
Journal of Computer and Communications, 2016, 4, 18-50
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2016.417002 December 29, 2016

An Approach to Parallelization of SIFT
Algorithm on GPUs for Real-Time Applications

Raghu Raj Prasanna Kumar, Suresh Muknahallipatna, John McInroy

Department of Electrical Engineering, University of Wyoming, Laramie, USA

Abstract
Scale Invariant Feature Transform (SIFT) algorithm is a widely used comput-
er vision algorithm that detects and extracts local feature descriptors from
images. SIFT is computationally intensive, making it infeasible for single
threaded implementation to extract local feature descriptors for high-resolution
images in real time. In this paper, an approach to parallelization of the SIFT
algorithm is demonstrated using NVIDIA’s Graphics Processing Unit (GPU).
The parallelization design for SIFT on GPUs is divided into two stages, a) Al-
gorithm design-generic design strategies which focuses on data and b) Im-
plementation design-architecture specific design strategies which focuses on
optimally using GPU resources for maximum occupancy. Increasing memory
latency hiding, eliminating branches and data blocking achieve a significant
decrease in average computational time. Furthermore, it is observed via Pa-
raver tools that our approach to parallelization while optimizing for maxi-
mum occupancy allows GPU to execute memory bound SIFT algorithm at
optimal levels.

Keywords
Scale Invariant Feature Transform (SIFT), Parallel Computing, GPU, GPU
Occupancy, Portable Parallel Programming, CUDA

1. Introduction

Image matching is a fundamental aspect needed to solve computer or machine
vision problems, including object or scene recognition, 3D structure modeling,
stereo image correspondence, motion tracking, etc. Objects in images have fea-
tures that can be extracted and used for comparing across images. A large num-
ber of such features for various objects can be extracted from images with effi-

How to cite this paper: Kumar, R.R.P., Muk-
nahallipatna, S. and McInroy, J. (2016) An
Approach to Parallelization of SIFT Algo-
rithm on GPUs for Real-Time Applications.
Journal of Computer and Communications,
4, 18-50.
http://dx.doi.org/10.4236/jcc.2016.417002

Received: October 25, 2016
Accepted: December 26, 2016
Published: December 29, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2016.417002
http://www.scirp.org
http://dx.doi.org/10.4236/jcc.2016.417002
http://creativecommons.org/licenses/by/4.0/

R. R. P. Kumar et al.

19

cient algorithms. An example of such an algorithm is Scale Invariant Feature
Transform (SIFT) [1], which detects and extracts local feature descriptors from
images. The features extracted using the SIFT algorithm are invariant to rotation,
scaling and illumination and hence applicable to scene modeling, recognition
and tracking [2]. A simple sequential implementation of SIFT on lower resolu-
tion images is shown to utilize huge memory with high computation times [3],
making the use of SIFT in real-time applications infeasible.

High-resolution image processing is used in various application domains like
remote sensing, traffic monitoring, unmanned air vehicles, mars expeditions, etc.
SIFT has been shown to provide good tracking capability in all the above do-
mains [4] [5] [6] [7]. However, the large computational burden prevents the use
of SIFT in real-time applications in the above domains. Feng et al., in their mul-
ti-core parallelization work [8] have demonstrated the potential of parallelizing
the SIFT algorithm. A number of researchers [3] [9] [10]-[15] [35] [36] [37] [38]
[39] have attempted to parallelize the SIFT algorithm to make it applicable for
real-time. In particular, the research effort by Yao et al., has demonstrated a pa-
rallelized SIFT algorithm [13] with the capability to process an image of resolu-
tion 640 × 480 pixels in 31 ms. The 31 ms processing time would be sufficient to
process video of frame rate 24 frames per second with a resolution of 640 × 480.
However, the current application domains require processing of images with re-
solutions ranging from 1280 × 720 (720 p) to 8192 × 4608 (8 k) known as high-
resolution images in real-time. Recent researches [16] [17] [18] [19] [20] have
attempted to parallelize SIFT for high-resolution images. However, all of these
attempts either have high execution time or fail to provide reproducible imple-
mentation, making current approaches of parallelizing the SIFT algorithm in-
compatible for real-time applications.

