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Abstract 
 
The precise inner solutions of gravity field equations of hollow and solid spheres are calculated in this paper. 
To avoid space curvature infinite at the center of solid sphere, we set an integral constant to be zero directly 
at present. However, according to the theory of differential equation, the integral constant should be deter-
mined by the known boundary conditions of spherical surface, in stead of the metric at the spherical center. 
By considering that fact that the volumes of three dimensional hollow and solid spheres in curved space are 
different from that in flat space, the integral constants are proved to be nonzero. The results indicate that no 
matter what the masses and densities of hollow sphere and solid sphere are, there exist space-time singulari-
ties at the centers of hollow sphere and solid spheres. Meanwhile, the intensity of pressure at the center point 
of solid sphere can not be infinite. That is to say, the material can not collapse towards the center of so-called 
black hole. At the center and its neighboring region of solid sphere, pressure intensities become negative 
values. There may be a region for hollow sphere in which pressure intensities may become negative values 
too. The common hollow and solid spheres in daily live can not have such impenetrable characteristics. The 
results only indicate that the singularity black holes predicated by general relativity are caused by the de-
scriptive method of curved space-time actually. If black holes exist really in the universe, they can only be 
the Newtonian black holes, not the Einstein’s black holes. The results revealed in the paper are consistent 
with the Hawking theorem of singularity actually. They can be considered as the practical examples of the 
theorem. 
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Singularity 

1. Introduction 
 
We know that the static solutions of the Einstein’s equa-
tion of gravity field with spherical symmetry are the 
Schwarzschild solutions which include inner and exter-
nal ones. We consider a static and uniform sphere with 
radius  and constant density 00r  , inner pressure inten-
sity  p r  is related to coordinate but does not depends 
on time. By considering static energy momentum tensor 
of idea fluid, the Schwarzschild inner solution is [1,2]. 
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center point of sphere. However, it should be pointed out 
that in the process of solving the Einstein’s equation of 
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It can be proved based on (2) that the space curvature 
is infinite at point 0r  . In order to avoid the infinity, 
we let integral constant  to be zero directly in the 
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A
current theory. However, according to the theory of dif-
ferential equation, integral constant should be determined 
by the known boundary conditions on spherical surface, 
in stead of the metric at the spherical center which is 
unknown. By considering the fact that the volume of 
sphere in curved space is different from that in flat space, 
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we can prove . Therefore, no matter what the 0A 
mass and density of solid sphere are, the curvature infin-
ity at the center of sphere is inevitable.  

On the other hand, according to the current theory, the 
inner pressure intensity of sphere is [3].  
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On the spherical surface 0  we have   0p r0  . 
To make pressure intensity to be finite at the center of 
sphere, we have to introduce a constraint condition for 
spherical radius with 
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Here 22gr GM c  is the Schwarzschild radius. If 

0 9 8gr r

0A 

1

, pressure intensity will become infinite. In 

this case, stable solution is impossible and material 
would collapse towards the center of sphere so that sin-
gularity black holes appear. However, if integral constant 

, pressure intensity (3) and constraint condition (4) 
will be changed. All calculations based on (3) and (4) 
about high density celestial bodies in the current astro-
physics should be reconsidered.  

Let’s first strictly calculate the solutions of gravity 
field equations of hollow and solid spheres, and then 
discuss the problems of singularities below. 
 
