 
necessary to carry out the following change of variable: 

*

1

hQ avec Q



             (7) 

which enables to write the system (6) in a normalized 
general form (8): 

   
   

 
   

   

1 1 1 2 1
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     

 

      
     

  

 



 




 

 

 
 

 (8) 

which is solved easily. 
With 1 2 3  are functions limited uniquely 

to the three unknowns 1,  and 
4, ,  and G G G G   

 . This enables us to 
find a solution of the studied mode. 

To find all the corresponding approximate solutions to 
a given set of parameters of the study circuit or to ap-
proximately determine the existence zones of the various 
ferroresonant modes, it is then sufficient to iterate on the 
new variable Q. 

This developed tool is general and can adapt to any 
type of circuit single-phase. Moreover, it constitutes an 
excellent means of search for an initial solution to in-
clude in the iterative calculation of the Galerkin method, 
particularly in the case of follow-up of solutions isolat. 

In order to explain the implementation of this analyti-
cal method, we present it in detail in the following para-
graph. 

3. Application to Study of Single-Phase 
Ferroresonance 

The ferroresonance can occur in single-phase or poly-
phase circuits. The circuit configurations under which 

Copyright © 2011 SciRes.                                                                                  EPE 
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this phenomenon can occur are endless [9-11]. We dis-
tinguish the configurations known as series (resp. paral-
lel), where we find a capacity in series (resp. in parallel) 
with the nonlinear element and the source voltage. 

Frequently, the encountered practical situations are 
generally three-phase but, thanks to an adapted modeling, 
they can be transformed into single-phase ferroresonance 
cases [2-4]. This is why we have chosen in our study a 
single-phase representation of the studied system (series 
or parallel type). 

3.1. Study of Parallel Ferroresonance  

We apply the proposed approach to the research of the 
periodic ferroresonant modes of the circuit of Figure 2, 
which enables to study the problems of the parallel fer-
roresonance. It is about a single-phase model of an op-
eration of voltage restoration between a sinusoidal volt-
age source and an unloaded power transformer, through 
an underground cable or a long overhead line [10]. It is 
the capacity of the line which is the responsible element 
revealing the phenomenon. 

The physical parameters of this circuit are: 
E: amplitude of the supply voltage e(t) = E cos(100t), 
Ct: equivalent capacitance of the circuit, 
Lg, Ld: linear inductances of the circuit, 
Rg, Rd: series losses of the circuit, 
Rt: parallel losses of the circuit. 
The magnetic characteristic is defined by:  
  31,84 10 61 10i        . It corresponds to a real 

power transformer, single-phase, of 360 MVA and 
nominal primary voltage 130 kV.  

By a judicious choice of the circuit parameters, we can 
determine the various possible modes of fundamental, 
harmonic and subharmonic ferroresonance [12-15].  

3.1.1. Search for Integer Subharmonics Modes 
In this case, the row h is a simple fraction of the unit. To 
fix the ideas, we detail here the example of the subhar-
monic mode 3 (h = 1/3, we use the notation SH3). We 
choose the case where the study circuit parameters (Fig-
ure 2) are: Lg = 2.25 H; Rg = 4 ; Ct = 43.5 F; Rt = 0.1 
M; Ld = 0.1 H; Rd = 1 , which represent a theoretical 
case allowing the study of the SH3. 
 

 

 i= f()

  e(t) 

  Rg  Lg Rd  Ld 

    
Rt 

 

Figure 2. Parallel, single-phase, nonlinear ferroresonant cir-
cuit. 