In this paper, we discuss a two phase: a) algorithm design and b) implementa-
tion design, parallelization strategies to obtain a better and efficient paralleliza-
tion of SIFT, which lowers the compute time enabling real-time processing of
high-resolution images. While, the algorithm design phase strategies demon-
strate parallelization of the SIFT algorithm, the implementation design phase
strategies define the values of machine parameters, such as blocks and threads,
to implement the parallelized SIFT algorithm on to the underlying GPU archi-
tecture. The two-phase parallelization approach facilitates porting of parallelized
SIFT algorithm to different GPU architectures. The research work presented in
this paper is based on the preliminary research presented by authors in [21]. In
preliminary research, the parallelization of only the first stage of the SIFT algo-
rithm was presented. This paper presents the complete parallel implementation
of SIFT suitable for real-time applications.

The paper is organized as follows: In Section 2, we provide a brief description
of the SIFT algorithm based on the research work by Lowe in [1]. Section 3,
presents the mathematical steps in the SIFT algorithm. In Section 4, an intro-

R. R. P. Kumar et al.

20

duction to the GPU architecture and its constraints are presented. In Section 5,
we provide the two phase parallelization strategies and demonstrate the paralleli-
zation of SIFT algorithm. Section 6 provides the performance of the parallelized
SIFT algorithm. We discuss the future work and conclude the paper in Section 7.

2. Description of SIFT

SIFT algorithm discussed in the research work by Lowe has four stages to obtain
the features of an image [1]. The four stages of the SIFT algorithm are shown in
Figure 1. A discussion of the four stages is provided below:

1) Scale-space Extrema Detection (SSED): The SSED stage consists of two
sub-stages namely the formation of the Difference of Gaussian (DoG) pyramid
and extrema keypoint detection.

a) Difference of Gaussian Pyramid: The first stage of computation is to build a
pyramid of images having different blurring levels and varying resolutions. First,
the initial image is repeatedly convolved with different Gaussian functions cha-
racterized by their varying standard deviations known as scaling, to produce a
set of images having same resolution but varying in their blurring levels as shown
in Figure 2. In Figure 2, this set of images is marked as Octave 1 representing
the same resolution but different blurring levels. The top image of octave 1 has

Figure 1. Flowchart of SIFT algorithm.

R. R. P. Kumar et al.

21

Figure 2. DoG pyramid structure.

the maximum blurring. Next, the resolution of the top image in Octave 1 is re-
duced by half to form the bottom image in Octave 2. Again, this bottom image
in Octave 2 is repeatedly convolved with different scaled Gaussian functions to
produce the set of images for Octave 2. This convolution and resolution reduc-
tion is repeated to build the different layers of the pyramid. Next, the DoGs of an
octave are constructed by taking the difference between any two consecutive
images of the same. The left side in Figure 2 depicts the different octaves and
scaled images in each octave, and the right side depicts the corresponding DoG
images. Interest points for SIFT are obtained using the DoG images.

b) Extrema detection: The pixels of a DoG image are the difference in intensi-
ty values of consecutive blurred images. Keypoints are pixels identified as local
maxima or minima of the DoG images across octaves. This is obtained by com-
paring a pixel in the DoG image to its neighboring pixels at the current and ad-
jacent scales [1]. If the pixel is greater than or lesser than all its neighbors, it is
considered as the local maxima or minima respectively for the given octave level.
If the local minima or maxima for the first octave, continues to be a local mini-
ma or maxima for all octaves, then it is selected as a candidate keypoint.

2) Keypoint localization: The selected candidate keypoints (CKs) are filtered
to eliminate unstable CKs. CKs having low contrast or being a part of an edge in
an image are considered as unstable keypoints [1]. A 3D quadratic function fit-
ting is performed on the selected CKs to evaluate its contrast with respect to
neighboring points [22]. By setting a threshold for evaluation, low contrast CKs
are eliminated [1]. A second-order derivative of the Hessian matrix [1] is used to
eliminate the CKs that form part of an edge.

3) Orientation assignment: The CKs remaining after the localization step are
considered as keypoints. One or more orientations are assigned to each keypoint
based on local image gradient directions, i.e., the contribution of each neighbor-
ing pixel is weighted by a gradient magnitude as discussed in [1]. The peaks of
the histogram of orientations indicate dominant orientations. Once a keypoint
orientation has been selected, the feature descriptor is computed as a set of
orientation histograms represented in the form of a vector [1].

