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Abstract 
We consider the modeling and simulation by means of multiwavelets on many 
patches. Our focus is on molecular surfaces which are represented in the form of 
Solvent Excluded Surfaces that are featured by smooth blendings between the con-
stituting atoms. The wavelet bases are constructed on the unit square which maps 
bijectively onto the patches embedded in the space. The cavity which designates the 
surface bounding a molecular model is acquired from the nuclei coordinates and the 
Van-der-Waals radii. We use multi-wavelets for which the wavelet basis functions 
are organized hierarchically on several levels. Our assembly of the linear system is 
accomplished by using a hierarchical tree which enables the treatment of large mo-
lecules admitting thousands of patches. Along with the patch construction, some 
wavelet simulation outcomes which are applied to realistic patches are reported. 
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1. Introduction 

Boundary Element Method (BEM) has important applications in ion channels, pH 
computation, membrane simulations and synthetic medicines. Reduction of dimension 
is the principal advantage of BEM [1] over the traditional FEM (Finite Element 
Method) [2] [3] [4] [5] as a 3D problem is reduced to an equation located on a 2D- 
manifold. That enables the use of a 2D-surface embedded in the space instead of a 
massive 3D-mesh. That is particularly important in the case that one is only interested 
in the solution on the surface of a given geometry or in the infinite domain beyond the 
geometry as frequently occurring in quantum simulations [6] [7]. In addition, the 
convergence is substantially faster because only a small degree of freedom is sufficient 
to attain a precise approximation. This article treats the modeling and simulation using 
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the wavelet Galerkin equation which is formulated on patched manifolds. This current 
implementation has an advantage of functioning in parallel on a multi-processor 
computer architecture that accelerates the computations considerably. A major 
drawback of BEM is that the matrix density requires a large memory capacity when the 
trial functions are standard polynomial bases whose pertaining linear system nece- 
ssitates a dense linear solver. Wavelets [8] [9] admit a significant advantage over the 
traditional polynomial bases because the wavelet technique compresses the BEM 
matrices efficiently [10] [11]. The surface structure which is required by the wavelet- 
BEM is unfortunately very complicated to construct in contrast to the standard mesh 
generation [12]. In the current paper, we consider a twofold objective related to 
modeling and simulation. First, we will describe the molecular surface generation when 
a set of atoms is provided. The resulting surface structure is suitable for the wavelet- 
BEM integral equation solver [13]. Afterward, we will apply a BEM simulation on the 
resulting models. This paper focuses on the practical aspect of the wavelet method for 
realistic data. The entire molecular surface needs to be decomposed into four-sided 
patches. One needs a parametrization which maps the unit square to each four-sided 
patch. The mapping has to be bijective, sufficiently differentiable with bounded 
Jacobian. Thus, the decomposition becomes conforming as non-matching curvilinear 
edges are not allowed. Some pointwise agreement for adjacent mappings is therefore 
fulfilled. That enables the construction of multi-wavelets which are understood in the 
sense that the wavelet bases are structured on hierarchical levels [14]. Before pro- 
ceeding further, we survey some related works in the past. The technique which 
provides a splitting method for CAD surfaces is proposed in [15] where methods for 
checking regularity of Coons maps is additionally proved. The main task in [16] is the 
correlation between the transfinite interpolation [17] which resides in an individual 
patch and the global continuity. While approximations are required to obtain global 
continuity in [16] for CAD objects, it can be achieved exactly for molecular surfaces in 
[18]. That is due to the fact that both circular arcs and spherical patches [19] can be 
exactly recast as NURBS (Non-Uniform Rational B-Spline) [20]. Furthermore, a real 
chemical simulation by using wavelet BEM is employed in [7] for the quantum 
computation. A wavelet BEM simulation using domain decomposition techniques was 
described in [21] which treats the case of ASM (Additive Schwarz Method). It was 
utilized as an efficient preconditioner for the wavelet single layer potential which is 
badly conditioned. Recently, we gained experience [3] in elasticity nanosimulation 
where one has used nanotube fibers immersed in polymer matrices as quantum models. 
The organization of this current paper is structured as follows. First, it starts by 
describing the essential steps for constructing the smooth patch decomposition. We 
proceed afterwards to the presentation of a hierarchical tree method to compute the 
wavelet integrals when coupled with the Genz-Malik approach [22] [23]. The matrix 
entries are usually integrals with 4D integrands which are singular. Toward the end, we 
present some results pertaining to the patch decomposition in which the inputs are 
either water clusters obtained from former molecular dynamic simulations or quantum 
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models obtained from PDB (Protein Data Bank) files. In addition, we report on BEM 
results including the execution runtimes for the different stages in the BEM simulation. 
Further, we will briefly display the acceleration of the executions when utilizing 
computers admitting a multi-processor architecture. 

2. Integral Equation on Molecular Surfaces  
Our modeling and simulation are performed on a cavity [24] which is acquired from 
the boundary of molecules where each constituting atom is represented as an imaginary 
sphere whose center km  corresponds to the nuclear coordinates and whose radius kr  
to a scaled Van-der-Waals radius of the atom. That is, by denoting the sphere of center 
m  and radius r  by ( ),B m r , the molecule is represented as the union of N  spheres 

( )1 ,N
k kk B m r

=
=


 . We need additionally a probe atom which serves as smoothing of 
the molecular surface. The SES (Surface Excluded Surface) model [25] which is also 
known as Connolly surface [26] is the surface Γ  traced by the probe atom when it is 

rolled over (see Figure 1) the whole surface ( )1: ,N
k kk B m r

=
 = ∂ = ∂  

  . The Conno- 

lly surface Γ  is extracted partly from   and partly from the blending surfaces traced 
by the probe atom. The blending surfaces are composed of surfaces of two types. The 
first type consists of toroidal surfaces while the second one of trimmed spherical 
surfaces. Our first objective is to decompose the Connolly surface Γ  into M  
four-sided patches [18] admitting (see Figure 2(a)) the following properties:  
 

 
(a)                                         (b) 

Figure 1. (a) Rolling a probe atom on the molecular surface; (b) connolly surface. 
 

 
(a)                                       (b) 

Figure 2. (a) Patches for wavelet construction; (b) quasi-sparse matrix. 
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• We have a covering of the molecular surface by patches 1
M

pp=Γ = Γ


,  

• Each patch pΓ  where 1, 2, ,p M= 
 is the image by [ ]2: : 0,1p pγ = → Γ  which 

is described by a bivariate NURBS function that is bijective, sufficiently smooth and 
admitting bounded Jacobians,  

• The intersection of two different patches pΓ  and qΓ  is supposed to be either 
empty, a common curvilinear edge or a common vertex,  

• The patch decomposition has a global continuity: for each pair of patches pΓ , qΓ  
sharing a curvilinear edge, the parametric representation is subject to a matching 
condition. That is, a bijective affine mapping :Ξ →   exists such that for all 

( )px sγ=  on the common curvilinear edge, one has ( ) ( ) ( )p qs sγ γ= Ξ . In other 

words, the images of the NURBS functions pγ  and qγ  agree pointwise at common 
edges after some reorientation,  

• The manifold Γ  is orientable and the normal vector ( )n x  is consistently 
pointing outward for any .x∈Γ   