We start then by calculating the Fourier coefficients of 
the harmonic currents I1 and I1/3 by virtue of relation i(). 
We obtain: 
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with: 

9 8 2 7
1 1 1 1 1 1 1 1

3 3 3 3

6 3 4 5
1 1 1 1

3 3

8 7 2 3 6 59
2 1 1 1 1 1 1

3 3 3

8 3 6 5 49
3 1 1 1 1 1 1

3 3 3

29
4 1 1

126 630 2520
256

5040 7560

504 1260 3780 5040
256

252 1512 1260
256

252
256

b
B k

k
B

k
B

k
B

     

   

4
1 1

3

      

     

 




   




  


 
     

 
 

    
 

 7 4 5
1 1

3 3

2 79
5 1 1

3

9 8 7 2
6 1 1 1 1 1 1 1

3 3

3 6 5 4
1 1 1

3

9 2 7 6 3 4 59
7 1 1 1 1 1 1 1

3 3 3 3

504

36
256

126 630 2520
256

5040 7560

84 1512 1680 3780
256

h

k
B

b
B k

k
B

 

 

     

   

      

 
  

 
 

   
 


   




  


 
     

 

 

2 7 6 3 4 59
8 1 1 1 1 1 1

3 3 3

8 3 69
9 1 1 1 1

3 3

3 69
10 1 1

3

1 2 3 4

5 6 7 8

9 10

756 1260 2520
256

72 252
256

84
256

; 2 ; 4 ; 2

7 2 ; ; 3 , 2 3 ;

6 ; 3 6

k
B

k
B

k
B

     

   

 

5 ;          
         
     

 
    

 
 

   
 
 

   
 

      

     

   

 

Copyright © 2011 SciRes.                                                                                  EPE 



F. B. AMAR  ET  AL. 454
 

 

The system (4) is converted into: 
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By adding the Equation (10a) multiplied by cos
th
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e Equation (10b) multiplied by sin1, we obtain the 

Equation (11):  

1 1 1 1 2 1 3

3 3 3 3

1 4 1 5 1 2 1 3

3 3 3 3

1 4 1 5

3 3

sin
3

)sin 2 ( cos

cos 2 0

X B R B R B
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 



 
    

 


   

 

    
 





  (11) 

with  = 3 − . 
the Equation (10a) multiplied by sin1 

fr
By subtracting 

om the Equation (10b) multiplied by cos1, we obtain 
the Equation (12):  

1 1 1 2 1 3 1 4 1 5

3 3 3 3 3

1 3 1 2 1 5 1 4

3 3 3 3

cos cos 2

sin sin 2 0

R B R B R B R B R B

X B X B X B X B

 

 

   
         
   
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          
   

 (12) 

We proceed in the same way for the Equations (10c) 
and (10d) but by multiplying them by cos6 and sin6, 
thus we obtain the Equations (13) and (14):  

 
   
   

1 1 6 1 8 1 7
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2 2
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 
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cos

cos 2 sin

sin 2 cos
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

 

  

 

   

   

 (14) 



Equations (11)-(14) constitute a system of four Equa-
tions in four unknowns 1, 1/3,  and . To reduc
number of unknowns to three, we adopt the follo
change of variable:  

e the 
wing 

1

3

1

Q Q R




               (15) 

We show that, for Q a given value of , we can com-
pletely solve the Equations system (11) to (14) and to 
deduce an approximate solution from
tem (2). The supply voltage amplitu
termined by the ratio between the two Equations (13) and 
(1

 the complete sys-
de E is directly de-

4). By varying Q, we thus compute all the solutions of 
the characteristic for SH3 mode in function of the source 
voltage E. By using the terminology of the bifurcation 
theory, the curve thus obtained in the plane, where the 
abscissa is the amplitude E and the ordinate is the ampli-
tude of the system’s state variable (flux or voltage), is 
called “bifurcation diagram”. Then we will be able to 
then get information on the existence zone of the mode 
studied in function of the voltage E and to precise its 
critical values which correspond to limit point bifurca-
tions [4-6]. 

By replacing the functions Bi (i =1 à 10) by their expres-
sions and 1/3 per Q·1 in the two Equations (11) and (12) 
where there is not source component, we obtain:  

89
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  (16) 
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R B R B X B X B

X B X B E e e
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  (17) 

where the elements Pi (i = 1 a 5) are polynomials in Q:  

A first solution of the Equations (16) and (17) is 1/3 = 

8 6 4 2
1

7 5 3
2

6 4

4

6 4
5

126 2520 7560 5040 63

756 5292 6300 1260

252 2268 3780 1260

216 504

P Q Q Q Q
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 

3
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288 504P Q   

0
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  (13) 

