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Abstract 
We present a detailed analysis of the set theoretical proof of Wigner for Bell type in-
equalities with the following result. Wigner introduced a crucial assumption that is 
not related to Einstein’s local realism, but instead, without justification, to the exis-
tence of certain joint probability measures for possible and actual measurement out-
comes of Einstein-Podolsky-Rosen (EPR) experiments. His conclusions about Eins-
tein’s local realism are, therefore, not applicable to EPR experiments and the contra-
diction of the experimental outcomes to Wigner’s results has no bearing on the va-
lidity of Einstein’s local realism. 
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1. Introduction 

Einstein challenged the Copenhagen interpretation of quantum mechanics by pro- 
posing with Podolsky and Rosen [1] Gedanken-Experiments, briefly called EPR experi- 
ments. These experiments were to demonstrate that quantum mechanics is incomplete, 
having missed in its description of physical reality some elements of that reality. 

About 30 years after the EPR paper, Bell [2] derived an inequality for functions of 
elements of physical reality, known since as Bell’s inequality, that in his opinion had to 
be obeyed by all of classical physics, meaning in essence by the framework of Einstein’s 
relativity. Wigner transformed Bell’s derivation into a set theoretical approach [3]. 

The work of Bell and his followers had very important consequences for the views on 
the foundations of physics. A majority of physicists believe that either (i) any physical 
theory using counterfactually definite functions and obeying Einstein’s local realism 
(see II) must obey Bell-type inequalities and/or (ii) Wigner’s derivation of Bell-type 
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inequalities is only based on set theory (not involving counterfactual reasoning) and 
Einstein’s local realism. There is a considerable body of serious mathematical-physical 
work that has raised objections against both (i) and (ii) (see particularly [4] and 
references therein as well as [5] and [6]). We have shown in [7] that (i) is false and it is 
the purpose of this paper to show that (ii) is also false. 

The belief in (ii) arose mainly from the work of Wigner [3] and a popularized version 
of Wigner’s work by d’Espagnat [8]. (d’Espagnat, however, also uses counterfactual 
reasoning that raises additional questions [7].) The fact that many EPR-types of 
experiments have been published that violate Bell’s and Wigner’s inequalities, is 
therefore presented as proof against the validity of Einstein’s local realism, because it 
appears inconceivable that set theory is incorrect. 

There exists, however, the following problem with this latter assessment. Set theory 
represents a mathematical framework based on axioms that may be regarded as 
definitions. As such, set theory is not related to any measurements and experiments 
and, therefore, also not to EPR experiments. It is thus necessary to find a connection 
between the sets of elements of physical reality that the experiments provide and the 
sets of mathematical abstractions that Wigner uses in his proof. We analyze this 
connection in great detail and show that Wigner’s sets of mathematical abstractions 
contain a topological-combinatorial ordering that is incompatible with the actual 
ordering of measurement-events in space and time (or space-time). We suggest that it 
is this incompatibility that leads to the contradictions of Wigner’s work with actual EPR 
measurements and not any failure of Einstein’s local realism. An analogous situation 
was discussed by Poincaré and Einstein, who resolved the experimental contradictions 
to Euclidean geometry by pointing to the connection of Euclidean geometry with the 
physical reality, a connection achieved by the introduction of the concept of rigid 
bodies [9]. 

As we will show, there exists an analogy to the Einstein-Poincaré discussions, 
because Wigner connected his mathematical sets to the actual measurements in a way 
that is inconsistent with the space-time physics of the actual EPR experiments. Key to 
our reasoning is the fact that the set of data of the actual measurements is necessarily 
involving space- and time- (or space-time-) coordinates to designate the correlated 
pairs. These sets of space and time coordinates are inconsistent with Wigner’s sets and 
subsets that are ordered according to location in three-dimensional space and equip- 
ment settings in that space, but do not involve measurement times. 

We show in detail that Wigner’s derivation of Bell type inequalities (that restrict the 
possible correlations exhibited by EPR measurements) does actually not use Einstein’s 
local realism at all. Instead Wigner assumes in a hidden and unjustified way certain 
topological combinatorial properties of his mathematical sets that are inconsistent with 
the macroscopic properties of the measurement equipment in space and time as de- 
termined by clocks, protractors and meter-measures. The contradictions between 
Wigner’s (Bell-type) inequalities and well known experiments (see II B) must, therefore 
be blamed on Wigner’s topological-combinatorial assumptions and not on Einstein’s 
local realism. 