For each patch pΓ , the Gram determinant is denoted  

( ) ( ) ( ) ( ) ( )1 2 1 2
1 2

, : , .p p
p pG t G t t t t t t t

t t
γ γ∂ ∂

= = × ∀ = ∈
∂ ∂

         (1) 

The space of square integrable functions is  

( ) ( ){ }22 : : , df f x xΓΓ
Γ = Γ → < ∞∫                 (2) 

which is equipped with the following scalar product and norm after transformation 
onto  ,  

( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( )

2

2 2

1 2

1

, : d

d , : , .
M

p p p
p

u v u x v x x

u t v t G t t v v vγ γ

ΓΓ Γ

Γ Γ
=

=

 = =  

∫

∑∫




 

     (3) 

The Sobolev space on Γ  for a non-negative integer k  is  

( ) ( )
( ){ }2

2: : for allk f f kα α
Γ

Γ = ∈ Γ ∂ < ∞ ≤


              (4) 

where the differentiation fα∂  is interpreted in the sense of distribution [27] such that 

( )
( )

( )2 2, 1 ,f g f gαα α

Γ Γ
∂ = − ∂

 
 for all compactly supported smooth functions g . 

The Sobolev space ( )k Γ  is endowed with the norm  

( ) ( )2

22 : .k
k

f fα

α
Γ Γ

≤

= ∂∑ 
                       (5) 

Concerning a real positive order p k θ= +  such that k  is an integer and 
] [0,1θ ∈ , the Sobolev space ( )p Γ  consists of the functions such that their norms 

with respect to the next Slobodeckij norm are finite  

( ) ( )

( ) ( )
2

2 2
2 2 d d .p k

k

f x f y
f f x y

x y

α α

θ
α

Γ Γ+Γ Γ Γ×Γ
=

∂ − ∂
= +

−
∑ ∫         (6) 
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For negative orders, one employs the dual spaces ( ) ( )
*p p−  Γ = Γ   . By desig- 

nating the region enclosed within Γ  by 3Ω ⊂  , our second objective is to solve the 
interior problem:  

( )
( ) ( ) 1

0 for
for .M

p p

x x
x g x x =

∆ = ∈Ω
 = ∈Γ = ∂Ω = Γ 




              (7) 

Introduce the double layer operator  

( ) ( ) ( ) ( )1 1 d
4π

K v x u y y
n y x y ΓΓ

 ∂
=  ∂ − 

∫                (8) 

( ) ( )3

,1 d .
4π

n y x y
u y y

x y
ΓΓ

−
=

−∫                  (9) 

In the general case, we have the following mapping using Sobolev spaces  

( ) ( )1 2 1 2:K Γ → Γ                         (10) 

which is linear and continuous. In the current case, since the entire molecular surface 
Γ  is sufficiently smooth, we have  

( ) ( ) ( ) ( )1 2 1 2: s sK + +Γ → Γ                      (11) 

for any real number s  according to Theorem 7.1 and Theorem 7.2 of [28]. In 
particular, we deduce the bounded linearity with respect to square-integrable functions:  

( ) ( ) ( ) ( )2 0 2 0: .K Γ ≡ Γ → Γ ≡ Γ                    (12) 

We make now the change of unknown  

( ) ( ) ( )1 1 d
4π

x u y y
n y x y ΓΓ

 ∂
=  ∂ − 

∫                 (13) 

by using u  as the new unknown which is also termed as density function. As a point 
x∈Ω  approaches 0x ∈Γ = ∂Ω , we have [28] [29] [30]  

( ) ( ) ( ) ( ) ( )
0 0 0

1lim
2x x

x
Ku x u x Ku x→

∈Ω
= − +                  (14) 

because the manifold Γ  contains neither a nonsmooth edge nor a sharp corner. The 
function   as mentioned in (13) is harmonic in the sense that 0∆ = . Therefore, in 
the case that u  satisfies  

( ) ( ) ( ) ( )0 0 0 0
1 for ,
2

u x Ku x g x x− + = ∈Γ              (15) 

then on account of (14), the function Ku=  solves the boundary value problem in 
(7). In operator form, we have the next integral equation after multiplication by (−2):  

( )2 where : 2 .I K u f f g− = = −                  (16) 

By discretizing (16) in some finite dimensional space h , one searches for h hu ∈  
such that for all h hv ∈   

( ) ( ) ( ) ( ) ( ) ( ) ( )d , d d dh h h h hu x v x x x y u x v x x y f x v x xΓ Γ Γ ΓΓ Γ Γ Γ
+ =∫ ∫ ∫ ∫     (17) 

where we use the kernel  
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( ) ( )
3

,1, : .
2π

n y y x
x y

x y

−
=

−
                   (18) 

The subspace h  will be piecewise polynomials which could be piecewise constant 

so that we have in particular ( )2
h ⊂ Γ  . Once the solution u  to the integral 

Equation (16) becomes available, the solution   to the initial boundary value 
problem (7) is recovered by applying (13). Since both the wavelet basis function and the 
mappings pγ  are expressed in term of B-spline basis, we shall recall briefly some 
important properties of a B-spline setting which represents piecewise polynomials. 
Consider two integers ,n k  such that 1n k≥ ≥ . Should the interval [ ],a b  be the 
domain of definition of the B-spline, that interval is subdivided by a knot sequence 

( ) 0

n k
i i

ζ ζ +

=
=  such that 1i iζ ζ +<  for 1, , 1i k n= − −  and such that the initial and the 

final entries of the knot sequence are clamped 0 1k aζ ζ −= = =  and  

n n k bζ ζ += = = . One defines the B-splines [31] [32] [33] basis functions as  

( ) ( )[ ]( ) 1, : , , for  0, ,kk
i i k i i i kN t t i nζ ζ ζ ζ ζ −

+ + +
= − ⋅ − =   

where one employs the divided difference 1, , ,i i p fζ ζ ζ+    in which one uses the 

truncated power functions ( )kt
+

⋅ −  given by ( ) ( ):k kx t x t
+

− = −  if x t≥ , while it is 
zero otherwise. The integer k  controls the polynomial degree 1k −  of the B-spline 
which admits an overall smoothness of 2k−  where the case 1k =  corresponds to 
discontinuous piecewise constant functions needed for the Haar wavelet. The integer 
n  controls the number of B-spline functions for which each B-spline basis ,k

iN ζ  is 

supported by [ ],i i kζ ζ + . The NURBS patch pγ  admitting the control points 3
,i jd ∈  

and weights ,i jw +∈  is expressed as  

( )
( ) ( )

( ) ( )
( )

, ,
, ,0 0 3

, ,
,0 0

, , .
n n k k

i j i j i ji j
p n m k k

i j i ji j

w d N u N v
u v u v

w N u N v

ζ ζ

ζ ζ
γ = =

= =

= ∈ ∀ ∈
∑ ∑
∑ ∑

      (19) 

As for the construction of the finite dimensional space h , since the Gram 
determinant pG  is bounded  

( ) ( )
1, , 1, ,

0 min inf max sup ,p pp M t p M t
c G t G t C

= ∈ = ∈
< ≤ < ≤ < ∞

 