  
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0: it corresponds to the harmonic modes. To calculate the  

subharmonic modes, let us eliminate component 

-2

-1

0

3

89
1256

k    

between the Equations (16) and (17). We obtain a rela-
tion in   of type: 

ecos sin cos 2 sin 2a b c d               (18) 

with: 

1 2

3 3

2 2
1 4 1 1 4 1 1 4

3 33
b X P X k P k R P

3

1 3

3

2 2
1 5 1 1 5 1 1 5

3 3 3

1 1

3

3

3

3

c R P

d X P X k P k R P

e R P

a R P










 

  



 

In order to solve relation (18), we make the following 
change of variables:  

  (19) 

which enables to write the relation (18) in form of a sys-
tem of two nonlinear Equations to two unknowns (x and 
y): 

   (20) 

In order to determine whether the system admi
 

y) = 0 is the Equation of unit circle. 
For a fixed value of Q and under condition x2 + y2 = 1 

(condition which fixes the interval of Q for whic
mode exists), the tracing of the representative curves of 
th

 

  

 2 2sin
tel que 1 avec , 1,1

cos

x
x y x y

y





    

  2

2 2

, 2 2 0f x y cx bx ay dxy c e       
  , 1 0g x y x y   

ts solu-
tions on [–1, 1], we will plot the representative curves of
the two functions f and g in order to show the existence 
of a couple (x, y) where they intersect. Let us note that 
g(x, 

h a SH3 

e two functions f and g of the system (20) shows the 
existence of two intersection points S1(x1, y1) et S2(x2, y2) 
(Figure 3). 

Knowing , the Equation (17) enables to calculate 1. 
Then 1/3 is given by the relation (15):  

1 1

3

Q    

Parameter α is deduced by the ratio between the two  

1

2

-3 -2 -1 0 1 2 3
 x = sin 

y = cos 

 f ,y)=0(x

 S1 

g(x,y)=0

 S2

 

Figure 3. Intersection of the two representative curves of the 
functions f(x, y) = 0 and g(x, y) = 0. 
 
Equations (13) and (14): (see Equation (21)) 

Knowing , the same Equations (13) and (14) also 
enable to calculate the amplitude of source voltage E. 

Finally, the parameter  is deduced starting from the 
relation (13):  

 1

3
     

In this way, we can easily solve the initialization prob-
lem observed in the continuation procedures used in the 
bifurcation method, and in the iterative calculation pro-
cedure used in the Galerkin method. The latter method 
enables to calculate precisely the ferroresonant modes. 

We present, in Figure 4, the solution waveforms ob-
tained by the proposed approach (flux (t) in the target 
transformer and the voltage V(t) on its terminals), over a 
period, for the peak value of the nominal voltage (E = 
183 kV): it is about a solution of SH3 mode. Indeed, its 
basic period is three times as equal as the excitation pe-
riod T0 = 20 ms. It is then easy to note that, under the 
influence of the presence of the 1/3 harmonic component, 
the solution waveform is obviously deformed. 

From this solution, we vary progressively the parame-
ter Q, the two intersection points and system (20) solu-
tions. Then, we generate two SH3 solution branches 
which meet in two limit points BP1 and BP2 (Figure 
5(a)), called bifurcation points for which there is stability 
change. Thus, we obtain a bifurcation diagram of the 
SH3 ferroresonant mode (noted DB-SH3). To have an 
overall view of the results, we present this bifurcation 
diagram in function of voltage E for each variable (, V, 
1, V1, 1/3, V1/3): they are solution isolats (Figures 5(a) 
and (b)). 

On the other hand, the diagram surface (in other words 
 

       
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Figure 5. Bifurcation diagrams of SH3 mode as a function of E, for various values of the series losses Rg (Lg = 2.25 H, Ld = 0.1 H, 
Ct = 43.5 µF, Rt = 0.1 MΩ and Rd = 1 Ω). 