2. The Strict Inner Solution of Gravity Field 

of Hollow Sphere 
 
Suppose that the inner radius of hollow sphere is R  
and the external radius is 2R , the gravity mass is M . 
The region 3I  with 2  and the region 1r R I  with 

 are vacuum. The region 1r R 2I  inside two spherical 
shells with 1 2R r R   is composed of complete liquid 
with constant density 0  and pressure intensity  p r . 
Because material is distributed with spherical symmetry, 
the metric can be written as 
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The solution of the Einstein’s equation of gravity in 
the region 3I  is the well-known Schwarzschild metric 
with 
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In order to determine integral constant 3A , we 
compare (6) with the Newtonian theory under the 
asymptotic condition with  r 
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Here M  is the static gravity mass of hollow sphere 
in the Newtonian theory. By comparing (6) with (7), we 
obtain 22A GM c 3 . So we have the same result for 
hollow sphere 

 00 2

2
1

GM
g r

c r
   
 

,   
1

11g r
2

2
1

GM

c r


    
 

  (8) 

To calculate the metric in the region 2I  beneath two 
spherical shells, the mixing energy momentum tensor of 
complete fluid is used [1] 
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According to the standard procedure of calculation in 
general relativity, we obtain 
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The integral of (11) is 
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In which 2 2
03 8 GR c    and 2A  is an integral 

constant. We will prove 2  in the next section. (12) 
minus (13) then multiplied by 
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The integral of (15) is 
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Here 2B  is an integral constant. By considering (11), 
(12) and (16), we obtain 
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On the other hand, by taking the differential of (14) 
with respect to , we get 
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Substituting (14) and (18) in (17), we get 
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By considering the relation  ( ) 2ev r v r ( ) 22de dv r r , 
(19) can be written as 
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The integral of (20) is 
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Here 2  is an integral constant. If let 2  in (14) 
and (21), we reach the result of current theory [1] 
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The forms of constants  2 , 0i i A R    are com-  

plex, but it is unnecessary for us to write them out. We 
have 
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we write 
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let   in (28), we get 
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Therefore,  D r 0r  is finite at point . We can 
write (22) as 
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I , the metric can be written as at last In the region 
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I  of hollow sphere cavity, the In the vacuum region 
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solution of the Einstein’s equation of gravity field is still 
the Schwarzschild solution 
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Let’s determine the integral constants A , 2A , 2B  
and  below. 2C
 
3. The Calculations of Integral Constants for 

Hollow Sphere 
 
By considering the continuity of metric tensors on the 
external spherical surface , according to (8), (14) 
and (32), we have 
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Similarly, on the internal sphere surface with  , 
according to (14), (33), (35) and (36), we have 
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Let’s prove 1  in curved space now. If space is 
flat, the relation between mass 

0A 
M and volume V  of 

hollow sphere is 
0

0 0M V  with 

 3 3
0 2 1

4

3

G
V R R


              (38) 

It should be emphasized that M  is the Newtonian 
gravity mass. We introduce it by considering the 
asymptotic relation (7) between the Einstein’s theory and 
the Newtonian theory of gravity. Substitute (38) in (37), 
we get 1 . This is just the current calculating result 
of general relativity. 
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However, (38) can not hold in curved space. Because 
there is a length contraction along the direction of radius, 
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The integral of (39) is difficult. If the third item in 
radical sign is neglected, we obtain [1]. 

     3 3 5 5
2 1 2 1 2 12

4 2
, ,

5
R R R R Q R R

R

 
    

22

11

2 3 2

22 2

d 4
4 arcsin 1

31

3

RR

RR

r r R r r r
V

R R Rr R

R

       
   


 

(40) 

If we consider factor 2A r  in (39), the integral be-
comes more complex. So in curved space, we have: 
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Substitute (41) in (37), we get 
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R , Because 2R  and 0  can be chosen arbitrarily, 
we have 0M   and 1  in general. Therefore, 
from (35) and (37), we obtain 
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Similarly, because 1R , 2R  and 0  are arbitrary, we 
have 2 0B   and 2 0C   in general. In this way, all 
integral constants are determined. In the region 1I  of 
spherical cavity, we can write (33) as 
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According to the Newtonian theory, the material dis-
tributed outside the spherical cavity with spherical sym-
metry does not affect the gravity field in the cavity. But 
according to (45), it will have some effect for the cavity.  
 