R. R. P. Kumar et al.

22

3. Steps in SIFT

A step-by-step mathematical discussion of SIFT, as seen in [1], is provided be-
low. It should be noted that we are reiterating the description of SIFT from [1],
without adding any new terminologies or techniques.

a) Gaussian convolution: Consider a Gaussian matrix 3 3sG R ×∈ , given by:

()2 2

22
2

1 e
2π

s

i j

s
ij

s

G σ

σ

− +

 
=  
 

 (1)

where,
1

2 s
sσ σ= is the standard deviation at every scale,

0.8σ = is the predetermined standard deviation for the SIFT algorithm, and
s is the scaling level,

{ }, 1,0,1i j = − are the indices of Gs, with ()0,0 being the element under-
going convolution operation. ()0,0 is the index of the middle element of Gs
matrix.

Gs is convolved with the grayscale image
o oo m nI R ×∈ , where o is the octave

level, ,o om n is the resolution of the image for the octave level o. The convolu-
tion is performed by sliding Gs as a window over oI . The convolved image

o oso m nL R ×∈ , is obtained as follows:

*so s o
xy ij xyL G I= (2)

where, ,x y in o
xyI and so

xyL is the co-ordinate of a pixel in the image.
Since the image values are discrete numbers, the convolution is performed as

shown below:

()()

3 3

1 1

so s o
xy ij x i y j

i j
L G I − −

= =

= ∑∑ (3)

b) DoG computation: The difference between soL of two consecutive scale
levels, s1 and s2, provides a corresponding DoG 21s oD , as shown below:

21 2 1s o s o s o
xy xy xyD L L= − (4)

This operation can be merged as shown in Equation (5) eliminating one mul-
tiplication per pixel in oI .

()21 2 1 *s o s s o
xy ij ij xyD G G I= − (5)

c) Scaling: Once 21s oD for all scales of an octave are computed, the last soL
is scaled down by 2 to obtain 1oI + .

d) Pyramid construction: The steps (a), (b) and (c) are executed for 1oI + to
obtain 2oI + and so on. This whole process is repeated till a preset octave level is
obtained. For the purpose of this paper o = 4 and s = 4, is used based on the dis-
cussions in [1].

e) Extrema detection: Since s is set to four, in each octave, there are three DoG

R. R. P. Kumar et al.

23

images. For every DoG image in an octave, the maxima and minima are detected
by comparing a pixel (indicated by a triangle) to its twenty six neighbors com-
prising of 3 × 3 × 3 region at the current and adjacent scales (indicated by circles)
as shown in Figure 3.

f) Low contrast keypoint elimination: The extrema detection provides a set of
CKs that include points having low contrast or are poorly localized along an
edge, and hence are considered unstable [1]. To eliminate low contrast CKs, an
evaluation of CKs’ contrast with respect to its neighboring points needs to be
determined. This is done by fitting a 3D quadratic function to the CK as de-
scribed in [1] [22]. The 3D quadratic function is given by:

()
T 2

T
2

1
2

D DD D ∂ ∂ Χ = + Χ + Χ Χ ∂Χ ∂Χ 
 (6)

where,

[]Tx y σΧ = ,
21s o

xyD D∈ ,

D D D D
x y σ

 ∂ ∂ ∂ ∂
=  ∂Χ ∂ ∂ ∂ 

,

2 2 2

2

2 2 2 2

2 2

2 2 2

2

D D D
x y xx

D D D D
x y yy

D D D
x y

σ

σ

σ σ σ

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂ ∂

=  
∂ ∂ ∂ ∂∂Χ ∂ 

 ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ 

Since the image values are discrete numbers, the derivatives have to be com-
puted numerically. Equations (7)-(9) provide the finite difference method to cal-

culate the partial derivatives
2

2,D D
x x

∂ ∂
∂ ∂

 and
2D
x y
∂
∂ ∂

 respectively. The (), ,x y σ

are cyclic, and hence can be swapped in Equations (7)-(9) to obtain other deriva-
tives:

Figure 3. Extrema detection example for a pixel.

R. R. P. Kumar et al.

24

()() ()()1 1 or so so so so
xy xyx y x y

D L L L L
x − +

∂
= − −

∂
 (7)

() ()

2

1 12 2so so so
xyx y x y

D L L L
x + −

∂
= + −

∂
 (8)

()() () () () () ()()
2

1 1 1 1 1 1 1 12

2

so so so so so so so
xyx y x y x y x y x y x yL L L L L L LD

x y
+ + + + − − − −− − + − − +∂

=
∂ ∂

 (9)

The contrast ()()ˆD Χ of the CK w.r.t. neighboring pixels is evaluated by
calculating the function value at the extremum position ()Χ̂ as shown in Equ-
ations (10)-(11):

()
T1ˆ ˆ

2
DD D ∂ Χ = + Χ ∂Χ 

 (10)

12

2
ˆ D D

−
 ∂ ∂

Χ = −  ∂Χ∂Χ 
 (11)

The CKs are considered low contrast if they satisfy the inequality shown in
Equation (12) and are discarded.