To prove this finding, we first analyze the elements of physical reality used in EPR 
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experiments and form the sets of physical elements that must be dealt with in Wigner’s 
mathematical proof (see Section 2). We then review the essential portion of Wigner’s 
mathematical proof and point to his unwarranted assumptions (see Section 3). Finally, 
in Section 4 we deduce from these latter assumptions the topological-combinatorial 
problems of Wigner’s work and conclude that the well known line “death by experi- 
ment” applies to Wigner’s theory not to Einstein’s. Our conclusions are summarized in 
Section 5. 

2. Einstein’s Realism, EPRB Experiments and  
Their Resulting Data 

We consider in the following only a variation of EPR experiments as suggested by 
Bohm and, therefore called EPRB experiments [10] [11]. This type of experiment 
involves the measurement of the two single entities of correlated pairs of particles. Each 
single entity is measured at a different set of space-coordinates. These space-coordi- 
nates must, from the viewpoint of physics, describe the entire local measurement 
equipment for both measurement locations. For brevity and because important mea- 
surements have actually been performed there, we will denote the two measurement 
locations and corresponding space coordinates just by “Tenerife” and “La Palma”. The 
space-like separation of the measurements is a necessity to invoke Einstein’s separation 
principle, which is an important factor of the EPR argument and focus of the EPR 
discussion. Einstein’s separation principle excludes all influences between the two 
measurement stations that are faster than the speed of light in vacuum. This principle 
guarantees a certain independence of the two separated measurement stations and 
represents the core of what is commonly called Einstein’s local realism. A broader 
discussion and detailed definition of Einstein’s local realism has been given by Fine 
[12]. 

It is, therefore, of utmost importance for the discussions of Bell and Wigner to 
exclude in the actual experiments influences from the other location that propagate 
with speed slower or equal to that light. How can one make sure that there exist no 
such other influences and in addition that one indeed measures correlated pairs? This 
goal has been achieved in [10], [11] and other experiments. These measurements relate 
to the Clauser-Horn-Shimony-Holt (CHSH) inequality. We note here, however, that all 
of our reasoning applies, as will become evident below, also to this type of inequality. 
We just discuss the Bell inequality in our analysis, because Wigner’s proof referred only 
to this type of inequality. 

2.1. Switching Instruments and Pairing Particles 

Key to Bell’s and Wigner’s reasoning is the rapid switching of instruments on both 
Tenerife and La Palma, just before a measurement of the spin of an incoming particle is 
performed. In this way one ensures that the instrument settings on the other island 
cannot influence a given measurement with the speed of light or lower speeds. What 
Bell and Wigner wished to find out was whether Einstein’s local realism is correct or 
incorrect. The importance of this fast switching is emphasized over and over by Bell [2] 
in his discussions, but no trace of it can be found in either Bell’s or Wigner’s formalism 
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and algebra of their actual proofs. The reason for this obvious lack of correspondence 
between theory and experiment is the assumption of Bell and all his followers that the 
possible outcomes of pair-measurements are just a given for their mathematical 
abstractions (functions, sets) and the fact how the pairing experimentally occurred is 
not included in the theory. 

However, it is precisely this pairing and timing problem, where Einstein embedded 
the necessity of using a space-time system, his space-time system, as the basis for his 
Gedanken-Experiments and the theoretical approach with Podolsky and Rosen, [1], 
[13]. There also exists no other known way to pair and correlate space like separated 
measurement outcomes than by space and time measurements.1 