            (20) 

the above structure of the surface Γ  allows to construct bases on 2D which are carried 
over the manifold Γ  that is embedded in 3 . The Galerkin variational formulation 

with respect to a finite dimensional space spanned by ( ) =1

m
α α

ϕ  uses the approximating 

functions ( ) ( )1
m

hu x u xα αα ϕ
=

= ∑  where [ ]1: , ,T m
mu u= ∈   are the BEM- 

unknowns. The next linear system is eventually obtained  

( )+ =                              (21) 

such that the matrix entries and the right hand side are  

( ) ( ) ( ) ( ),
1

: ( )d d
pp

M

p
x x x x x xα β α βα β ϕ ϕ ϕ ϕΓ ΓΓ Γ

=

= = ∑∫ ∫           (22) 
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( ) ( ) ( ) ( ),
1 1

: , d d
p qp q

M M

p q
x y x y x yα βα β ϕ ϕ Γ ΓΓ Γ

= =

= ∑∑∫ ∫              (23) 

( ) ( )
1

: d .
pp

M

p
f x x xα αϕ ΓΓ

=

= ∑∫                      (24) 

In general, the linear system (21) is troublesome because the basis functions ( ) =1

m
α α

ϕ  

yield a dense matrix for the operator  . In term of memory, if ( ) =1

m
α α

ϕ  are standard  

polynomial basis functions, the matrix   requires 2m  storage to accommodate all 
entries. In addition, the determination of a matrix entry of   calculates an 
integration in 4D  where the integrand is highly nonlinear and possibly singular 
depending on the patch pair p qΓ ×Γ . By using tensor product B-spline wavelet basis 
functions, the matrix   becomes quasi-sparse. For the instance of high-order odd 
wavelets [34] [35], we depict on Figure 2(b) the quasi-sparse matrix entries for a 2D 
singular operator where very small entries are set to zero. 

3. Patch Generation for Wavelet Bases  

Let us specify the assumptions concerning the positions of the nuclei im  and the 
properties of the radii ir  with respect to the probe radius ρ . For every two arbitrary 
atoms ( ),i iB m r  and ( ),j jB m r , we assume that one of the following two conditions 
holds.  

(C1) Either the two enlarged spheres ( ),i iB m r ρ+  and ( ),j jB m r ρ+  by the 

probe radius ρ  are completely disjoint such as 2i j i jm m r r ρ− > + + ,  

(C2) or we have : 2ij i j i jD m m r r ρ= − ≤ + +  and additionally  

( ) ( )222 22 4 0.ij i ij ij i jD r D D r rρ ρ ρ+ − − + + + >  

Those two assumptions exclude the situation where the blending torus which is 

tangent to both ( ),i iB m r  and ( ),j jB m r  admits a self-intersection. If assumptions 

(C1) and (C2) are not fulfilled but one still wants to treat the molecule, one carefully 

inserts additional dummy atoms between every two atoms ( ),i iB m r  and ( ),j jB m r  

for which there is a toroidal self-intersection. The sizes and the positions of the dummy 
atoms should be minimized while keeping the shape of the initial molecule. We will 
consider the generation of the constituents of the B-Rep (boundary representation) of 
the SES surfaces. For two spheres ( )1 1 1: ,B m r=  and ( )2 2 2: ,B m r= , we define their 

power distance as ( ) 2 2 2
1 2 1 2 1 2, :D m m r r= − − −  . The i -th Laguerre cell is com- 

posed of points which are closer to i  than to any other ( )=j j i/  with respect to 

the power distance: ( )( ) ( )( ){ }3: : , 0 , , 0 ,  i i jC x D B x D B x j i= ∈ ≤ ∀ =/   . A Laguerre 

decomposition of 3  with respect to the spheres i  is 3
1

N
ii C

=
=



. If all radii are 
equal, the Laguerre decomposition coincides with the usual Voronoi decomposition as 
illustrated in Figure 3(a). For two spheres i  and j , the radical axis is the set of 
points which are equidistant to i  and j  with respect to the power distance. Such a 
set is a plane given by  
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(a)                                         (b) 

Figure 3. (a) Centered convex decomposition of the space; (b) curvilinear edges traced on the 
manifold. 
 

( ) { }223 2 2, :2 ,i j i j i j j iR x x m m m m r r= ∈ − = − + −   

The Laguerre cell is a convex polyhedron which has faces from the radical axes and 
which could be bounded or unbounded. To obtain the Laguerre decomposition, we 

consider the uplifting function which associates to ( ) 3, ,i i i im x y z= ∈  the value  

( )2 2 2 2 4: , , ,i i i i i i i im x y z x y z r= + + + ∈
 . After generating the convex hull   of the set 

of four dimensional points { }im , the projection of the lower face of   on the space 
3  generates a weighted Delaunay tetrahedral decomposition [36] having apices im . 

Each apex of the Laguerre cell is the orthocenter of a tetrahedron of the weighted 
Delaunay. The Laguerre decomposition is obtained by the dual of the weighted 
Delaunay. We describe next the way of obtaining the spherical trimmed surfaces of 
each atom m  by considering its cell mC . For each neighboring cell jC  of mC , 

consider the cell planar face mj  which separates the spheres ( ),m mB m r  and 

( ),j jB m r . One generates two offset planes mp  and jp  by orthogonally shifting mj  

by ( ):m mj md D rρ ρ= +  and ( ):j mj jd D rρ ρ= +  toward those two spheres respec- 

tively. Two circles mc  and jc  are traced on those spheres by mp  and jp . We 
discard the circular arcs on m  which are either included inside an atom other than 

m  or between the planes mp , jp . By organizing the remaining circular arcs, we 
obtain several closed curves on the sphere m . These bounding curves yield several 
spherical trimmed surfaces on the sphere m . Each face mj  of the Laguerre 

decomposition corresponds to one torus mjT  which is tangent upon m  and j . To 

obtain the toroidal surface, we trim off the toroidal part of mjT  which is beyond the 

parallel planes mp , jp . If the rolling probe atom touches at least three atoms, we 
construct a spherical blend whose boundary is composed of the arcs which are the 
intersections of the toroidal surface mjT  and the probe atom. At this point, we have 
subsurfaces iS  which are bounded by some circular arcs. Stereographic projections 
serve as parametrizations of the subsurfaces iS  from some trimmed planar domains. 



M. Randrianarivony 
 

77 

We describe now the decomposition of a Connolly surface into large four-sided 
subsurfaces. We use a triangular mesh   of the whole surface as an intermediate 
step. We determine first the underlying structure of a coarse quadrangulation coarse . 
We deduce the nodes, edges and quadrilaterals of coarse  from the mesh. We start 
from a fine quadrangulation fine  which is obtained by subdividing each triangular 
element of   into three quadrilaterals. The resulting quadrangulation fine  is not 
directly useful for patch representation because it is too fine. As a consequence, we 
need to coarsen that fine quadrangulation repeatedly in which we initialize 0 fine:=  . 
Each coarsening step from m  to 1m+  consists in amalgamating a few neighboring 
quadrilaterals in the quadrangulation m  to form a coarser local simplified 
quadrangulation in 1m+ . It is a long programming to implement many local patterns 
of simplification and to recursively determine the parts of m  to coarsen so that the 
final patches have similar surface areas. Since the initial finest quadrangulation fine  is 
inappropriate to be used as coarse , we impose minimal and maximal numbers of 
coarse quadrilaterals. For the recursive quadrangulation simplification, we use a 
coarsening parameter [ ]0,1α ∈  which gauges the density of coarse . A unit value of 
α  corresponds to the finest allowed quadrilateral decomposition while a value of α  
approaching zero corresponds to a very coarse quadrilateral decomposition. After 
assembling coarse  having straight edges, we need to connect every two nodes iP  and 

jP  on the endpoints of every edge by a curve on the manifold as illustrated in Figure 

3(b). That curve is described by means of a geodesic curve on   joining iP  to jP . 
First, we need a curve which traverses only the nodes and the edges of  . Afterward, 
we improve that curve by allowing it to traverse the internal parts of the triangles of 
 . Assembling the complete node-edge graph of the whole mesh   is very 
memory consuming. Searching for shortest paths becomes very cumbersome for such a 
large discrete manifold. Some efficient data structure to accelerate the search is 
necessary in the implementation. We eventually fit each four-sided submeshes by 
NURBS patches where each interface curve has a matching parametrization by its 
incident patches. During the application of those geometric operations, tests must be 
performed in order to avoid manifold folding and tiny gaps. Many tests related to edge 
degeneration and angular quality are needed to be applied in practice. 

