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Abstract 
This paper presents the quasi-ballistic electron transport of a symmetric double-gate 
(DG) nano-MOSFET with 10 nm gate length and implementation of logical NOT 
transistor circuit using this nano-MOSFET. Theoretical calculation and simulation 
using NanoMOS have been done to obtain parameters such as ballistic efficiency, 
backscattering mean free path, backscattering coefficient, critical length, thermal ve-
locity, capacitances, resistance and drain current. NanoMOS is an on-line device si-
mulator. Theoretical and simulated drain current per micro of width is closely 
matched. Transistor loaded NOT gate is simulated using WinSpice. Theoretical and 
simulated value of rise time, fall time, propagation delay and maximum signal fre-
quency of logical NOT transistor level circuit is closely matched. Quasi-ballistic 
transport has been investigated in this paper since modern MOSFET devices operate 
between the drift-diffusion and ballistic regimes. This paper aims to enable modern 
semiconductor device engineers to become familiar with both approaches. 
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1. Introduction 

In traditional semiconductor devices, carriers are frequently scattered from phonons, 
ionized impurities and surface roughness. In the traditional devices, the backscattering 
mean free path λ is much shorter than the device channel. So, drift-diffusion approach 
is used to describe the carrier transport. However, as devices downscale to nanometer 
regime, backscattering mean free path become comparable to transistor dimensions. 
When the backscattering mean free path becomes much larger than the transistor 
channel length, scattering can be totally ignored. In this situation, a nano-MOSFET 
behaves like a vacuum tube. In practical devices, scatterings are unavoidable in semi-
conductor devices. Therefore, modern devices operate in quasi-ballistic mode which is 
between drift-diffusion and ballistic regimes. Put in other words, drift-diffusion theory 
is no longer strictly valid as well as ballistic treatment. Hence, modern device engineer 
must familiar with both approaches. Then, the nano-MOSFET studied in this paper is 
applied in implementing logical NOT transistor level circuit [1] [2] [3] [4]. 

2. Theory and Methodology 

Silicon (Si) MOSFETs currently operate between the ballistic and diffusive limits; the 
scattering model provides a conceptual model for transport in this quasi-ballistic re-
gime. In this scattering model, the most important scatterings occur in the low-field re-
gion near the beginning of the channel at source side. Carrier scattering in the channel 
reduces the current and can be described by ballistic efficiency. Scattering model pre-
dicts that the drain current is close to the ballistic limit under high drain bias than un-
der low drain bias, and the on-state current in strong inversion is limited by a small 
portion of the channel near the source, that is the top region of sub-band potential bar-
rier. 

The double-gate (DG) nano-MOSFET structure used in NanoMOS simulation is 
shown in Figure 1 with simulation structural parameters listed in Table 1. 
 

 
Figure 1. Structural DG Nano-MOSFET used in nanoMOS simulation tool. 
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Table 1. Double gate nano-MOSFET device simulation parameter. 

VGS 0.60 V 

VDS 0.60 V 

VTO 0.20 V 

Source/drain doping concentration (ND) 1 × 1020 cm−3 

Channel body acceptor impurity concentration (NA) 1 × 1016 cm−3 

Channel width (W) 125 nm 

Channel length (L) 10 nm 

Source length/drain length (LSD) 7.5 nm 

Silicon channel thickness (TSi) 1.5 nm 

Top/bottom oxide insulator thickness (TOX) 1.5 nm 

Top/bottom insulator relative dielectric constant 3.9 

Channel body relative dielectric constant 11.7 

Top/bottom gate contact work function 4.1888 eV 

 
The on-state current of the nano-MOSFET is controlled by a short low-field region 

close to the source end of the channel. The length l of this area is called critical length 
which is defined as the distance from the peak of the potential barrier to the point  

where the potential reduces by Bk T
q

β . β  is a numerical factor ≥1. This factor has a  

value of 1 for non-degenerate case and slightly greater than 1 for degenerate case. In 
this paper, take 1.1β = . λ  is the backscattering mean free path. Then, the backscat-
tering coefficient r is given by 

.lr
l λ
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                               (1) 

The ballistic efficiency B is given by 
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where electron mobility at ballistic transport in Silicon is 1200µ =  cm2/Vs. The ther-
mal velocity is given by 
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where * 0.19t em m= ×  and T = 300 K. The critical length is given by 
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Since lower bound for 0.66α =  is used at diffusive transport and upper bound for 
0.75α =  is used at ballistic transport, 0.705α =  is used at quasi-ballistic transport. 