The timing of the measurements is, thus, a most important element of the physical 
reality, of the data, and we denote the clock-time of the n th measurement in Tenerife 
by nt  and that in La Palma by nt′ . Note that subsequent measurement pairs are 
necessarily time-like separated because the switching of the macroscopic settings 
cannot be instantaneous. To identify actual correlated pairs, some rule needs to be 
employed that selects the pairs. An example of such a rule would be that the time 
difference of the measurements at the two different locations (islands) must be smaller 
than a certain value W . We emphasize that through any such rule an instantaneous 
logical and physical connection is established between the measurements at the two 
different locations that has nothing to do with instantaneous influences, much less with 
information transfer. Without such a connection, no correlations between the space- 
like separated measurements can be established. Only with such a connection can 
intricate correlations due to physical law be revealed that now may involve also the 
many-body dynamics of the measurement equipment of both locations. It also must be 
emphasized that the analysis of the raw data of three different EPRB experiments [11] 
[14] [15] [16] do show a significant W -dependence of the amount of violations of 
Bell-type inequalities (actually the CHSH inequality), for values of W  that are much 
smaller than the average time between the detection of photons [17] [18]. 

From what follows in this paper, it appears imperative to perform measurements that 
involve dependencies on the timing and on the instrument settings in relation to that 
timing. 

Wigner ignored the measurement times and corresponding connections when 
considering possible and actual outcomes in his theory and we will see that this 
negligence has serious consequences for his set theoretic calculations of correlations. 

2.2. Elements of Physical Reality: Notation and Notebook-Entries 

Actual EPRB measurements (e.g. [10] [11]) monitor, in addition to the clock-times of 

 

 

1We do not wish to use quantum-physics arguments in our reasoning. However, it must be said that the na-
ture of the experiments and the possibility of quantum fluctuations excludes any other method of pairing and 
leaves only space and time measurements. Suppose, for example, that we just count on each island the num-
ber of measurements and then assume that those with equal number (deduced from the counting) will be se-
lected as correlated pairs (post measurement, of course). Then a single counting error (caused for example by 
a quantum fluctuation in the measurement equipment) will completely mess up the ordering and will lead to 
pairing of the wrong entities. One must, therefore, use synchronized clocks in the space-like separated mea-
surement stations, as well as knowledge about the space-like separation in order to identify which detector 
clicks represent, with high likelihood, measurements of a correlated pair. 
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the detector events, two equipment orientations that determine the spin (polarization) 
of incoming particles. These registrations, for photons often obtained with polarizers 
and avalanche photodiodes, have been denoted by a variety of symbols such as 
horizontal  and vertical  etc. and Wigner uses +  and −  for any particles that he 
considers. We denote the measurement result for the n th measurement in Tenerife by 

ns  and that in La Palma by ns′  each being either −  or + . 
As mentioned, the atoms and molecules constituting the measurement equipment 

have many body interactions with the incoming particles, from both the view of 
Einstein’s physics and also from the most modern view of quantum physics. 
Nevertheless, both Bell, Wigner and all their followers describe this equipment, as the 
Copenhagen school of quantum mechanics does, just by a three-dimensional unit 
vector of space, indicating the direction of a polarizer or of a Stern-Gerlach magnet. We 
denote this unit vector for the nth experiment by nj  in Tenerife and nj′  in La Palma, 
respectively. Wigner assumed that this unit vector may assume precisely the same three 
directions , ,a b c  in both Tenerife and La Palma and that these directions are 
randomly chosen on each island in the actual experiments. Using these assumptions 
and notational conventions we arrive at EPRB notebook-entry pairs of the kind:  

[ ], , ; , , ,n n n n n ns j t s j t′ ′ ′                          (1) 

where, as mentioned, both ns  and ns′  may (exclusively) assume the value of either 
+  or −  and both nj  and nj′  are randomly chosen from the vectors , ,a b c . The 
parenthesis [ ]⋅  indicates the measurement of a correlated pair and the symbol “;” 
denotes the separation of entries for Tenerife and La Palma. The number 9 of the 
time-selected pairs thus could be represented by the following actual notebook entry 

[ ]9 9, , ; , ,a t b t′+ − . As far as EPRB experiments are concerned such entries are collections 
of elements of physical reality (in the sense of Mach) and represent the only physical 
reality that we need to consider to discuss Wigner’s proof. 

As mentioned, both Bell and Wigner use Einstein locality as a tool of reasoning: For 
carefully designed EPRB experiments they reason, that the measurement outcome ns  
does not depend on what vector nj′  is chosen in La Palma and ns′  does not depend 
on nj  in Tenerife. 