()ˆ 0.03D Χ < (12)

g) Edge keypoint elimination: The DoG has a strong edge response, i.e., points
on an edge is detected as an extrema. This is due to the principal curvature val-
ues for DoG tend to be higher along an edge. However, the principal curvature
value for DoG along the perpendicular direction of an edge is low in magnitude.
This property is used to eliminate the CKs that are a part of the edge. The eigen
values of the Hessian matrix ()H computed on D, as shown in Equation (13),
are proportional to the principal curvature values.

2 2

2

2 2

2

D D
x yx

H
D D

x y y

 ∂ ∂
 ∂ ∂∂ =
 ∂ ∂
 
∂ ∂ ∂  

 (13)

Therefore, the ratio ()r of the maximum eigen value ()α to the minimum
eigen value ()β can be used to determine whether a CK belongs to an edge.
Using the relationship between trace ()Tr and determinant ()Det w.r.t the
eigen values, as listed in Equations (14), (15), the candidate keypoint must satisfy
the constraint as seen in Equation (16) to qualify as a keypoint.

()Tr H α β= + (14)

()Det H αβ= (15)

()
()

()2 21
Det
Tr H r

H r
+

< (16)

As described in [1], r = 10 serves as a good value to eliminate edge points.

R. R. P. Kumar et al.

25

h) Orientation assignment: The keypoints can be described relative to local
orientation of its neighboring pixels rendering them invariant to image rotation.
The orientation is assigned by calculating two parameters a) gradient magnitude
()m and b) gradient orientation ()θ . For a given keypoint (),x y , orientation
is assigned as follows:

() ()() () ()()2 2

1 1 1 1
so so so so

xy x y x y x y x ym L L L L+ − + −= − + − (17)

() ()

() ()

1 11

1 1

tan
so so
x y x y

xy so so
x y x y

L L

L L
θ + −−

+ −

 −
 =
 − 

 (18)

A descriptor is generated using this orientation by constructing a histogram of
orientations of sample points around the keypoints. Each sample point added to
the histogram is weighted by its gradient magnitude and Gaussian-weighted
circular window proportional to the σ of the keypoint scale. This generates a
vector of values termed as keypoint descriptor. The keypoint descriptor is the
scale, orientation, and location invariant data set obtained as the output of SIFT
algorithm.

From an implementation perspective, steps (a), (b), (e), (f), (g) and (h) involve
arithmetic computations, while steps (c) and (e) involve assignment and com-
parison operations. Since, assignment involves a memory write, requiring more
cycles than a single floating point operation, every write in step (c) is considered
as one computation for the purpose of this paper. Steps (e) - (h) are dependent
on the number of CKs and keypoints computed in an image. On a per keypoint
basis, the number of computations involved for steps (e) - (h) are in the order of
hundreds. Steps (a) - (c) have large number of computations, independent of the
CKs and keypoints generated. Since, the number of CKs and keypoints com-
puted are fewer in number, steps (a) - (c) form a significant overhead compared
to steps (e) - (h). The computations involved in steps (a) - (c) are shown in Table
1 for a standard high definition image with resolution of 1 1080m = , 1 1920n =
at octave level 1. From the table, the computational complexity for steps (a) - (c)

can be formulated as ()()
4

1 1

1
432 18 2 2o o o o

o
m n m n+ +

=

+ − − +∑ . If the steps (a) - (d)

generate k keypoints, then computations for (e) - (h) are ()100kΟ . Hence, the
computations shown in Table 1 indicate that our parallelization should focus
more on steps (a) - (c).

Table 1. Step-wise computations for SSED for octave level 1.

Step Computational Complexity Computations

a ()()108 17 2 2o om n+ − − 35149376

b ()()2 2o om n− − 2067604

c 1 1o om n+ + 518400

R. R. P. Kumar et al.

26

4. Compute Unified Device Architecture

General-Purpose Computing on GPU (GPGPU) is a new parallelization domain
to accelerate scientific and engineering computations in vision algorithms [23].
NVIDIA’s CUDA is the earliest and most widely adopted programming model
for GPGPU [24]. Since the beginning of parallelization on GPGPU, NVIDIA has
introduced several GPU architectures to improve the performance of parallelized
programs. An overview of the three common features of GPU architecture namely
thread, memory and execution hierarchies [25], are provided below.