4. The Singularity of the Inner Metric of 

Hollow Sphere 
 
According to (45), the metric 00  g r and curvature has 
singularity at the point 0r  . This is inherent singular-
ity which can not be eliminated by the coordinate trans-
formation. The seriousness of problem is that for any 
hollow sphere composed of common material, no matter 
what are its mass and density, singularity always exists at 
its center. This does not agree with practical observation. 
It is impossible actually. On the other hand, we consider 
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Let  in (46) and considering (34), we have 2r R
2 2

2 3 3
2 2 12 2

2 2GMR G MR
R A R R

c c


    

Δ

   (49) 

In the weak field, the item containing M can be ne-
glected. By considering (48) and (49), we get 

11
2 232 3 9.26

827

c

G 
   

       

12

1
0 0

10
R      (50) 

We know that even for high density celestial body just 
as white dwarf, the difference is still very small when we 
do calculation based on both general relativity and the 
Newtonian theory. The material density of white dwarf is 

11 3
0 10 Kg m 

72.7 10 mR  
. By using this value in (50), we get 

1 , similar to the size of white dwarf. For 
common galaxy, we have 21 3

0 10 Kg m 
223 10 mR  

. By using 
this value in (50), we have 1 , which is just 
the size of galaxies. So (50) can be satisfied for common 
spheres and (47) becomes 

1 1
3 33 3
1 1

2 2

2

2 2

R RG M G M
r

c c
 

    
        
   

0M

 (51) 

By developing (51) into the Taylor series, if   , 
we have 1 . That is to say, there is a singularity 
surface in the cavity. Because the metric of cavity is (33), 
in stead of (14), there is no singularity surface in the 
region 1 2

r R

R r R 
0M  r R

 inside the hollow sphere. If 
, we have 1 . In this case, there is a 

singularity surface in the region 1 2R r R  . 
According to (16), the pressure intensity in the hollow 

sphere is 

  ( ) 2 2
2 0e v rp r B c   

              
    

2
0c2

2 2

B r

F r C B D r
 



r r

D

 

(52) 

If there is a surface with radius  inside the hol-
low sphere on which we have 

  0r2 2C B               (53) 

The pressure intensity on the surface will become 
infinite. Therefore, if there exists black hole in hollow 
sphere, the black hole would be a spherical surface. 
Substitute (44) and (45) in (53), we get 

 

 
 

 
 

   

2 2
2 1 0 1 2

1 2

2 2
1 0

1 2

2 2

2

D R R G V c D

2 2

R R GM c

F R F R
D r

R G V c R GM c

F R F R





  


 
 




 

(54) 

Because the radii 1R  and 2R  are arbitrary, from (54) 
that we may find a proper r  so that (68) can be 
satisfied. However, on this spherical surface composed 
of black holes, space-time has no singularity. That is to 
say, the surface of space-time singularity does not 
overlap with the surface on which material collapses. 
This is incomprehensible. It should be noted that up to 
now we have no any restriction on the mass and density 
of hollow sphere. This result indicates that common 
hollow spheres may be unstable. They may collapse into 
the black hole of spherical surface! 



r
Similarly, because the internal and external radii are 

arbitrary, let 2   0p RR  or 1 , we have r  R 2   
and   0p R1   in general. Because the hollow sphere is 
placed in vacuum without material outside and inside its 
two surfaces, this result is also incomprehensible. The 
singularities of hollow sphere are shown in Figure 1. It 
is obvious that the results can not be true. 

 

 

Figure 1. The singularity of hollow sphere. 
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5. The Singularities of Solid Sphere’s Metric 
and Black Holes 

According to the present calculation of general relativity, 
the internal metric of a common solid sphere has no 
singularity when the radius of sphere is greater than the 
Schwarzschild radius. According to the strict calculation 
in this paper, the situation is completely different. The 
solid sphere is a special situation of hollow sphere when 
its internal radius becomes zero. The internal metric of 
solid sphere is still described by (30), but the conditions 
of boundary are different. On the spherical surface 

, we have 

2
2 2

2 2
22

2
1 1

R AGM

Rc R R
                (55) 