Wigner discussed in his paper three pairs of measurements with the given settings 

[ ] [ ], , ,a b a c  and [ ],b c , exactly those that Bell had chosen for his inequality. Such a 
selection gives us the following six-tuple that we call henceforth Bell’s six-tuple: 

[ ][ ][ ], , ; , , , , ; , , , , ; , , .k k k k l l l l m m m ms a t s b t s a t s c t s b t s c t′ ′ ′ ′ ′ ′             (2) 

Here 1, ,k M=  , 1, , 2l M M= +  , and 2 1, ,3m M M= +   where M  is a large 
number determined by the total number of measurements. The brackets [ ]⋅  indicates 
again the measurement of a correlated pair. If we assume that these pairs are derived 
from the notebook entries (1), then Einstein’s local realism does not put any constraint 
on the possible values of the pairs ,k ks s′ , ,l ls s′  and ,m ms s′ . For given measurement 
times, they may assume any of the possible 62  combinations of values of +  and − , 
because from both a physical and mathematical point of view there are at this point no 
restrictions to the possible outcomes except that they are two-valued. 
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For each pair, we are interested with Wigner in only two different possibilities when 
measuring on the individual particles: either equal outcomes or unequal outcomes. 
Therefore, for a string of M  measurements of pairs, we have 2M  different possible 
outcomes. If we have three such strings of pairs we have 32 M  possible different 
correlations of the pair outcomes. Wigner reduces the number of correlations that he 
considers essential significantly further, by counting only those that yield a different 
fraction of the final count of equal relative to unequal outcomes. Simple counting leads 
then to the conclusion that for each string of M  measurements of pairs we have 

1M +  different possible outcomes that lead to a different fraction of equal and 
unequal outcomes (see Table 1 for an illustration of the counting procedure). There- 
fore we obtain for the six-tuple (2) ( )31M + , possible outcomes that Wigner counts as 
different.2 

As we have mentioned, Einstein’s local realism has not been used up to now. We 
show below that it also is not used in Wigner’s further considerations that lead to his 
variation of Bell’s inequality. Wigner’s theory does thus derive, without reference to 
Einstein locality, how many different correlations of equal and different outcomes may 
occur for the 3M  pairs of measurements. Nevertheless, Wigner’s number of possible 
different correlations is significantly reduced below the above mentioned value of 
( )31M +  and is only proportional to 2M . 

We ask, therefore, the question: What caused the reduction of the possible number of 
correlations in Wigner’s proof? Our answer is that it was not any assumption regarding 
Einstein’s local realism. Instead, the reduction of the number of possible correlations 
arises from Wigner’s unwarranted mathematical assumption that is related to set  
 
Table 1. Fictive example of all possible notebook entries of an experiment with 3M =  mea- 
surements per setting, adopting Wigner’s method of counting. The “e” (“u”) in columns 1C , 2C , 
and 3C  indicate that a pair yields outcomes that are equal (unequal) for measurements of the 
first, second and third pair of settings, respectively. The last column labeled “e/u” gives the 
fraction of equal and unequal correlations 1C , 2C , and 3C . The maximum number of different 
items in the last column is given by 1 4M + =  in this particular example. 

1C  2C  3C  e/u 

e e e 3/0 

u u e 2/1 

u u u 0/3 

e u u 1/2 

e e u 2/1 

u e u 1/2 

u u e 1/2 

u e e 2/1 

 

 

2The mathematical proof for this fact is easily performed by writing out the possible different outcomes in 
matrix-form (first column all equal, last all different) and using the method of complete induction assuming 
correctness for M  and proving the result for 1M + . We have previously given a very transparent proof by 
using the numbers 1+  and 1−  for the possible equal and different pair-outcomes respectively [8]. 
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theoretic probability theory. The reduction of possible correlations is, therefore, artifi- 
cial and does not apply to EPR experiments. As mentioned, the celebrated line “death 
by experiment” is correct but it applies to Wigner’s theory and not, as reported in so 
many sensationalist articles, to Einstein’s. 