GPU thread hierarchy is characterized by three parts namely the grid, block
()B and thread ()T . Each grid contains 1D, 2D or 3D arrangement of blocks
and each block contains 1D, 2D or 3D arrangement of threads. The number of
threads per block cannot vary across blocks. Hence the total number of threads
spawned is the product of total blocks and threads per block.

GPU memory hierarchy has three classifications namely the register ()ρ ,
shared ()ψ and global memories. The memory hierarchy and its accessibility
with respect to threads and blocks are shown in Figure 4.

Figure 4. NVIDIA’s representation of grids, blocks, and threads their memory
accessibility.

R. R. P. Kumar et al.

27

Each thread within a block has access to private register memory, and all the
threads within a single block have access to the shared memory, through which
they share data. The threads distributed across multiple blocks have access to glo-
bal memory, but sharing or visibility of modified data across blocks is not guar-
anteed. The memory access latency increases non-linearly from register memory
to global memory thereby an excessive use of global memory leads to computa-
tional penalties. However, the amount of memory also decreases non-linearly
from global to register memory. Furthermore, it is possible to achieve efficient
memory bandwidth usage if the data on global memory is arranged for coalesced
access.

In addition to the above three types of memories, there are two additional
read-only memory types accessible by all threads known as constant and texture
memories. The constant and texture are GPU memories that are cached and op-
timized for read access. While the constant memory is optimized to access data
elements of limited size, the texture memory is optimized for scattered access of
large data.

The instruction execution hierarchy of GPUs consists of a set of streaming
multiprocessors (SMs) with each SM containing multiple execution cores ()C .
Based on the number of cores, each SM can concurrently execute a limited num-
ber of threads known as a warp ()w . The warp organization represents the Sin-
gle Instruction Multiple Threads (SIMT) architecture. Hence, combining the
number of warps per SM and the number of SMs per GPU, increases compute
parallelization and effective utilization of memory bandwidth. However, due to
SIMT architecture, SM executes instructions with a granularity of a warp, i.e.; all
threads within a warp execute the same instruction ()ϕ . However, conditional
flows due to the nature of the algorithm may introduce conditional branches
within a single warp contributing to the increase in computation time.

The scalability of CUDA lies in the execution model. While blocks and threads
form the partitioning of workload, the execution model provides a feature to map
the threads to SMs. Based on the number of blocks and threads per block, a
scheduler allocates one or more blocks to each SM. The number of blocks that
can execute concurrently on a SM is based on the number of warps that can con-
currently execute on the SM which, in turn, is based on the amount of maximum
warps supported by the SM, and the amount of shared and register memory re-
quired by a block. As the memory requirement per block increases, the number of
warps that can concurrently execute on a SM decreases. An SM is said to be at
maximum efficiency if the number of warps concurrently executing is equal to
maximum warps supported by the SM.

Like any other machine, GPUs also have constraints. Each SM, B, T and w have
its own constraints. For example, each SM has a constraint on maximum active
blocks (currently executing blocks), maximum block allocation, maximum active
warps, maximum executing threads, etc. Similar constraints apply to B, T and w.

R. R. P. Kumar et al.

28

Constraints, for the purpose of this paper, are represented symbolically as a func-
tion shown below:

(), ,η α β γ δ= (19)

where α represents the variable to which the constraint applies, β represents the
scope of the α variable, γ represents the type of restriction imposed on α and δ is
the output that provides the numerical value of the restriction. γ can take the fol-
lowing values listed in the Table 2 below.

Table 3 summarizes all the thread and execution hierarchy based constraint
functions:

Table 2. List of restrictions imposed on constraint functions.

Description Symbol

Minimum allocation or allocation granularity ∨

Maximum allocation ∧

Allocation limited by algorithm input or user χ

Allocation restricted by maximum warps wχ

Allocation restricted by shared memory available ψχ

Allocation restricted by register memory available ρχ

Table 3. List of execution hierarchy based constraint functions.