Copyright © 2011 SciRes.                                                                                  EPE 



F. B. AMAR  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  EPE 

457

 
the existence zone of mode SH3) is more reduced when 
series losses Rg of system are large. In addition, the 
minimum voltage of the existence of this ferroresonant 
mode (where the first bifurcation BP1) increases. In con-
trast, the maximum voltage of existence (where the sec-
ond bifurcation BP2) decreases. Indeed, in order that this 
mode persists, it is necessary that the source energy can 
compensate for the network losses [16,17]. This remains 
possible for strong voltages. But these voltages are not 
realistic for an electrical power network. The considera-
tions above also apply to the other types of periodic fer-
roresonant modes. 

Let us announce that, for certain values of E, the am-
plitude of SH3 component can exceed considerably the 
amplitude of the 50 Hz component (Figure 5(b)). In fact, 
the ratio Q (15), which enab
pared to that 50 Hz, has for valu

The same reasoning is equally applied to calculate the 
other subharmonics modes. On Figures 6-11, we sum-
marize the results of the proposed approach concerning 
modes SH5, SH7 and SH9 (these are theoretical cases). 
Qualitatively, the remarks previously quoted on the 
DB-SH3 are retained for the DB-SH5, DB-SH7 and 
DB-SH9. 

On Figure 12, we compare the bifurcation diagrams of 
the subharmonics 3, 5, 7, 9 modes and the fundamental 
mode, which can exist simultaneously for the following 
theoretical case: Lg = 2.25 H, Rg = 1 , Ct = 1100 F, Rt 
= 0.1 M and Ld = Rd = 0. We then conclude that: 
 Contrary to the fundamental ferroresonance mode, 

the bifurcation diagrams of the subharmonics modes 
are solution isolats and no intersection with trivial 
solutions. 

 The existence domains o

e flux (t) and the  

voltage V(t) decrease when the row of subharmonic 
increases. These values are always lower than those 
reached by the fundamental ferroresonance mode. 

 For the same excitation voltage E, different subhar-
monic solutions can exist. One or the other of the so-
lutions appears according to the value of the initial 
conditions (initial charge on capacitor, remanent flux 
in the core of the target transformer, switching instant, 
etc.). 

This methodology permits to treat effectively the ini-
tialization problems encountered in the Galerkin method 
and the continuation methods. 

3.1.2. Search for Fractional Subharmonics Modes 
1982, EDF recorded a ferroresonance case during th  

lectric generators of Chas-
tang on transformers of nuclear power stations of Chinon 
[5]. Abnormal oscillations at a preponderant frequency 
of 83.33 Hz are observed. This frequency corresponds to  

a period 

les to relativize the SH3 com- 
e several times the unit. 

voltage feedback from hydroe
In e

03

5

T
 (with T0 = 20 ms is the source period). 

We apply the proposed analytical method to simulate 
this mode type, solution of the circuit of Figure 2 mod-
eling the voltage feedback.  

We consider two flux components 1 and 5/3 (h = 5/3 
is not a simple unit fraction) and we adopt the following 
values: Lg = 2.25 H, Rg = 20 , Ct = 4.5 F, Rt = 0.1 M, 
Ld = 0.1 H and Rd = 7 , which correspond to a line of 
nominal voltage 225 kV of 370 km and give a network 
natural frequency of 

1
50 Hz

2π
rf 

g tL C



      (22) 

The Galerkin Equations system of is: 

f these oscillation modes 
decrease when the row of subharmonic increases. 

 The effective values reaching by th
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Figure 6. SH5 solution: Flux φ(t) and voltage V(t) waveforms
ferroresonance for E = 183 kV. 
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Figure 7. Bifurcation diagrams of SH5 mode as a function of E, for the circuit parameters: Lg = 2.25 H, Ld = 0.1 H, 
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Figure 8. SH7 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer during one period for the subharmonic-7 
ferroresonance for E = 183 kV. 
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Figure 9. Bifurcation diagrams of SH7 mode as a function of E, for the circuit parameters: Lg = 2.25 H, Ld = 0.1 H, Ct = 242 µF, Rt 
= 1 MΩ, Rg = 0.1 Ω and Rd = 0.1 Ω. (a) Existence zones of the SH7 mode versus applied voltage E. (b) Continuation of the ampli-
tudes of SH7 component and the 50 Hz component. 
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Figure 10. SH9 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer during one period for the subhar-
monic-9 ferroresonance for E = 183 kV. 