3. Wigner’s Additional Assumptions 

Wigner did not consider any dependence of the measurement outcomes on the 
measurement times and just assumed that the possible or actual outcomes ns  and ns′  
involve automatically, so to speak per fiat, a correlated pair. The measurement locations 
and times have, however, topological-combinatorial consequences for the sets of 
elements of physical reality that are represented by Wigner’s sets of mathematical 
abstractions. It is just these latter consequences that we discuss here.3 

Wigner defines (p. 1007, left column last paragraph of [3]) “domains of the space of 
the hidden variables” and claims (in agreement with our thinking about possible 
outcomes outlined above) that “we have only 62  essentially different domains”. These 
can be characterized by symbols:  

( )1 2 3 1 2 3, , ; , , ,σ σ σ τ τ τ                         (3) 

all σ  and τ  assuming two possible values: +  or − , and the σ  referring to the 
first, the τ  to the second, particle. Wigner’s detailed explanations also point out that 
the domains characterized by ( )1 2 3 1 2 3, , ; , ,σ σ σ τ τ τ  correspond precisely to the respec- 
tive equipment-settings ( ), , ; , ,a b c a b c  which leads to the 9 possible pairings (see 
Equaton (6) below) from which the possible pairs of Bell’s six-tuple (2) and possible 
outcomes ( ,k ks s′ , ,l ls s′  and ,m ms s′  in our notation) can be selected. 

In the next paragraph Wigner states his most crucial assumption by a definition: “Let 
( )1 2 3 1 2 3, , ; , ,σ σ σ τ τ τ  denote henceforth the probability that the hidden parameters 
assume, for the singlet state of the two spins, a value lying in the domain which was 
denoted by this symbol”. As innocuous as this definition looks, it contains a very big 
assumption, the assumption of the existence of a joint probability for the six-tuples (3) 
of possible outcomes of the measurements, while the actual measurements are only 
performed in pairs. 

Wigner’s assumption about the joint probability of the domains of variables 
(parameters) that determine the possible outcomes implies the existence of consistent 
joint probabilities for the possible and actual outcomes of measurements such as 
( ), , ; , ,+ − − − + − . Note, however, that these possible outcomes are now assumed to be 
listed in six-tuples with the setting-sequence of , ,a b c  on each island, in spite of the 
fact that actually only pairs are measured. From a set theoretic viewpoint we must ask 
ourselves: Which sets is Wigner discussing? Without doubt these must be sets of 
measurements of time-correlated pairs. 

As an aside, Bernard d’Espagnat [8] presented a counterfactual interpretation of 
Wigner’s work by introducing multiple hypothetical values that every single particle 
“possesses” and that are assumed to exist in addition to the possible measurement 

 

 

3The Bell’s reasoning starts to deviate here from Wigner because of his introduction of counterfactually defi-
nite functions. We have dealt with this approach in connection with a many body dynamics of par-
ticle-equipment interactions in [7]. 
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outcomes for particle pairs. We do not make these additional unwarranted assumptions. 
Our reasoning below does, however, also apply to d’Espagnat’s work, with the addition 
of our findings about counterfactual approaches in [7].  

Wigner himself intended, as did Bell originally, to use exclusively elements of 
physical reality in the sense of Mach and we discuss his work from this point of view 
only. 

4. Problems with Wigner’s Set-Theoretical Assumptions 

As an illustration of how far reaching Wigner’s assumptions are, consider Bell’s 
six-tuple (2) which contains three correlated pairs and add to each of the pairs an 
arbitrary (artificial) third notebook entry for the setting that is not already contained in 
the pair-outcomes: setting c  for the first pair, b  for the second and a  for the third. 
As an example we obtain then for the first pair-column a triple-column:4 

[ ] ( )? ?, , ; , , , , ; , , , , .k k k k k k k ks a t s b t s a t s b t s c t′ ′ ′ ′→                  (4) 

The ?  as subscripts indicate the arbitrariness of choice of the additions. We have 
separated these additions by “ / ” instead of “ ; ”, because the latter indicates the 
separation of the measurements on two islands and it is not determined from which 
island the additions originate. The three entries are also not all correlated in time, 
because ?t  cannot equal any of the other measurement times of the triple. Different 
settings must correspond to different times in Einstein’s physics. We did not use the 
symbol [ ]⋅  on the right side of (4) but used instead ( )⋅ , because the pairing by mea- 
surement times cannot be guaranteed for all of them. Together with the other two pairs 
of the Bell six-tuple, we obtain thus three triples each with settings , ,a b c . All the 
followers of Bell and Wigner, not just d’Espagnat but also Leggett-Garg [19] and others, 
assume explicitly or implicitly that the joint triple probabilities exist and are common 
to all three triples. 