Description Function

Maximum SMs per GPU (), ,SM GPUη ∧

Allocated blocks per GPU (), ,B GPUη χ

Maximum active blocks per SM (), ,B SMη ∧

Maximum warps per SM (), ,w SMη ∧

Maximum active threads per SM (), ,T SMη ∧

Allocated blocks per SM (), ,B SMη χ

Allocated warps per SM (), ,w SMη χ

Allocated warps per SM based on wχ (), , ww SMη χ

Allocated warps per SM based on σχ (), ,w SM ψη χ

Allocated warps per SM based on ρχ (), ,w SM ρη χ

Maximum threads per block (), ,T Bη ∧

Allocated warps per block (), ,w Bη χ

Allocated threads per block (), ,T Bη χ

Maximum threads per warp (), ,T wη ∧

Allocated Operations per thread (), ,Tη ϕ χ

R. R. P. Kumar et al.

29

Similar to SM, B, T and w, the memory is also subjected to constraints. Table 4
summarizes all the memory hierarchy based constraint functions:

5. Parallelization

There have been a number of GPU parallelization strategies that have been pro-
posed over the last few years. A few relevant to SIFT are presented in [26]-[34].
While [26] [27] focus on parallelization strategies for stencil codes similar to
SIFT, [28]-[34] focus on implementation specific strategies for parallelization.
None of the articles provide algorithm design strategies, as we propose in this
paper, to utilize the benefits of GPU architecture for parallelization.

The parallelization strategies, proposed in this paper, are divided into two
phases for separating SIFT and GPU related parallelization strategies. The algo-
rithm design phase strategies focus on parallelizing SIFT based on data size, data
usage, and data organization. The implementation design phase strategies focus
on how the parallelized SIFT design can achieve maximum execution efficiency
on a GPU. The remainder of this section focuses on the description of the two
phases and their application on SIFT.

The algorithm design phase strategies involve parallelization techniques based
on three guidelines.

a) Reduce: As seen in [35], the bottleneck of algorithm execution is always
found to be the memory accesses-read and write operations. The memory opera-
tions require higher time reducing the performance of the algorithm. Hence, the
higher the number of memory operations, the lower the performance of the al-
gorithm. However, not all algorithms’ performance is bound by memory. This is
because algorithms may have a lot more computations than memory operations.
In order to differentiate memory bound algorithms, a ratio, termed as computa-
tional intensity (CI), is defined as the number of floating point computations
performed for each memory operation. This provides a measure to understand
the impact of memory operations on algorithms. It is given by

Table 4. List of memory hierarchy based constraint functions.

Description Function

Maximum shared memory per SM (), ,SMη ψ ∧

Maximum registers per SM (), ,SMη ρ ∧

Allocated registers per SM (), ,SMη ρ χ

Maximum shared memory per block (), ,Bη ψ ∧

Allocated shared memory per block (), ,Bη ψ χ

Minimum granularity of shared memory allocation per block (), ,Bη ψ ∨

Minimum granularity of register memory allocation per warp (), ,wη ρ ∨

Maximum registers per thread (), ,Tη ρ ∧

Allocated registers per thread (), ,Tη ρ χ

R. R. P. Kumar et al.

30

Number of floating point computationsCI
Number of memory operations

= (20)

The CI determines if an algorithm is memory or compute bound. If the ratio
is less than 1, then it is said to be memory bound. For CI 0 , the algorithm
tends to become compute bound.

The reduce guideline states that for a memory bound algorithm, the number
of memory operations should be reduced to increase CI. In other words, for
every floating point operation, the number of memory operations should be mi-
nimized. This can be achieved either by a) computing values rather than loading
or b) reducing memory latency by grouping algorithm’s data. While (a) replaces
the memory operations with floating point computations, (b) groups floating
point operations such that they operate on common memory elements.

The SIFT algorithm, inferring from steps (a) - (c) and (e) - (g) in section III, is
a memory bound algorithm. For example, step (e) alone in section III requires
27 loads for detecting extrema.

b) Reuse: Commonly known as cache blocking, this guideline states that reu-
sability of memory elements should be maximized, i.e., a memory element
loaded should not have to be reloaded during any part of the execution. This can
be achieved by grouping algorithmic operations such that all computations asso-
ciated with a memory element are performed together.

The SIFT algorithm has high data reusability. For example, step (c) seen in
section III shows that 25% of the image data is re-used for every octave.

c) Re-arrange: Scattered memory operations result in poor utilization of
memory bandwidth. This guideline recommends rearranging instructions and
data to avoid branching of execution and increase memory bandwidth usage re-
spectively.

SIFT algorithm is observed to have both branching and scattered data access.
For example, while step (d) in section III requires twenty six comparisons, lead-
ing to branching, step (d) scatters data elements for an increase in octave level.