   
22

2
2 2 22

22

2
1

F RGM
C B D R

Rc R
     

    (56) 

In order to determine 2A  in (55), we have to know 
the relation between M  and 2R . In curved space, we 
have  

 

2 2
0 0

2 2
011 2

d 4 d

1

RV r r
M

g r r R A r

 
 

  
     (57) 

By substituting (57) in (55), we can decide 2A  in 
principle. We have  in general. If suppose 

, we have 
2 0A 

2 0A 

 

2 24R r dr
0 2 2

0

3 5
0 2 0 2 2

3
0 2

1

4 2
,

3 5
4

3

M
r R

2
R R O R R








 
  





0V V V   

R

R M

 





 

       (58) 

Because , the boundary condition (55) can 
not be satisfied. We estimate the magnitude of volume’s 
change in curved space based on (58). Let 

and omitting high order items, we have 

0M 

2
0 2

2 2
0

4

5

G RV

V R c



15~ 10 4~ 10R

2
23

10

R
            (59) 

For neutron stars, we have 0  and 2 , 
so 4

0 1.8 10V V   
27

0 ~ 10  26
2 ~ 10R

. If considering the universe as a 

uniform sphere, we have  and , so 
2

0 1.8 10V V   

 
. For so-called black hole, we have 

2
2 03R c G   according to (4) and 

0 . For common spheres just as the 
sum and the earth,  is a very small but non-zero 

quantity. 
After 2  is determined, by substituting it into (28) 

and (29), we can determine 
A

 2 2
2F R D and R . 

However, we can not yet determinate 2  and 2C B  only 
based on (56). Another condition is needed. By 
considering the fact that the pressure intensity on the 
surface of sphere should be zero with  2p R 0 , from 
(16) and (31) we have 

 2 2R C  2R   
2

2 2 0 2R B c F B D      (60) 

From (56) and (60), we obtain 

4 15 0.27V V  
0V V

2B c2 0 2
2

2
1

GM

c R
  

  2
2 0C c 2

2
22

2
1

RGM

F Rc R 2D R
 

         (62)  
  

Now, all integral constants are determined. The inter-
nal metric of solid sphere is 

   

 

22

2 2 2 2 22
2

1 d d sin dr r
rR

2 2
2 2

12

d d
F r

s C B D r t
r

Ar        



    

 

 

  (63) 

Because 0 0F   and  in general, 

we have 

 0 02 2C B D

 0g 0 000 11  0g  and  at point r  ,  

so the infinite of space-time curvature also appears at the 
center of sphere. 

The pressure intensity of solid sphere is also repre-
sented by (52), but the integral constants should be rep-
resented by (61). In general, we have  0 0F   and 

 2 2 0 0C B D    00p, so we have   . That is to 
say, no mater what are the mass and density of sphere, 
the pressure intensity at the center of sphere can not be 
infinite. So-called the singularity black holes in which 
material collapses towards its center are impossible. 
Meanwhile, the pressure intensity may become negative 
value at the center of sphere and its nearby region too. 
On the other hand, if there is spherical surface with ra-
dius r r  so that we have 

 2 2 0C B D r              (64)  

   

the pressure intensity may become infinite on the surface. 
Substitute (61) in (63), we obtain  

 
2

2 2
0 2

R
D R

c F R
  D r          (65) 

Therefore, if black hole exists in solid sphere, it can  
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Figure 2. The singularity of solid sphere. 
 
only take the form of a spherical surface. Such solid 
sphere is not stable for material will collapse to its 
spherical surface. But according to our common experi- 
ences there is no singularity of space-time curvature on 
the spherical surface. Such result is also uncanny.  

The singularity of solid sphere is shown in Figure 2. 
Notice that we did not impose any restriction for mass 
and density, and there are so many strange characteristics 
for common solid spheres. The results are completely 
different from the current understanding in general rela- 
tivity. The theory of singularity black hole in the current 
astrophysics and cosmology has to be reconsidered. 
 