In order to ensure the validity of conditions (C1) and (C2), one adopts the method of 
GEPOL in which some additional spheres are inserted [37] [38]. Those incorporated 
extra-spheres are not physically relevant. These are fictive spheres admitting neither 
atomic masses nor electric charges. The principal objective of the previously mentioned 
conditions is to avoid the conflicting situation where some toroidal blending surfaces 
occur when the corresponding two disjoint atoms are distant from one another so that 
the contact with the probe atom is almost tangential. In such a case, a self-intersecting 
toroidal blend is formed. In order to remedy that problem, a fictive non-atom centered 
sphere is inserted between every two atoms where those conditions are violated. It is 
worth noting anyhow that such a situation occurs only in very rare cases. We would 
like to explain the similarity and the difference between the above two types of 
smoothing surfaces which are the toroidal ones and the spherical ones. Both surfaces 
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serve as blending surfaces between neighboring atoms. The principal difference 
between them is that the toroidal ones occur when only two atoms are touched by the 
probe atom, whereas a spherical blend appears when more than two atoms simulta- 
neously have contact with the probe atom as illustrated in Figure 1(a) and Figure 1(b). 
In the latter case, the number of atoms which touch the probe atom is three in most 
practical cases but that number can theoretically be arbitrarily many depending on the 
positions and the radii of the constituting atoms. 

Now that we have a four-sided decomposition, we want to construct the wavelet 
spaces on the surface Γ . Since every two incident patches admit pointwise joints, 
constructing the wavelet bases on the unit square   is sufficient to construct basis 
functions on the whole molecular surface. Each 1D -wavelet basis (see Figure 4(a)) 
will be constructed as a linear combination of B-splines  

( ) ( ) [ ],

0
where 0,1 .

n
k

i i
i

t q N t tζψ
=

= ∈ ∀ ∈∑               (25) 

On level  , we define a knot sequence ( ) [ ]0,1iζ ζ= ⊂   such that 0iζ =  and 

1 1n iζ + + =  for 0, ,i k=   and that the remaining ] [0,1iζ ∈ . The internal knots on  

the next level ( )1+  are obtained by inserting one new knot inside two consecutive 
knots on the lower level  . Introduce the B-spline linear space on level  :  

[ ] [ ]{ },
20,1 : : 0,1 : 0, , .k k

i iN N i nζ= = ∈ =






                (26) 

By using the piecewise polynomial property of the B-splines and the inclusion 
1ζ ζ +⊂  , the B-spline bases form a nested sequence of subspaces:  

[ ] [ ] [ ] [ ]1 2 20,1 0,1 0,1 0,1 .k k k
L⊂ ⊂ ⊂ ⊂                    (27) 

As a consequence, the space [ ]0,1k


  can be expressed as an orthogonal sum  

[ ] [ ] [ ]1 10,1 0,1 0,1k k k
− −= ⊕

  

                         (28) 

with respect to the 2 -scalar product where [ ]0,1k


  is the wavelet space  

[ ] [ ]
[ ]

[ ]{ }2
1 1

1 10,1
0,1 span 0,1 , , 0, 0,1 .k k k

i iψ ψ φ φ− −
− −= ∈ = ∀ ∈ 

  
         (29) 

By applying the decomposition (28) recursively, one obtains on the maximal level L   

[ ] [ ] [ ]
1

1
=1

0,1 = 0,1 0,1 .
L

k k k
L

− ⊕  
 
⊕ 



                       (30) 

The 2D -wavelet spaces (see Figure 4(b)) on the unit square   is defined for any 
maximal level L  as follows.  

( ) [ ] [ ] ( ) ( ) ( ) ( ): 0,1 0,1k k k k k k k
L L L L L L= ⊗ = ⊕ ⊕ ⊕                (31) 

such that  

( ) [ ] [ ] ( ) [ ] [ ]( )

( ) [ ] [ ]( ) ( ) [ ] [ ]( )

1

1 1 1
1

1 1 1

1
1 1 1

: 0,1 0,1 ,                : 0,1 0,1 ,

: 0,1 0,1 ,      : 0,1 0,1 .

L
k k k k k k

L

L L L
k k k k k k
L L m

m

−

=

− − −

= = =

= ⊗ = ⊗

= ⊗ = ⊗

⊕

⊕ ⊕⊕





 

 

 

  

     

    
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(a) 

 
(b) 

Figure 4. (a) Higher-order wavelet on a nonuniform knot sequence, (b) bivariate tensor product 
basis. 
 

We want now to survey the determination of the wavelet bases iψ   of [ ]0,1k


 . 
The construction of the higher-order wavelets [34] [35] requires the case on the whole 
infinite real line   on which one has knot entries on each integer as :i iζ = . The 
cardinal B-spline is given by  

( ) ( )1CARDINAL CARDINAL
10

di iN x N x t t−= −∫                   (32) 
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which verifies the two scale relation  

( ) ( )CARDINAL 1 CARDINAL

0
2 2 .

i
i

i i
j

j
N x N x j

i
− +

=

 
= − 

 
∑                (33) 

For the polynomial degree k , the corresponding complementary space is spanned 
by the shifts of the wavelet function  

( ) ( ) ( ) ( )
2 2

CARDINAL CARDINAL
CARDINAL 2 21

0

1: 1 1 2 .
2

km j
k kk

j k

dx N j N x j
dx

ψ
−

−
=

= − + −∑    (34) 

Representing the derivatives ( )CARDINAL
2 2k

k kd N x j dx−  in function of B-splines can 
be used to express the function CARDINALψ  in term of control points. The cardinal 
wavelets are orthogonal to B-splines on the infinite real line   having integers as 
knot sequence. The cardinal splines serve as construction of internal wavelets on the 
interval [ ]0,1  by scaling and shifting. Only the odd wavelets for odd polynomial 
degree k  is described because the even case is defined almost similarly with the 
exception of additional central wavelets. One defines on level   the clamped knot 

sequence 0 1 0kζ ζ −= = = 

 , and 1n n kζ ζ += = =
 

 

  where : 2 1n = −


. The 

dependence on   is sometimes dropped to simplify the notations. The 1D -wavelets 

use the following internal knot sequence ( )ζ    

( ) ] [: 2 2 0,1 , for , ,j k j j k nζ −= + ∈ =  
 



             (35) 