These guidelines are not rigid rules but rather provide a methodology to par-
allelize programs. The SSED parallelization, steps (a) - (e) in section III has been
parallelized in our previous work-in-progress publication [21]. However, the
adoption of guidelines has improved upon the parallelization strategies as shown
below:

a) SSED provides a pyramid structure as shown previously in Figure 2. The
pyramid structure emphasizes the dependency that exists between each octave. If
the pixels in the lower most octave are considered as granularity of paralleliza-
tion, it provides huge parallelization for threads to work. However, it also in-
creases dependency across threads for each increment in octave level. This vi-
olates the guidelines by increasing memory operations, reloading similar mem-
ory elements and having scattered accesses. It has been observed through our
simulations that this significantly deteriorates performance, especially for ultra-

R. R. P. Kumar et al.

31

high resolution images. Adhering to our guidelines, we propose top-down ap-
proach for parallelization of SSED; we group data based on the top DoG image
in the highest octave. To determine if 21s o

xyD at the highest octave and scale is
an extrema, it has to be compared to eight neighboring pixels of the same scale,
and eighteen neighboring pixels of adjacent scales within the same octave level.
Adopting reduce guideline, all scales within an octave can be computed simul-
taneously. Therefore SSED would require loading nine elements-eight neigh-
boring pixels and the 21s o

xyD itself. Adopting the reuse guideline-instead of re-
loading the elements for each octave, reusing these elements across octave is
recommended. However, data dependency between neighboring pixels from a
lower octave level is observed, i.e., in order to retain the eight neighboring pixels
in the current octave, thirty six data neighboring pixels are required from the
previous octave. Similarly, dropping down to lower octave levels, a fourfold in-
crease in data elements is observed as shown in Figure 5. With o = 4, this would
be 24 × 24. Adopting the re-arrange and reduce guideline, if threads can be
grouped to share data, then the neighboring elements are grouped together to
have common elements.

b) Next, finding the minima/maxima requires twenty six comparisons. The
twenty six comparisons at every octave level results in divergence between the
threads belonging to the same warp. This will prevent concurrent execution of
threads in a warp [36] and hence increases the computational time. Hence,
adopting the re-arrange guideline, the twenty six comparisons are replaced with
a single comparison reducing the multiple divergences to a single divergence.
Consider a pixel a N∈ which needs to be compared with twenty six other pix-
els represented as xa , where 1, 2, , 26x =  and xa N∈ . To check whether
a is maxima or minima, the two factors given in Equations (7), (8) are com-
puted:

26

x
x

a
a

α
 
 =  
  
∏

 (21)

26

x
x

a

a
β

 
 =  
  

∏
 (22)

Next, If α > 0 and β = 0 then a is the local maxima and if β > 0 and α = 0
then a is the local minima.

c) Since the extrema detection can yield either a selection of candidate key-
point or rejection of pixels, the execution has to proceed only with CKs. This
leads to load imbalance which can significantly impact performance on a SIMT
architecture which executes at warp granularity. Therefore, to avoid load imbal-
ance between threads, it is recommended to synchronize the execution after ob-
taining CKs.

R. R. P. Kumar et al.

32

Figure 5. Top down view of number of data elements needed to compute the extrema for
three octave levels.

d) The synchronization forces re-load of data elements on memory. Since the

CKs are scattered, the computations on the CKs have poor memory bandwidth
utilization due to scattered memory operations. This leads to performance dete-
rioration. Adopting the re-arrange guideline, all CKs along with their neighbor-
ing pixels needed to compute partial derivatives and hessian matrix are merged

R. R. P. Kumar et al.

33

together into a new matrix structure, eliminating all irrelevant data. The organi-
zation of the new matrix structure can vary based on the underlying architecture
support. For example, if the underlying architecture supports interleaved mem-
ory accesses between thread, similar to GPU SIMT architecture, the elements
can be arranged in an interleaved fashion, i.e., first data element accessed by
every thread are grouped together followed by second element used by all threads
and so on. If the underlying architecture supports consecutive memory accesses
per thread, similar to CPU SIMD architecture, then all elements used by single
thread are grouped together. A map between the new data layout and the origi-
nal image is retained to re-map the descriptors back to original image.

Since there are no dependencies observed in steps (e) - (h) described in sec-
tion III, the computation at hand is embarrassingly parallel with respect to each
keypoint. Moreover, each keypoint requires no more than 8 neighboring pixels
for all computations through steps (e) - (h) per scale per octave leading to a high
CI.