Copyright © 2011 SciRes.                                                                                  EPE 



F. B. AMAR  ET  AL. 460
 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

×106

180 

190 

200 

210 

220 

230 

240 
Parallel ferroresonance 

φ
ef

f (
W

b)
 

E (V) 

BP: Bifurcation point
BP1 

BP2

 

Parallel ferroresonance 

 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

×10

4
×

104

3.5

      6

0.5

1

1.5

2

2.5

3

 (
V

) 
ffe

V

 (V)  E

(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

×106

0 

50 

100 

150 

200 

250 

300 

350 
Parallel ferroresonance 

E (V)

Φ
1,

 Φ
1/

9 
 (

W
b)

 

Φ1 

Φ1/9  

  
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

×106

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
×
104

Parallel ferroresonance 

V
1,

V
1/

9 
(V

) 

E(V) 

V1

V1/9 

       
(b) 

Figure 11. Bifurcation diagrams of SH9 mode as a function of E, for the circuit parameters: Lg = 2.25 H, Ld = 0.1 H, Ct = 370 
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We obtain a subharmonic 3 mode (Figure 13) whose  

harmonic 5 of frequency 0

5
83.33 Hz

3
f f   (with 

0
0

1
50 Hzf

T
   is the source frequency) is preponderant  

in its spectrum. It is the synchronization phenomen

between the natural period of the free system

on  

 03

5

T
T 

 
without excitation or losses (called Hamiltonian system) 
and the source period T0, which gives us a fractional 
subharmonic mode SH3/5 oscillating at a common pe-
riod which is here 3T0. We announce that for the ordi-
nary ferroresonant circuits, the maximum period of free 
oscillation is about 100 ms at a few seconds and the 
minimal period is about of the millisecond. 

The continuation of this mode in function of the exci-
tation E is summarized by the bifurcation diagrams of 
Figure 14: it is an isolat, result awaited for the subhar-
monics modes. These diagrams show that, for the net-
work parameters values, ferroresonance may occur for 
nominal phase-to-neutral network voltage 130 kV (wh
ther the possible initial condition values are responsib
for initiating ferroresonance). 

alculation of the periodic modes, of the same excitation  

period, rich in harmonic h. In this case, flux is described 
by two harmonic components 1 and h with h positive 
integer. We speak about the harmonic h mode (we use 
the notation Hh) when the amplitude h becomes impor-
tant and superior to 1. 

We study, in this paragraph, the harmonic 3, 5 and 7 
modes, for real situations of Figure 2. Setting of Equa-
tions is similar to that adopted for the subharmonics 
modes. 

Figure 15 shows, for Enom = 183 kV, the waveforms of 
flux (t) and voltage V(t) at the transformer terminals in 
search case for a H3 mode. By examining these curves, 
we note that each one contains three similar maximums 

ource period; that means that the solution -
ed is very rich in harmonic 3 (f = 150 Hz). The con-

tinuation of this mode, in function of the excitation volt-
age E begins with the null trivial solution ( = 0, V = 0) 
for E = 0 (Figure 16). When E increases, one meets two 
bifurcations of the limit point type BP1 and BP2 specify-
ing the true zone of existence of the H3 mode. In fact, 
inside this zone where the tension E is understood be-
tween 152 kV and 240 kV, the amplitude of the 
third-harmonic component (V3) is important in front of 
the fundamental component 50 Hz (V1) (Figure 16(b)) 
and the corresponding solutions are characterized by 
dangerous overvoltages (the nominal amplitude of the 
network voltage is 183 kV). 

On Figures 17-20, we summarize the results of the H5 
and H7 modes (they are real cases). Qualitatively, the 

arks previously quoted on the DB-H3 are retained or 
-H5 and DB-H7. 