The internal wavelet functions are defined by means of scaled and dilated 
transformations  

( ) ( )( )CARDINAL: 2 1 .j t t j kψ ψ= − − +                   (36) 

Additionally, one needs boundary wavelet functions which are of the form  

( ) ( ) ( )
2 2 2 2

1 1
, ,

0 2 1

k k k k

j p p p p
p p k k

t q N t q N tψ
+ − + +      

+ +

= = + −  

= +∑ ∑


  

 

            (37) 

where the coefficients ,pq


 for the last summation are the control points of the 
cardinal wavelet CARDINALψ . the control points of the cardinal wavelet CARDINALψ . The 
remaining unknown coefficients ,pq



 on the first summation are obtained by solving  

[ ]
( )

[ ]2 2

2 2 2 2
1 1

, ,0,1 0,10 2 1
, , ,

k k k k

p m p p p m
p p k k

N N q q N t N
+ − + +      

+ +

= = + −  

= −∑ ∑


   

  
      (38) 

or 0, , 2 2m k k= + −   . That ensures the 2 -orthogonality  

[ ]
[ ]

2 0,1
, 0, 0,1 .k

j m mN Nψ = ∀ ∈  


               (39) 

The previous construction creates 12 −  wavelet basis functions. To complete the 
construction, the remaining ones are deduced by symmetry such as ( ) ( )2 1

: 1j j
t tψ ψ

− −
= −



   

for [ ]0,1t∈ , 12 , , 2 1j −= − 

 . The construction of the Haar wavelets and piecewise 
linear wavelets is very similar. The former corresponds to piecewise constant 
polynomials while the latter to piecewise polynomials of degree unity. Since every 
polynomial of degree ( )1k −  can be expressed in term of iN  , we obtain from the 
orthogonality (39) the property of vanishing moments:  
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( ) ( )1

0
d 0, for 0 1p

jt t t t p kψ− = ≤ ≤ −∫ 

             (40) 

for any fixed t . It is an important property because it yields quasi-sparse structure of 
the matrix  . By using the constructed wavelet basis, we are interested in the values  

( ) ( ) ( ) ( ),,
1 1

, d d ,
M M

p q
p q

u v u v u vα βα β ψ ψ
×

= =

= ∑∑∫
 

               (41) 

( ) ( ) ( )( ) ( ) ( ), , : , .p q p q p qu v u v G u G vγ γ=                (42) 

We will drop the indices of ,p q
  since we consider the integrals in the above 

summation for a fixed pair p qΓ ×Γ . By fixing some ( ) ( ) ( )1 2 1 2, , , ,u u v v= ∈ ×  u v     
   

and by considering any ( ) ( ) ( )1 2 1 2, , , ,u u v v= ∈ ×  u v   , the Taylor expansion yields  

( ) ( ) ( ) ( )
1

1 1, ,
! !k+ ≤ −

∂ ∂
= − −

∂ ∂∑
α β

α β
α β

α β
u v u v u u v v

α β u v
 

              (43) 

( )( ) ( ),
,

| | | |=
 , .p q

k
R

+

+ − −∑ α β
α β

α β
u v u u v v                   (44) 

For the first summation, by multiplication with a tensor product wavelet basis 
( ) ( )1 2 1 2

p q p p q qψ ψ ψ ψ ψ ψ⊗ = ⊗ ⊗ ⊗  and by taking the integration over ×  , one 
obtains for ( )1 2,α α=α  and ( )1 2,β β=β  where 1 2 1kα α α= + ≤ −  and  

1 2 1kβ β= + ≤ −β   

( ) ( ) ( ) ( ) ( )1 21 1
1 1 1 1 1 2 2 2 2 20 0

1 1 , d d
! !

p qu u u u v v v vα βψ ψ∂ ∂
− −

∂ ∂ ∫ ∫
α β

α β u v
α β u v



   
   (45) 

which is zero due to the property of the vanishing moment (40). As for the second 
summation, introduce ( ) ( ){ }=1,2 1 2: max    where  , Support r

r i i iu u u uη = − ∈ ψ  for  

,r p q= . The summation is estimated by  

( ) ( ) ( ), , max maxp q
p qk R η η∈ ∈+ =∑ α β

α β u vα β u v ψ u ψ v
 

. By defining  

{ }: max , 1p qη η η= < , one obtains  

( )
( ) ( ) ( ),

,,
max , max maxk p q p q

k
R

α β
η

∈ × ∈ ∈+ =
∑ α βu v u v

u v ψ u ψ v
   

          (46) 

Due to boundedness (20), one obtains for ( ) ( )Support p
p p

 = ∈  x γ u γ ψ  and 

( ) ( )Support q
q q

 = ∈  y γ v γ ψ  on account of the Calderon-Zygmund inequality in the 

case k+ =α β : 

( ) ( ),
, 1

1, ,p q
kR C C +

∂ ∂
≤ ≤

∂ ∂ −

α β

α β α βu v x y
x y x y

           (47) 

which is small if the images ( )Support p
p
 
 γ ψ  and ( )Support q

q
 
 γ ψ  are sufficiently 

distant from one another. Thus, the speed of the decay toward zero depends on the 
factor kη  using the vanishing moments exponent k  and the distances between the 
basis supports. Hence, the constructed wavelet basis has the advantage that it renders 
the operator   quasi-sparse. 
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4. Wavelet Hierarchy and Integration  

This section is occupied by the efficient computation of the matrix entries from (41). 
Since our method is based on a hierarchical tree on the B-spline knots, we describe next 
the procedure of inserting new knots into existing ones. The principal objective is to be 
able to efficiently express a function defined on the coarse knot sequence in term of 
B-splines on a fine one. Consider two knot sequences ( )0 , , n kζ ζ ζ +=



  


 and  

( )1

1 1 1
0 , , n kζ ζ ζ

+

+ + +
+=



  


 such that 1ζ ζ +⊂  . For both knot sequences, the smoothness 

index k  is conserved intact. One introduces  

( ) ( ) ( ) )
( )
( )

0 1 1

0

0

: , for some ,

: 1 if ,

: 0 if ,

k k
i i i i j j k

i i

i i

y y a y a

y a y a

y a y a

φ ζ ζ+ +
++

+

+

= − Ψ ∈ 

− = >

− = ≤

 

 

where ( ) ( ) ( )1 1
1 1:k

i i i kt t tζ ζ+ +
+ + −Ψ = − − 

 . The discrete B-splines are defined as  

( ) ( ): , ,k k
i i k i i i k rrα ζ ζ ζ ζ φ+ + = −  

   

                  (48) 

which enables to express the basis in lower level in term of those in higher level such as  

( ) ( ) ( )1, ,

0
.

m
k k k

i i r
r

N x r N xζ ζα
+

=

= ∑
 

 

The De-Boor algorithm for the evaluation of the discrete B-splines ( )k
i pα  utilizes 

the recurrence  

( ) )
( ) )
( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1 1 1
1 1 1

1 if ,

0 if ,

i j i i j

i j i i j

k k k
i j k i i i k j k i

j

j

j j j

α ζ ζ ζ

α ζ ζ ζ

α ζ ζ β ζ ζ β

+
+

+
+

+ − + −
+ − + + − +

= ∈ 
= ∈/ 

= − + −

  