In studying the theoretical part of this paper, the following Fermi-Dirac integrals are 
used: 
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  is the average energy between source and drain in sub-band energy profile whe-
reas iE  is the energy level at the center of the device. Next, the following expression is 
used to analyze the drain current per micron of width: 
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After considering the ballistic efficiency B, 
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  is the average energy between source and drain in sub-band energy profile whe-
reas iE  is the energy level at the region around top of the potential barrier. This re-
gion limits on-state current because scatterings mostly occur in this region. In analyz-
ing Equation (10) and Equation (11), the following Fermi-Dirac integrals are used: 
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The on-line current-voltage (I-V) simulation result of NanoMOS is compared with 
theoretical calculation using Equation (11). 

In order to calculate resistance RLoad of nano-MOSFET at quasi-ballistic limit, uses 

DS th
Load

DS on-state at linear region

.
V V

R
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                  (17) 

Since digital logic gates operate at linear portion of I-V curve. This RLoad is used in 
analyzing rise time of transistor loaded NOT gate circuit. On the other hand, the fol-
lowing expression is used to obtain on-state channel resistance Rchannel at on-state which is 
used in fall time analysis. 
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nµ  = electron mobility at ballistic = 1200 cm2/Vs. 

OXC  = Oxide capacitance per unit area. 
Transistor loaded NOT gate as shown in Figure 2 is simulated using WinSpice. The 

simulated rise time and fall time extracted from timing diagram are compared with 
theoretical calculated rise time and fall time [5]-[11]. 

Since the nano-MOSFET operates at quasi-ballistic condition: 
( )0

OX

3.9 2
Gate Capacitance G

L W
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4
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From Figure 3, 
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Figure 2. Transistor loaded NOT gate circuit. 

 

 
Figure 3. Capacitance models in nano-MOSFET device. 
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Σ

2.3
.D BC k T DIBL

C q S
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From [12], subthreshold swing S = 75 mV/V and drain induced barrier lowering 
DIBL = 80 mV/dec. So, CG, CS and CD can be calculated. 

Total Capacitance of NOT gate = Gate Capacitance + Source Capacitance + Drain 
Capacitance + Area Capacitance + Sidewall Capacitance. 

Rise time constant ( ) Load NOTr Rτ = ×  gate total capacitance. 
Rise time ( ) 2.2 6.1tr rτ= × × , it takes 6.1 times duration to pass logic 1 than logic 0 

through an n-channel MOS pass-transistor. 
Fall time constant ( ) channel at on-state NOTf Rτ = ×  gate total capacitance. 
Fall time ( )  2.2 .tf fτ= ×  
Propagation delay ( ) ( )0.35 .tp r fτ τ= +   
Maximum signal frequency ( ) ( )max 1   .f tr tf= +  

3. Results and Discussion 

Figure 4 shows the energy sub-band profile along the channel for nano-MOSFET stu-
died in this paper. Drain-to-source voltage, VDS lowers the sub-band potential at the 
drain side by 0.60 eV [13] [14] [15]. 

From Equation (3), the backscattering mean free path is 

50.267 nm.λ =  

From Equation (5), the critical length is 

1.16 nm.l =  

From Equation (1), the backscattering coefficient is  

0.02.r =  

From Equation (2), the ballistic efficiency is 

0.96.B =  
 

 
Figure 4. The sub-band energy profile along the channel for Nano-MOSFET. 
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In order to analyze the NanoMOS simulation result of Figure 5, Equation (10) and 
Equation (11) are needed. Take VDS = 0.60 V. 

Then, by using Equation (10), 

2273.16 μA/μm.DI
W

=  

After considering the ballistic efficiency B and using Equation (11), 

2182.23 μA/μm.DI
W

=  

Simulated result with NanoMOS, as in Figure 5, has 2500 μA/μm.DI
W

=  From 

theoretical calculation of Equation (11), 2182.23 μA/μm.DI
W

=  These two results are  

87.3% closely matched. In Figure 5, drain current in saturation region is sloping be-
cause electron scattering is considered in Figure 5 and at high drain bias, scattering 
model in nano-MOSFET exhibits drain current closer to the ballistic limit than under 
low drain bias. 