However, it is a well known fact of probability theory, particularly the set theoretic 
probability theory of Kolmogorov, that the existence of joint triple (and higher order) 
probabilities is not guaranteed [4], [13]. In the above example, each column of triples 
may, for example, have different joint triple probabilities and a joint triple probability 
that is common to all three columns of triples may not exist. The proof of the validity of 
Bell type inequalities requires an existence proof of joint triple (quadruple etc.) pro- 
babilities from the underlying physics. Wigner just assumed these probabilities to exist 
and, therefore, assumed what he had to prove. 

This is an enormously important point that has been overlooked also by Bell and all 
his followers [2]. If one claims that Wigner’s approach is a set theoretic approach, we 
need to use a set theoretic definition of probability measures. Such a definition indeed 
exists and is, as mentioned, given by the probability framework of Kolmogorov [20]. 
That framework teaches us that, for a countable number of considered possible out- 
comes such as ( )1 2 3 1 2 3, , ; , ,σ σ σ τ τ τ , one can define consistent joint probabilities if and 
only if the actual measurements can also be listed or taken in form of such six-tuples so 
that we can establish a one to one correlation of any of Wigner’s ,σ τ  with the 

 

 

4This is precisely what d’Espagnat did in his variation on the theme of Wigner (see p162 of his essay in Scien-
tific American [8]). 
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(possible) measurement outcomes ns  and ns′ . Wigner has thus made a mathematical 
assumption of serious consequences without having any physical or mathematical 
reason. 

Several different cases need to be considered to present the full proof that Wigner’s 
approach must not be applied to EPRB experiments. We just present one example that 
is typical and list the following six-tuple using Wigner’s subsets related to settings 

, ,a b c  for both Tenerife and La Palma with a possible choice of measurement times 
included: 

( ), , , , , , ; , , , , , , .h h i i j j i i j j h hs a t s b t s c t s a t s b t s c t′ ′ ′ ′ ′ ′           (5) 

The symbol “ / ” separates the three Wigner subsets on one given island. The indexes 
, ,h i j , represent natural numbers 1, 2,3  that are now different from those used 

previously ( ), ,k l m  in the six-tuple (2). The reason for using a different notation is 
that six-tuples (2) and (5) cannot be transformed into each other without violating the 
space and time correlations of the actual pairing arising from the original measure- 
ments. The particular chosen pairing of six-tuple (5) is determined by the measurement 
times and thus is given by [ ];a c , [ ];b a  and [ ];c b , while the pairing of six-tuple (2) 
is [ ];a b , [ ];a c  and [ ];b c  and the pairing by measurement times must be different 
whenever the topology (location and setting) of the measurements of the pairs is 
different. 

Wigner never included considerations of both measurement times and topology and 
used six-tuple (5) to obtain the possible outcomes for all the following 9 possible 
pairings:  

( ) ( ) [ ] [ ] ( ) ( ) ( ) [ ] ( ); , ; , ; , ; , ; , ; , ; , ; , ; .a a a b a c b a b b b c c a c b c c          (6) 

We use again [ ]⋅  only for the guaranteed correlated pairs (through measurement 
times). For all other pairs we use ( )⋅ . For the pairings of Bell’s six-tuple (2) and using 
(3) Wigner thus obtains: 

( )[ ]( )1 2 1 3 2 3, ; , , ; , , ; , .a b a c b cσ τ σ τ σ τ                  (7) 

The σ  and τ  denote here a certain given outcome of either +  or − . For 
example, we may have 1σ = + , 3τ = − , 2τ = +  and 2σ = − . This innocently look- 
ing fact represents a big restriction for the possible outcomes. The two pairs with 
settings ( );a b  and [ ];a c  must now have the same outcome 1σ = +  in Tenerife and 
the same is true for the two pairs [ ];a c  and ( );b c  which now must have identical 
outcome 3τ = −  in La Palma in spite of the fact that they must, in principle, corres- 
pond to two different pairs of actual measurement. 