To have an overall view of the results, we compare the 

real case: Lg = 2.25 H, Rg = 20 , Ct = 1 F, Rt = 0.1 M, 
Ld = 0.1 H and Rd = 7 . Then we conclude that: 

 

over a s ob
tain

e- 
le 

rem  f
the DB

3.1.3. Search for Harmonics Modes 
e apply the method previously described for systematic 

bifurcation diagrams of the harmonic 3, 5, 7 modes and 
the fundamental mode (Figures 21) for the following 
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Figure 15. H3 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer during one period for the harmonic-3 
ferroresonance for E = 183 kV. 
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Figure 17. H5 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer during one period for the harmonic-5 
ferroresonance for E = 183 kV. 
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Figure 19. H7 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer uring one period for the harmonic-7 
ferroresonance for E = 183 kV. 
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Figure 20. Bifurcation diagrams of H7 mode as a function of E, for the circuit parameters: Lg = 2.25 H, Ld = 0.1 H, Ct = 0.178 
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Figure 21. Comparison between bifurcation diagrams of H3, 5, 7 modes and of fundamental mode for the circuit parameters: 
Lg = 2.25 H, Ld = 0.1 H, Ct = 1 µF,    Rt = 0.1 MΩ, Rg = 20 Ω and Rd = 7 Ω. 
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 The bifurcation diagrams of the harmonic modes are 

complex curves always starting with the null trivial 
solution. 

 The existence domains of these oscillation modes and 
their voltage levels E increase when the row h of har-
monic increases. The existence minimum voltages are 
much become large as the row h is large. For h > 3, 
they are clearly higher than the nominal voltage. 

 The voltage domain E situated between the existence 
superior limit of H3 mode and the existence inferior 
limit of the H5 mode is probably rich of the 
four-harmonic component (it is the H4 mode). 

 The source voltage applied is then determining final 
mode: in fact, while varying in a monotonous way the
excitation voltage E, we observe in the increasing or-
der the appearance of the various harmonic modes 
(even and odd). 

 The maximum rms values reached by the voltage V(t) 
(overvoltages) are always superior to those reached 
by the fundamental mode. 

3.2. Study of Series Ferroresonance 

We apply this method to computation of the periodic 
ferroresonant modes of the circuit of Figure 22, which 
describes correctly the practical problems of the series 
ferroresonance. Most commonly, this type of situation is 
achieved when a magnetic voltage transformer (the 
nonlinear inductance) is connected to busbar separated 
by the grading capacitance of an open circuit breaker (th
series capacitance) [1-4]. This capacitance is the capital 
element revealing the ferroresonance. 

 by 
ll capacitances of the circuit breaker, the transformer 

and the busbar section, 
l: linear inductance of the circuit, 
R1 and R2: series and parallel losses of the circuit. 
The magnetic characteristic is defined by:  

4 9

 

e 

The physical parameters of this circuit are:  
E: amplitude of the supply voltage e(t) = E cos(100t), 
C: equivalent capacitance of the circuit, constituted

a

3 3( ) 10 2,34.10i     
voltage transformer, single

. It corresponds to a real 
-phase, of nominal primary  

 
 

i=f()

  e(t) 

 C  R1  l 

   R2 

 s

Figure 22. Series, single-phase, nonlinear ferroresonant cir- 
uit. 

only two solutions. Obtaining one or another depends on 
the in 

voltage 230 kV. 
We adopt the values R1 = 32 k; C = 400 pF; R2 = 714 

M and l = 0 H, which represents a real case allowing 
the simultaneous study of the various possible ferroreso-
nant modes (fundamental, subharmonics 3, 5, 7, 9 and 
3/5 and harmonics 3, 5 and 7). 

3.2.1. Search for Integer Subharmonics Modes 
The row h is a simple fraction of the unit. Figures 23-26 
respectively give the initial solutions of the SH3, SH5, 
SH7 and SH9 modes, obtained for the crest value of the 
nominal voltage Enom = 327 kV.  

From these initial solutions, we vary step-by-step the 
ntinuation parameter Q; we obtain the corresp ding 

bifurcation diagrams: they are solution isolats compris-
ing two bifurcation points as in the case of the parallel 
ferroresonance (Figures 27-30). 

Likewise the existence zones of these subharmonics 
modes are reduced as the parallel losses of the system 
become large. Indeed, the phenomenon disappears as 
soon as the losses become important. All this confirms 
the regulate action that parallel losses have on the vari-
ous phenomena of the series ferroresonance; their role is 
much more important than the series losses. 