At region above threshold, the Fermi-Dirac integrals in Equation (11) can be simpli-
fied to exponential terms as in equation below. 
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Sub-band potential at drain side is lower by DSqV , therefore 

DS
2 1 .F F

B

qV
k T

η η− = −  

Then Equation (19) becomes 
 

 

Figure 5. Drain current versus drain voltage for nano-MOSFET by NanoMOS simulation. 
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After analysis, Equation (19) and Equation (20) both has the same value. 

2182.16 μA/μmDI
W

=  

To implement transistor level NOT gate circuit as in Figure 2, the nano-MOSFET 
should operate in the linear region which is the region for digital logic operation. From 
Figure 5, linear region is from VDS = 0.00 V until 0.20 V. Use Equation (11) to calculate 
the drain current at this linear region and then apply Equation (17) to calculate RLoad at 
quasi-ballistic limit. From Equation (11), 

2136.60 μA/μm.DI
W

=  

In order to calculate the resistance of nano-MOSFET at quasi-ballistic limit, use Eq-
uation (17) since digital logic gates operate at linear portion of I-V curve. Using Vth =  

0.20 V, 2136.60 μA/μmDI
W

=  and from device dimension W = 125 nm, RLoad = 748.8  

Ω. The resistance value is used in analyzing theoretical value of rise time in NOT gate 
circuit. On the other hand Equation (18) is used to obtain the resistance needed in ana-
lyzing theoretical value of fall time in NOT gate circuit. Finally, the NOT gate circuit in 
Figure 2 is simulated using WinSpice. The timing diagram result are shown in Figure 
6(a) and Figure 6(b). 

Low output voltage VOL of NOT transistor level circuit in Figure 2 is given by 

channel at on-state
OL DD

Load channel at on-state

27.67 mV.
R

V V
R R

= × =
+

              (21) 

From WinSpice simulation timing diagram Figure 6(b), 

OL 9 mV.V ≈                             (22) 

By comparing Equation (21) and Equation (22), 

27.67 mVratio 3.07 times.
9 mV

= =  

From theoretical modeling and also WinSpice simulation, VOH = 0.4 V. Nano- 
MOSFET at the bottom is at off state and thereby at high impedance state. Threshold 
voltage lost 0.20 V occurs at top side nano-MOSFET load which acts as pass transistor. 

Table 2 tabulates the result of this investigation. The theoretical and simulated result 
are almost matched each other. 

4. Conclusion 

Modern MOSFET semiconductor devices operate in quasi-ballistic transport. Quasi- 
ballistic transport is the carrier transport between drift-diffusion and ballistic regimes.  
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(a) 

 
(b) 

Figure 6. (a). WinSpice input signal with period 8 ps to NOT gate; (b) WinSpice output signal of NOT gate. 
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Table 2. Theoretical and simulated result comparison table. 

Parameters 
 

Gate capacitance (F) 5.7551E−17 

Area capacitance (F) 1.6125E−19 

Sidewall capacitance (F) 6.0720E−17 

Total drain capacitance (F) 4.6041E−18 

Total source capacitance (F) 1.0469E−17 

NOT gate total capacitance (F) 1.3400E−16 

Load resistance (ohm) 748.8 

On-state channel resistance (ohm) 36.2 

 
Theoretical value WinSpice simulated value 

Rise time constant 9.9969E−14 1.2645E−13 

Rise time (s) 1.3416E−12 1.6969E−12 

Fall time constant 4.8329E−15 1.1000E−13 

Fall time (s) 1.0632E−14 2.4200E−13 

Propagation delay (s) 3.6322E−14 8.2756E−14 

Maximum frequency (Hz) 7.3953E+11 5.1600E+11 

 
Theoretical calculations and simulation results about this transport have been done in 
this paper and this paper shows that theoretical calculation values and simulation re-
sults are closely matched. Logic NOT circuit level has been implemented using nano- 
MOSFET and correct logical operation has been achieved. 
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