We consider now the possible correlations for the outcomes of the M  six-tuples of 
Bell (corresponding to 3M  measurements of pairs) that lead to different ratios of 
equal and different outcomes of the pairs. The number of these correlations is reduced 
from the original ( )31M +  to only ( )22 1M +  different possibilities of correlations as 
can be seen from six-tuple (7). If we also require that 2 2τ σ=  as Wigner did, because 
he argued that equal settings need to have equal outcomes, then we obtain only 
( )21M +  different possibilities of correlating equal ,++ − −  and different ,+− − +  
outcomes for the pairs in Bell’s six-tuples (2). This latter reduction is identical to the 
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reduction obtained by Bell in his inequality. 
As seen from the measurement times, only 3 of the pairings of (6) do correspond to 

originally correlated pairs. Note that ( );a b  and [ ];b a  cannot be treated on the same 
footing, although they have only interchanged settings. It is also very important to note 
that only one pair of Wigner’s (7) is actually correlated. Each of the equal settings 
chosen on the same island must appear with different measurement time in Bell’s six- 
tuple (2). In contrast, any setting that appears twice on the same island must be asso- 
ciated with the same measurement and, therefore, be related to the same measurement 
time because of Wigner’s procedure involving six-tuple (5). However, it is physically 
impossible to actually measure two different pairs which exhibit the same setting and 
the same measurement time at one given location. 

The ordering of the mathematical abstractions that form the subsets that Wigner 
chose are simply incompatible with the ordering of the original measurements in space 
and time. The measurement time is the only guarantee for the correct pairing of the 
original measurements. These facts demonstrate that Wigner oversimplified complex 
topological-combinatorial factors that are vital for the outcomes of his considerations. 
Another important fact, for the incorrectness of Wigner’s pairings that arise from his 9 
possibilities (6), is that the pairs with equal settings are not derived from originally 
correlated pairs and therefore may randomly assume all of the value-pairs + + , − − , 
+ −  and − + . They contribute to the equal outcome ,++ − −  count, that is so 
important for Wigner’s reasoning, only half of what Wigner actually assumed. 

Thus, Wigner reduced the number of possible correlations of EPRB measurements 
by assuming without justification the existence of certain joint probabilities. He did not 
realize this fact and was, therefore, faced with the problem to explain the contradictions 
with actual experiments if they occurred (and as indeed were found [10] [11] [14] [15] 
[16]. Because Wigner was convinced that he used only set theory and Einstein’s local 
realism, he mentioned that a violation of Einstein’s separation principle would lead to 
“ 94  domains ··· of the nine measurements” corresponding to Equation (6). He thus 
introduced violations of Einstein’s realism to explain possible future disagreements of 
his theory with experiments and measurements, so to speak as a deus ex machina, that 
would resolve contradictions; not as essential part of his proof. 

We note in passing that all of our (and Wigner’s) reasoning that is related to the 
triple of settings , ,a b c  and Bell’s inequality can be repeated with the same findings 
for quadruples , , ,a b c d  and the CHSH inequality. 

5. Conclusion 

These facts show that Wigner’s procedure to derive Bell’s inequality is set-theoretically 
neither general nor sound. Wigner’s work, taken in conjunction with experiments such 
as presented in [10] [11] [14] [15] [16] does not prove violations of Einstein’s realism. 
It proves only that Wigner’s assumptions about the existence of certain joint probabili- 
ties are incorrect. As discussed above, the essential part of Wigner’s proof does not use 
Einstein’s local realism at all. Thus, we believe to have shown beyond any reasonable 
doubt that Wigner derived his reduction of possible correlations and his Bell type 
inequality from set theoretically unjustified assumptions about the existence of joint 
probabilities. 



K. Hess et al. 
 

67 

References 
[1] Einstein, A., Podolsky, A. and Rosen, N. (1935) Physical Review, 47, 777-780. 

https://doi.org/10.1103/PhysRev.47.777 

[2] Bell, J.S. (1993) Speakable and Unspeakable in Quantum Mechanics. Cambridge University 
Press, Cambridge. 