The superposition of the obtained bifurcation dia-
grams and that of the fundamental mode is given by 
Figure 31. We find the same conclusions as that of the 
parallel ferroresonance. The levels of flux (t) and volt-
age V(t), for the same circuit parameter decrease when 

e row of subharmonic increases and they are ways 
lower than those reached by the fundamental ferroreso-

We apply the method to the situation where h is not a 
simple unit fraction, by studying the case of the frac-
tional subharmonic mode SH3/5. We obtain a subhar-
monic 3 mode (Figure 32) whose harmonic 5 (83.33 Hz: 
which represents the frequency of the phenomenon stud-
ied SH3/5) is predominating only for unrealistic values 
of E (Figure 33(b)). 

By examining the oscillation waveform of the ob-
tained solution (Figure 32), for E = Enom = 327 kV, we 
observe that it contains three maximums over a period; 
that means that this solution is rich in harmonic 3 (50 
Hz). 

The continuation of this mode as a function of E gives 
a bifurcation diagram (solutions isolat) comprising 4 
singularities BP1, BP2, BP3 and BP4 (Figure 33(a)). We 
note that for certain excitation voltage values E, four 
olutions are possible, whereas for others, the system has 

itial conditions. 

co on

th  al

nance mode. 

3.2.2. Search for Fractional Subharmonics Modes 

c
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Figure 26. SH9 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer during one period for the subhar-
monic-9 ferroresonance for E = 327 kV. 
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Figure 27. Bifurcation diagrams of SH3 mode as a function o or various values of the parallel losses R2 (Ct = 400 pF,  = f E, f R1

32 kΩ and l = 0 H). (a) Existence zones of the SH3 mode versus applied voltage E. (b) Continuation of the amplitudes of SH3 
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Figure 28. Bifurcation diagrams of SH5 mode as a function , for the circuit parameters: R2 = 714 MΩ, R1 = 32 kΩ, Ct = 
400 pF and l = 0 H. (a) Existence zones of the SH5 mode versus applied voltage E. (b) Continuation of the amplitudes of SH5 
component and the 50 Hz component. 
 
3.2.3. Search for Harmonics Modes 
We apply the method to the study of the harmonic modes 
3, 5 and 7. Figures 34-36 give, over a period, the wave-
forms of their corresponding solutions. By examining 
these waves, we note that they respectively contain 3, 5 
and 7 maximums over a period; that means that the three 
solutions obtained are respectively very rich in harmonic 
3 (f = 150 Hz), in harmonic 5 (f = 250 Hz) and in har-
monic 7 (f = 350 Hz). These three solutions are theoreti-
cal and do not represent any realistic situations for an 
electrical power network (E Enom = 327 kV). 

The continuation of these modes, as a function of the
excitation voltage E, begins with the null trivial solution
for E = 0 and presents four bifurcation points BP1, BP2, 

d by the two singu-

larities BP1 and BP2. However the studied harmonic 
modes are in a voltage interval which does not interest 
the power system operator (the nominal phase-to-neutral 
network voltage 230 kV). Their existence zones are de-
limited by the two singularities BP3 and BP4. 

We compare the bifurcation diagrams of the harmonic 
3, 5, 7 modes and of the fundamental mode (Figure 40), 
we find the same conclusions of the parallel ferroreso-
nance. The bifurcation diagrams always start with the 
null trivial solution. The levels of flux (t) and voltage 
V(t), for the same circuit parameter, are always superior 

 those reached by fundamental ferroresonant mode. 
e source voltage applied is determining final mode. 

Indeed, while varying in a monotonous way the excita-

odd). 

×105

of E

  
 
 

to
Th

BP3 and BP4 (Figures 37-39). For realistic voltage val-
ues, the mode can be normal or fundamental ferroreso-
nance: the existence zone is delimite

tion voltage E, we observe in the increasing order the 
appearance of the various harmonic modes (even and 
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In all the treated examples, the ferroresonance phenom-
ena appear only in the lightly loaded electrical networks.. 
In addition, it is necessary that these circuits are under 
the good initial conditions so that these phenomena are 
generated. 