  

   

 

in which ( ) ( ) ( ):k k
i i i k ij jβ α ζ ζ+= −   for i k iζ ζ+ >   while ( ) 0k

i jβ =  otherwise. We 

will write interchangeably [ ]i iζ ζ≡  . In addition, for a knot entry iζ
  on level  , 

we denote by ( )p i  the index on level 1+  such that  

[ ] ( )1 .i p iζ ζ +=   
                           (49) 

Since one inserts one ( )1+ -knot entry between two consecutive  -knot entries, 
one has in particular  

[ ] ( ) ( ) ( )11 2 , thus 1 2.i p i p i p iζ ζ ++ = + + = +  
             (50) 

We introduce the the following 4D-voxels  

[ ]
[ ]1 2 3 4 3 31 1 2 2 4 4

1 1 2 2 3 3 4 41 2 3 4

, , ,
1 1 1 1, , , : , , , , .i i i i i i i ii i i i ζ ζ ζ ζ ζ ζ ζ ζ+ + + +      = × × ×      

   

      


      (51) 

We will use the next multi-indices for the wavelet and B-spline bases  

[ ]
[ ]

[ ]
[ ]

1 2 3 4 31 2 4
1 2 3 41 2 3 4

1 2 3 4 31 2 4
1 2 3 41 2 3 4

, , ,
, , ,

, , ,
, , ,

: ,

: .

i i i ii i i i

i i i ii i i iN N N N N

ψ ψ ψ ψ ψ= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

   

  

   

  

                  (52) 
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Since the tensor product wavelet bases verify  

[ ]
[ ]

( )
( ) [ ]

[ ]1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4

, , , , , ,
, , , , , , , , ,

, , ,
,i i i i j j j j j j j j

j j j j
q Nψ = ∑                         (53) 

it suffices to compute  

[ ]
[ ] ( ) [ ]

[ ] ( )1 2 3 4
1 2 3 4 1 2 3 4

1 2 3 4

, , ,
, , , , , ,

, , ,
d .j j j j

i i i i
t N t t∫    

   



  

For the Haar wavelets where the corresponding B-spline are piecewise constant, we 
have four recurrences:  

[ ]
[ ] ( )

( )
[ ] ( )

( )
[ ] ( )1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

, , , 1, , , 1, , ,
, , , , , , 1, , ,

d d d .
i i i i p i i i i p i i i i

t t t t t t+ +
+      

= +∫ ∫ ∫           

  

               (54) 

=                                           (55) 

( )
[ ] ( )

( )
[ ] ( )1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

, , , 1 , , , 1
, , , 1, , , 1

d d
i i i p i i i i p i

t t t t+ +
+ +      

= +∫ ∫       

 

            (56) 

For wavelets admitting higher polynomial degrees, by using the discrete B-splines 
one also obtains four recurrences including:  

[ ]
[ ] ( ) [ ]

[ ] ( )

( )
( )

[ ] ( ) [ ]
[ ] ( )

( )
[ ] ( ) [ ]

[ ] ( )

1 2 3 4
1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4
1 2 3 41 2 3 4

1 2 3 4

1 2 3 4
1 2 3 4 2 3 4

1 2 3 4

, , ,
, , , , , ,

, , ,

1, , ,
1, , , , , ,

0 , , ,

1, , ,
1, , , , , ,

1, , ,

d

d

 d

j j j j
i i i i

m
k
j r j j j

r p i i i i

r j j j
p i i i i

t N t t

r t N t t

t N t t

α +
+

=   

+
+

+  

= 


+ 


∫

∑ ∫

∫

   

   



   

   



   

   













 .

 

Our objective is to avoid computing any involved integrals several times. Therefore, 
we construct a hierarchical tree whose nodes correspond to the 4D-voxels [ ]

[ ]1 2 3 4

1 2 3 4

, , ,
, , ,i i i i
   


. 

We define the depth of the multilevel ( )1 2 3 4, , ,=      having 4D-indices to be 

( ) 1 2 3 4∆ = + + +     . Each tree-node has offsprings  

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1, , , 1, , , , , , 1 , , , 1
, , , 1, , , , , , , , , 1,  , , ,  p i i i i p i i i i i i i p i i i i p i

+ + + +
+ +              

               

    
. By using the above recurrences, 

one traverses the hierarchical tree bottom-up in order to obtain the integrals on all 
relevant 4D-voxels [ ]

[ ]1 2 3 4

1 2 3 4

, , ,
, , ,i i i i
   


. Thus, the wavelet integrals are computed hierarchically 

without doing any repeated computations. That is, one starts from the voxels having 
the largest depth ( )max∆  . The worst case of the depth of the hierarchical tree is 4L  
depending on the wavelet indices chosen in the quasi-sparse structure. For the current 
paper, we use the Genz-Malik integration [22] to compute the integrals corresponding 
to the leaves of the hierarchical tree. In a forthcoming paper, we will present a more 
efficient method for computing the leaf integrals. The integration on the voxels  

[ ]
[ ]1 2 3 4

1 2 3 4

, , ,
, , ,i i i i
   


 are computed by transforming it onto [ ]41,1− . The Genz-Malik method 

evaluates the integral ( )1 1 1
1 2 1 21 1 1
, , , d d dD DF x x x x x x

− − −∫ ∫ ∫  
 of a multivariate func- 

tion [ ]: 1,1 DF − →   by utilizing the 7 -point rule  
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[ ] ( ) ( )( ) ( )( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

1 2 2 3 3
1 1 1 1

4 , 4 4 5 5
1 1

,

0, ,0

  , , ,

: 0, ,0, ,0, ,0 ,

: 0, ,0, ,0, ,0, ,0, ,0 .

D D

i i
p i p i

D

i j
p i j p

i

i j

F w F w I F p w I F p

w J F p w F p p

I F p F p

J F p F p p

λ λ

λ λ λ

λ λ

λ λ λ

=± = =± =

=± < =±

= + +

+ +

=

=

∑∑ ∑∑

∑∑ ∑





 

  



 

The nonzero entry (resp. entries) of iI F  is (resp. ijJ F ) at the i -th position (resp. 
i -th and j -th positions). In the 4D  cases, every application of [ ]F  requires 57 
function evaluations. For the determination of the parameters in  , one solves a 
nonlinear system [22] involving the functions  

( ) ( )

( ) ( )

( )

1 1 5 1 2 3 4 5

2 2 2 2
2 1 5 2 2 3 3 4 4 5 5

6
7 1 5 5 5

, , 2 2 2 1 2
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w w w

λ λ λ λ

λ

= + + + − +

= + + − +

= +















 

The solution to that nonlinear system gives exactly 2
2 9 70λ = , 2 2

3 4 9 10λ λ= = , 
2
5 9 19λ =  while the weights are ( )2

1 2 12824 9120 400 19683Dw D D= − + ,  

( )2 2 980 6561Dw = , ( )3 2 1820 400 19683Dw D= − , ( )4 2 200 19683Dw = − ,  

5 6859 19683w = . That integrator is combined with some adaptive subdivision in 
which D -dimensional hypercubes that produce large integration errors are split into 

smaller ones. That subdivision starts from [ ]1,1 D−  as the initial hypercube. During 
the recursive subdivision, the hypercubes to be split have to be identified. In order to 
evaluate the local error inside a hypercube, an error estimator is achieved by the next 
5-point rule 

[ ] ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 2 3 3
1 1 1 1

4 , 4
1

0, , 0

                

D D

i i
p i p i

D

i j
p i j

F v F v I F p v I F p

v J F p

λ λ

λ

=± = =± =

=± <

= + +

+

∑∑ ∑∑

∑∑



 

where the weights are ( )2
1 2 729 950 50 729Dv D D= − + , ( )2 2 245 486Dv = ,  

( )3 2 265 100 1458Dv D= − , ( )4 2 25 729Dv = . In order not to evaluate the integrand 
too many times, the integration points for   are taken from the 7-point rule  . 