6. Discussions on the Theorem of Singularity 

and the Rationality of Current Singularity 
Black Hole Theory 

 
S. W. Hawking etc. proved the theorem of singularity by 
means of the method of differential geometry [4]. The 
theorem was based on three prerequisite conditions. 1. 
General relativity was tenable. 2. The law of causality 
was tenable. 3. There were some points in space-time at 
which material densities were non-zero. The theorem 
claimed that if theses three conditions were satisfied, 
singularity inevitably existed in space-time. Hawking etc. 
considered singularities as the beginning and ending of 
time. The Big Bang theory was considered as the begin-
ning of time and the black holes were regarded as the 
ending of time. 

We note that the theorem had no restriction on mate- 
rial’s mass and density and did not demand that singu- 
larities were embodied in material. That is to say, ac- 
cording to the theorem, singularities may bare in vacuum. 
In order to avoid this embarrassing situation, Penrose 
proposed the so-called principle of the universe supervi- 
sor. The principle declares that there exists the universe 
supervisor who prohibit the appearance of bare singulari- 
ties in vacuum. In other word, due to the existence of the 
universe supervisors, all singularities will be wrapped in 
the centers of black holes with great masses and high 

densities. According to the solutions of the Einstein’s 
equation of gravity, there exist Schwarzschild black 
holes with spherical symmetry and the Kerr black holes 
with axial symmetry and so on. The singularities were 
hidden in the centers of material. In this way, they can 
not be perceived directly, and physicists seem tolerate 
their existence. 

The results revealed in the paper are consistent with 
the Hawking theorem of singularity actually. We can 
consider them as the practical examples of the theorem. 
By considering the fact that the volume of hollow and 
solid spheres in curved space are different from that in 
flat space, the strict calculation reveals that singularities 
can not be avoided at the centers of common hollow and 
solid spheres with small masses and low densities. On 
the other hand, because the pressure intensity can not be 
infinite at the center of sphere, material can not collapse 
towards the spherical center. Also the result shows that 
the pressure intensity may become negative values at the 
center and its nearby region.  

Meanwhile, there may be curved surfaces inside the 
common hollow and solid spheres on which pressure 
intensities can become infinite so that material will col-
lapse to them. But the space-time curvatures are still fi-
nite on the surfaces. The surfaces of space-time singular-
ity do not always overlap with the surfaces with infinite 
pressure intensities. All these characters can not agree 
with our practical experiences of common hollow and 
solid spheres. They are incomprehensible in physics.  

According to the current understanding, the black 
holes exist at the center of Quasars. However, according 
to the observations of Rudolf E. Schild and Darryl J. 
Leiter, the center of Quasar 0957 + 561 is a close object, 
called MECO (Massive Eternally Collapsing Object) [5]. 
It is not a singularity black hole, and is surrounded by a 
strong magnetic field. The observation of Rudolf E. 
Schild was consistent with the calculation and analyses 
in this paper. That is to say, if there are black holes in the 
universal space, they can only be the Newtonian black 
holes, not the Einstein’s singularity black holes!  

More essentially, the true world excludes infinites. A 
correct theory of physics can not tolerate the existence of 
infinites, especially singularities in daily life’s hollow 
and solid spheres composed of common material. It is 
well known that the history of physics is one to over- 
come infinites. Modern physics grows up in the process 
to surmount infinites. As revealed in this paper, singular- 
ity in general relativity is actually caused by the descrip- 
tion method of curved space-time. Physicists and cos- 
mologists should take cautious and incredulous attitude 
toward the problems of singularity black holes. It is not a 
scientific attitude to consider singularity black holes as 
objective existence without any question to them. We 
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should think in deep, whether or not our theory has 
something wrong. When we enjoy the beauty and sym-
metry of the Einstein’s theory of gravity, remember that 
we should not neglect its limitations and possible mis-
take. 
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