[3] Wigner, E.P. (1970) American Journal of Physics, 38, 1005-1009.  
https://doi.org/10.1119/1.1976526 

[4] Khrennikov, A.Yu. (2008) Entropy, 10, 19-32. https://doi.org/10.3390/entropy-e10020019 

[5] Rosinger, E.E. (2014) Quantum Matter, 3, 499-504. https://doi.org/10.1166/qm.2014.1153 

[6] Geurdes, J.F. (1998) Australian Journal of Physics, 51, 835-842. 
https://doi.org/10.1071/P97067 

[7] Hess, K., De Raedt, H. and Michielsen, K. (2016) Journal of Modern Physics, 7, 1651-1660. 
https://doi.org/10.4236/jmp.2016.713150 

[8] d’Espagnat, B. (1979) The Quantum Theory and Reality. Scientific American. 
https://doi.org/10.1038/scientificamerican1179-158 

[9] Einstein, A. (1982) Ideas and Opinions. Three Rivers Press, New York. 

[10] Aspect, A., Dalibard, J. and Roger, G. (1982) Physical Review Letters, 49, 1804-1807. 
https://doi.org/10.1103/PhysRevLett.49.1804 

[11] Weihs, G., Jennewein, T., Simon, C., Weinfurther, H. and Zeilinger, A. (1998) Physical Re-
view Letters, 81, 5039-5043. https://doi.org/10.1103/PhysRevLett.81.5039 

[12] Fine, A. (1996) The Shaky Game: Einstein Realism and the Quantum Theory. University of 
Chicago Press, Chicago. https://doi.org/10.7208/chicago/9780226923260.001.0001 

[13] Hess, K. (2015) Einstein Was Right! Pan Stanford Publishing, Singapore.  

[14] Aguero, M.B., Hnilo, A.A., Kovalsksy, M.G. and Larotonda, M.A. (2009) European Physical 
Journal D, 55, 705-709. https://doi.org/10.1140/epjd/e2009-00261-y 

[15] Adenier, G. (2012) AIP Conference Proceedings, 1508, 115-124.  
https://doi.org/10.1063/1.4773123 

[16] Vistnes, A.-I. and Adenier, G. (2012) AIP Conference Proceedings, 1508, 326-333.  
https://doi.org/10.1063/1.4773143 

[17] Zhao, S., De Raedt, H. and Michielsen, K. (2008 Foundations of Physics, 38, 322-347.  
https://doi.org/10.1007/s10701-008-9205-5 

[18] De Raedt, H., Jin, F. and Michielsen, K. (2013) Data Analysis of Einstein-Podolsky-Rosen- 
Bohm Laboratory Experiments.  

[19] Leggett, A.J. and Garg, A. (1985) Physical Review Letters, 9, 857-860.  
https://doi.org/10.1103/PhysRevLett.54.857 

[20] Feller, W. (1968) An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley 
& Sons New York.  

 
 
 
 

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1119/1.1976526
https://doi.org/10.3390/entropy-e10020019
https://doi.org/10.1166/qm.2014.1153
https://doi.org/10.1071/P97067
https://doi.org/10.4236/jmp.2016.713150
https://doi.org/10.1038/scientificamerican1179-158
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevLett.81.5039
https://doi.org/10.7208/chicago/9780226923260.001.0001
https://doi.org/10.1140/epjd/e2009-00261-y
https://doi.org/10.1063/1.4773123
https://doi.org/10.1063/1.4773143
https://doi.org/10.1007/s10701-008-9205-5
https://doi.org/10.1103/PhysRevLett.54.857


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jmp@scirp.org 

http://papersubmission.scirp.org/
mailto:jmp@scirp.org

	Analysis of Wigner’s Set Theoretical Proof for Bell-Type Inequalities
	Abstract
	Keywords
	1. Introduction
	2. Einstein’s Realism, EPRB Experiments and Their Resulting Data
	2.1. Switching Instruments and Pairing Particles
	2.2. Elements of Physical Reality: Notation and Notebook-Entries

	3. Wigner’s Additional Assumptions
	4. Problems with Wigner’s Set-Theoretical Assumptions
	5. Conclusion
	References