The error estimator is the difference between   and  . As input, one accepts 
the maximal number of integrand evaluations together with the desired accuracy. We 

apply the above numerical quadrature to ( ),u v  in which we avoid zero division by 

replacing the kernel involving 1 −x y  by 21 δ− +x y  for px∈Γ , qy∈Γ  

where 0δ >  is an adjustable small parameter. A similar approach using 0δ >  has 
been used in [39] for the purpose of quantum mechanics using high-dimensional 
approximation. 
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5. Wavelet Simulation on Molecular Models  

We want now to present some results of the former method which was implemented in 
C functions together with C++ classes. The visualization has been implemented with 
the help of OpenGL. The computations have been executed on a computer possessing a 
4.1 GHz processor and 32 GB RAM. The C-packet cubature [23] serves as computation 
of the Genz-Malik integrations. We employ different sorts of quantum models 
including water clusters which are obtained from a former MD (Molecular Dynamics) 
simulation. A water cluster is generally a collection of many water molecules 2H O  
which take their positions after a Molecular Dynamic simulation. Each water molecule 

2H O  is interpreted as one single particle during the Molecular Dynamic steps. When 
the MD energy becomes stable as the sum of the kinetic energy and the potential energy 
is supposed to be conserved, the water molecules form a cluster from which a few 
particles that are located within a prescribed large sphere are extracted at equilibrium 
state. The hydrogen and oxygen atoms contained in that large sphere constitute the 
components of the water clusters. As a consequence, the water cluster forms in general 
a Connolly surface which takes the shape of a large ball. The radius of the given large 
ball controls the final size of the water cluster. Besides, we use also other molecules 
which are acquired from PDB files. 

We would like to provide some numerical results pertaining to the runtimes of the 
cavity generation and the quality of the patches. The runtimes depend on several 
factors. First, it is affected by the number of atoms in the molecule. Second, it varies in 
relation with the atom distributions. Further, it depends on how coarse the patch 
decomposition should be. As a first numerical test, we investigate the number of 
patches in accordance to the size of the molecule. The results of such a test are gathered 
in Table 1 where we examine the coarsening coarse  from Section 3. According to our 
experience, the interesting practical values of α  range between 0.2 and 0.4. A smaller 
value of α  indicates that one has a coarser decomposition which amounts also to a 
fewer number of fitting tasks. On the other hand, a single large NURBS surface area 
needs many sampling points which mean also that it takes more time to complete the 
NURBS determination. Hence, the running time depends not only on the initial mole- 
 
Table 1. Number of patches with respect to the number of atoms and the coarseness factor α . 

Molecules Nb. atoms 
Number of patches (Runtime in second) 

0.2α =  0.3α =  0.4α =  

Benzene 12 84 (13.86 s) 97 (14.06 s) 119 (14.60 s) 

Cyclohexane 18 99 (15.27 s) 108 (16.27 s) 127 (16.13 s) 

LDS 49 286 (50.36 s) 346 (53.73 s) 409 (52.76 s) 

Streptomycin 81 399 (68.69 s) 468 (67.78 s) 564 (74.02 s) 

Lecithin 128 687 (118.50 s) 821 (120.68 s) 932 (145.11 s) 

PDMPG 225 1102 (219.23 s) 1345 (219.12 s) 1556 (226.34 s) 

DNA 116 1610 (461.67 s) 1899 (475.33 s) 2232 (487.38 s) 
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cular size but also on the surface area of the cavity. For example, lecithin has more 
atoms than DNA but the latter takes almost four times longer than the former. 

The purpose of the second test is the investigation of the area ( )iµ Γ  of each patch 

iΓ . We would like to compare the areas of the patches in two perspectives: in the 
vicinity of each patch and global comparison. For the vicinity test, let i  denote the 
set of neighboring patches which share at least one corner node with a patch iΓ . We  

computed ( ) ( ) ( )1:
ii jj

i

M i
m

µ µ
∈

 
= Γ Γ 

 
∑   where ( )Cardi im =  . The results for  

the average values of ( )M i  are collected in the third column of Table 2 where we 

observe that the sizes of the patches vary slowly because ( )M i  approximates 
averagely the unity. As for the global comparison, the ideal patch area idealµ  is the area 
of the whole molecular surface divided by the number of patches. We compute the ratio 

( ) ( ) ( ){ } [ ]ideal ideal: min , 0,1i iR i µ µ µ µ= Γ Γ ∈ . The resulting average values of ( )R i  

are exhibited in the last column of Table 2. We observe that the sizes of the patches are 
not too different from the ideal size. In fact, we have in general  

( )ideal ideal0.65 1.34iµ µ µ≤ Γ ≤ . Those patch properties enable the subsequent wavelet 
bases to be proportionally distributed. An instance of the patch decomposition for the 
case of a DNA section is depicted on Figure 5. 
 

 
Figure 5. Patch representation of a DNA section with 1905 NURBS. 

 
Table 2. Investigation of patches area. 

Molecules Number of patches area/(neighb area) Global ratio 
Benzene 12 0.960095 0.706800 

Cyclohexane 97 0.959639 0.695809 
Tamoxifen 410 1.012924 0.665099 

Streptomycin 462 0.959130 0.662762 
Lecithin 821 0.971143 0.676250 
PDMPG 2175 1.015307 0.688102 

DNA 3144 0.950066 0.651584 



M. Randrianarivony 
 

87 

We focus now on investigating the patch quality which is quantified as follows for a 
patch mΓ  on level L . For each , 0, , 2 1Li j = − , we consider the quadrilateral 

( ),mQ i j  having vertices ( ) ( ), : 2 , 2L L
m ma i j i jγ= , ( )1,ma i j+ , ( )1, 1ma i j+ + , 

( ), 1ma i j + . By inserting a diagonal ( ) ( ), 1 , 1,m ma i j a i j+ +    in ( ),mQ i j , one 

defines two triangles 1T  and 2T . Two other triangles 3T  and 4T  are defined by 

inserting the diagonal ( ) ( ), , 1, 1m ma i j a i j+ +   . The quality metric  

( )( ) ( ) ( )( ) ( ) ( )( )1 2 3 4, : 0.5 min , min ,mQ i j T T T Tθ θ θ θ = +   is used where ( )pTθ  is 

the smallest angle in the triangle pT . The ideal quadrilateral which is a perfect square 
corresponds to ideal 0.25π 0.785398=  . In Table 3, we gather the results of our test 
which consists in computing the average values of   over the whole patches. We 
obtain a satisfactory quality because the average values of   do not tend to zero. We 
would like now to describe some results related to BEM simulation on realistic 
molecular patches. For the computer implementation, we use only Haar wavelets but 
the former method can also be applied to higher-order wavelets. We examine first the 
error reductions in term of the multiscale level for large molecules. The results are 
collected in Table 4 which contains both the absolute errors and the relative errors. The  
 
Table 3. Quality of the resulting patches. 