4. Conclusions 

Ferrorresonance is a very complex nonlinear phenome-
non which affects power transmission system and distri-
bution system. It is a particular case of bifurcation of 
nonlinear dynamic system. We are thus interested in the 
initialization question of the continuations of several 
modes types. 

We have presented in this study an analytical method
for research from the periodic ferroresonant solutions. 

This approach enables us to systematically calculate the 
periodic modes intervening in the single-phase ferrore-
sonance. The association of this method with a continua-
tion technique enables to obtain the limits of the exis-
tence domains of the dangerous and undesirable modes 
as a function of source voltage E. We have presented, on 
real and theoretical configurations, parallel and series, 
the wealth of the informations brought by this analytical 
approach. Indeed, several results of continuation con-
cerning the fundamental mode, harmonics 1, 3, 5 and 7 
modes and subharmonics 3, 5, 7, 9 and 3/5 modes are 
presented. It comes from this study the following overall 
conclusions:  
 The risks of ferroresonant phenomena in the electrical 

power networks have an important appearance prob-
ability. 
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Figure 32. SH3/5 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer during one period for the frac-
tional subharmonic-3/5 ferroresonance for E = 327 kV. 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2950 

3000 

3050 

3100 

3150 

3200 

3250 
Series ferroresonance 

BP: Bifurcation point
BP1

BP2 

BP3
BP4 

φ
ef

f 
(W

b)
 

E (V) ×105

    
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
Series ferroresonance 

V
ef

f (
V

) 

E (V) ×106

×106

 
(a) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 
Series ferroresonance 

E (V)

Φ
1,

 Φ
3/

5 
 (

W
b)

 

Φ3/5  

Φ1 

×106

   

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18
Series ferroresonance 

V
1,

 V
3/

5 
 (

V
) 

E (V) 

V1

V3/5 

×105

×106  
(b) 

 Figure 33. Bifurcation diagrams of SH3/5 mode as a function of E, for the circuit parameters: R2 = 714 MΩ, R1 = 32 kΩ, Ct =
400 pF and l = 0 H. (a) Existence zones of the SH3/5 mode versus applied voltage E. (b) Continuation of the amplitudes of 
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Figure 35. H5 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer during one period for the harmonic-5 
ferroresonance for E = 20 MV. 
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Figure 36. H7 solution: Flux φ(t) and voltage V(t) waveforms on the target transformer during one period for the harmonic-7 
ferroresonance for E = 30 MV. 
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Figure 37. Bifurcation diagrams of H3 mode as a function of E, for the circuit parameters: R2 = 714 MΩ, R1 = 32 kΩ, Ct = 400 
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Figure 38. Bifurcation diagrams of H5 mode as a function of E, for the circuit parameters: R2 = 714 MΩ, R1 = 32 kΩ, Ct = 400 
pF and l = 0 H. (a) Existence zones of the H5 mode versus applied voltage E. (b) Continuation of the amplitudes of H5 com-
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Figure 40. Comparison between bifurcation diagrams of H3, 5, 7 modes and of fundamental mode for the circuit parameters: 
R2 = 714 MΩ, R1 = 32 kΩ, Ct = 400 pF and l = 0 H.       
 For all the series ferroresonances, the phenomenon 

can give rise to ferroresonance modes generally peri-
odic of fundamental or subharmonic type. On the 
contrary, for all the parallel ferroresonances, the 
modes are harmonic type, i.e. fundamental with 
strong harmonic amplitudes in the spectrum, but also 
pseudoperiodics. 

On the practical plane, the approach proposed is a tool 
enabling to determine if, in existing and future installa-
tion, there is danger of ferroresonance. It enables to pre-
dict and appraise the ferroresonance possibilities in an 
electrical network for the set of the source voltage values 
E in normal and downgraded conditions. 

The analytical approach developed with two compo-
nents of flux gives us a first estimate of the solution and
constitutes, in general, an excellent starting point for the 
iterations of the Galerkin method: a method which offers 
solutions closer to reality, owing to the fact that it does 
not impose any restriction on the component count of 
flux. A study in this direction is presently being pursued. 
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