Molecules Number of patches 
 -value 

Average Ratio with ideal  

Benzene 133 0.595737 0.758516 

Quinine 358 0.554006 0.705383 

Borane 812 0.531560 0.676803 

Lecithin 821 0.555027 0.706682 

Water cluster 1567 0.571700 0.727911 

DNA 3348 0.576848 0.734465 

 
Table 4. Error reductions for water cluster and DNA section. 

 
Solution ( )1 x  Solution ( )2 x  

Absol. Error Relat. Error Reduc. Absol. Error Relat. Error Reduc. 

Water cluster (1109 patches): 

Lev 1 2.415E−01 8.322E−03 - 1.186E+00 6.752E−03 - 

Lev 2 1.327E−01 4.572E−03 1.820 4.984E−01 2.837E−03 2.211 

Lev 3 2.456E−02 8.464E−04 5.404 1.347E−01 7.670E−04 3.698 

Lev 4 2.430E−03 8.374E−05 10.10 2.989E−02 1.702E−04 4.506 

DNA section (2119 patches): 

Lev 1 2.081E+00 1.309E−01 - 3.853E−01 4.216E−03 - 

Lev 2 1.218E+00 7.666E−02 1.707 1.942E−01 2.125E−03 1.984 

Lev 3 4.025E−01 2.532E−02 3.027 4.003E−02 4.380E−04 4.851 

Lev 4 4.829E−02 3.038E−03 8.334 1.230E−02 1.346E−04 3.254 
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models consist of a water cluster and a DNA section which admit respectively 1109 

patches and 2119 patches. We consider two exact solutions which are respectively 

( ) 2 2 2
1 .2 .15 .05x x y z= − −  and ( ) ( ) ( )2 exp .5 cos .5x x y=  that have vanishing 

Laplacian. The right hand side ( )g x  is the restriction of the function   on the 

boundary Γ . The error reduction is affected by the exact solutions but in general the 
errors reduce satisfactorily in function of the wavelet levels. The absolute errors are 
obtained by comparing with the exact solution at some fixed samples in the interior 
Ω . A division by the largest value of the exact solution provides the relative error. 

We exhibit in Table 5 the runtimes for the different stages which are required for a 
complete BEM simulation. These include: (1) the assembly of the identity operator II , 
(2) the determination of the indices which yield quasi-sparse matrix entries, (3) the 
computation of the singular integrals in the operator  , (4) the solving of the 
resulting linear system. In addition, Table 5 exhibits the required total runtimes for two 
water clusters which contain respectively 386 patches and 1109 patches on several 
multiscale levels. It turns out that the construction of the identity operator executes 
very quickly. The task which mainly dominates the BEM-simulation is the assembly of 
the singular operator. Although the determination of the quasi-sparse indices and the 
solving of the linear system take some time, they do not last as long as the singular 
operator. A GMRes method serves as a solver of the system which is nonsymmetric. 
Since the time required for the linear solver is very short compared to the assembly of 
the matrices, it is not yet our priority to improve the linear solver. We examine now the 
general linear characteristic of the relative errors. In Figure 6, we display the error 
evolution where we consider four levels for several molecules and several right hand 
sides. The curves 1e  and 5e  correspond to a propane molecule admitting 75 patches. 
We use a water cluster admitting 386 patches for 2e  and 6e  while another water 
cluster admitting 1109 patches are used for 3e  and 7e . The curve 7e  corresponds  
 
Table 5. Durations of the individual steps for the water clusters. 

 Identity Quasisparse Singularity Linear oper. Total Accuracy 

Water cluster (386 patches): 

Lev 1 0.28 sc 0.09 sc 15.22 sc 1.44 sc 17.03 sc 1.127E−02 

Lev 2 0.32 sc 0.23 sc 27.09 sc 2.20 sc 29.84 sc 1.684E−03 

Lev 3 0.45 sc 2.68 sc 32.88 sc 6.39 sc 42.40 sc 4.163E−04 

Lev 4 1.34 sc 58.41 sc 8.88 mn 25.93 sc 10.30 mn 9.162E−05 

Lev 5 6.84 sc 29.13 mn 144.94 mn 3.29 mn 177.48 mn 3.482E−05 

Water cluster (1109 patches): 

Lev 1 1.28 sc 0.61 sc 44.56 sc 10.22 sc 56.67 sc 8.322e−03 

Lev 2 1.35 sc 1.91 sc 92.24 sc 15.16 sc 110.66 sc 4.572e−03 

Lev 3 1.68 sc 24.03 sc 3.79 mn 49.16 sc 5.04 mn 8.464e−04 

Lev 4 4.17 sc 9.07 mn 71.23 mn 3.84 mn 84.22 mn 8.374e−05 



M. Randrianarivony 
 

89 

 
Figure 6. Relative errors for several molecules w.r.t. increasing levels. 

 
to a DNA section admitting 2119 patches. The exact solution 2  is used for the curves 

1e  till 4e  while the remaining ones correspond to the solution 1 . The error plots 
lightly vary in function of the used molecules but in general all the curves exhibit the 
same slope characteristic. In fact, they decrease linearly in logarithmic scale in function 
of the BEM levels. The implemented BEM simulation is able to treat large molecules. 
Our program functions in parallel [40] [41] [42] on computers admitting several cores 
or multi-processors. The implementation was accomplished by using a message passing 
technique which was practically carried out by means of MPI (Message Passing 
Interface). The acceleration of the computation which is also known as speedup is 
summarized in Figure 7. The speedup quantifies the ratio between the execution time 
on a parallel machine having p  processors and the time elapsed on a single processor. 
The speedup curves indicate that our implementation scales well by increasing the 
number of processors implying that the load of computing tasks is well balanced among 
the processors and that the cost of inter-processor communications is not excessive. 
This consists of the BEM program without the linear solving which takes no more than 
5 percent of the entire BEM computation (see Table 5) and which functions only 
sequentially for the time being. All other BEM stages function on a parallel architecture. 
The speedup curves concern the execution time when the number of the processors is 
increased for two cases: (a) various molecules possessing different patch counts, (b) 
increasing wavelet levels. It is beyond the scope of this paper to provide a full descrip- 
tion of the parallel implementation which is deferred to a subsequent article. An 
instance of the computed density function defined on the surface of a DNA section is 
depicted in Figure 8 where a triangular mesh serves only as simplification of the 
graphical presentation. 

6. Conclusion 

We constructed a surface structure which is suitable for subsequent BEM-simulation. 
The molecular boundary in form of Connolly surface was decomposed into globally 
continuous NURBS having similar surface areas. We showed outcomes of BEM 
simulation on different models possessing many patches. Results pertaining to accuracy  
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(a) 

 
(b) 

Figure 7. Acceleration of the computation in term of the number of processors: (a) Molecules 
having different patch numbers; (b) several levels. 
 

 
Figure 8. BEM-Density function on the molecular surface of a DNA section. 
 
and runtimes have been reported as well. We treated several molecular models which 
are acquired from a molecular dynamic simulation or from realistic PDB files. 
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