As mentioned earlier, this algorithm design phase facilitates for parallelization
of SIFT algorithm across architectures. The second phase of parallelization in-
volves implementation design parallelization strategies. There are several differ-
ent approaches to designing parallelization strategies for GPU. Two popular ap-
proaches, as seen in [26]-[34], are a) Maximizing occupancy and b) Maximizing
memory bandwidth. Our approach for implementation design phase is max-
imizing occupancy as opposed to maximizing memory bandwidth. This is be-
cause our approach to eliminating memory bottlenecks at algorithm design
phase complements a maximizing occupancy in implementation phase.

There are few research publications, such as [37], which conclude that occu-
pancy is not a measure of effective utilization of GPU resources. The work con-
ducted in [37] shows that the author pursued maximizing occupancy alone,
without considering other dependent resources that are affected by increasing
occupancy. Moreover, the results in [37] show that good performance can be
achieved at lower occupancy. However, no proof has been provided to show in-
creasing occupancy lowers performance either in [37] or any other publications.

The usual approach to maximizing occupancy on GPUs is to profile the code,
and then add modifications such as increase the number of threads, or decrease
the memory being used. Our approach to maximizing occupancy differs with
others because we adopt a mathematical approach to maximize occupancy. Un-
like the usual approach, the mathematical model connects occupancy with warps,
shared memory, register memory, blocks and threads creating a multi-dependency
model. Therefore, we do not set occupancy to maximum value and then com-
pute the other dependencies; rather we try to calculate maximum achievable oc-
cupancy while tuning other dependencies. The idea is to combine optimization
techniques to the underlying architecture mathematically, so as to obtain a near
optimal implementation.

R. R. P. Kumar et al.

34

The two guidelines for implementation design guidelines:
a) Select threads per block to maximize occupancy: GPUs can spawn huge

number of threads—a minimum of one thread per block to a maximum of
(), ,T Bη ∧ threads per block. Consider (), ,w SMη ∧ which dictates the maxi-

mum active threads per SM () (), , , ,T SM C T wη η=∧ ∧ . Occupancy ()ζ is the
ratio of the number of warps executing on an SM ((), ,w SMη χ), to the maxi-
mum number of warps that can execute on a SM ((), ,w SMη ∧) as shown be-
low:

()
()

, ,
, ,

w SM
w SM

η χ
ζ

η
=

∧
 (23)

The (), ,w SMη χ is constrained by three parameters, namely, the wχ , ψχ
and ρχ . Since (), ,w SMη χ is constrained, its value of is calculated by:

() () () ()(), , min , , , , , , , ,ww SM w SM w SM w SMψ ρη χ η χ η χ η χ= (24)

(), , ww SMη χ depends on the limitation of warps per SM and the maximum
active blocks per SM as observed in NVIDIA’s documentation. (), , ww SMη χ
is decided as the minimum of two values: a) The number of warps needed to ex-
ecute the allocated blocks and b) Maximum warps on a SM. It is computed using
the Equation (25) below:

() ()
() () ()

, ,
, , min , , , , ,

, ,w

w SM
w SM w B w SM

w B
η

η χ η χ η
η χ

  
=       

∧
∧ (25)

where,

() ()
()

, ,
, ,

, ,
T B

w B
T w

η χ
η χ

η
 

=  
  ∧

 (26)

Equation (25) calculates number of warps allocated based on the allocated
blocks using threads per block and the number of threads per warp.

(), ,w SM ψη χ is the number of warps that can be allocated based on the
shared memory required by the program and its availability per SM. Hence it is
calculated using two values a) Shared memory available per SM and b) amount
of shared memory needed per block as shown below:

() ()
() ()()

, ,
, ,

ceil , , , , ,
SM

w SM
B Bψ

η ψ
η χ

η ψ χ η ψ

 
=  
  

∧

∧
 (27)

Due to hardware constraints, shared memory has allocation granularity, i.e.,
the allocation of shared memory is always an integral multiple of (), ,Bη ψ ∨ .
The ceil function rounds the first argument to the immediate next multiple of
the second argument. In Equation (27), the allocation of shared memory per
block is rounded to allocation granularity using ceil function.

Similarly, (), ,w SM ρη χ is the number of warps that can be allocated based
on the registers needed by the algorithm and its availability per SM. It is calcu-

R. R. P. Kumar et al.

35

lated as shown below:

() ()
() ()

, ,
, , , ,

, ,
SM

w SM w B
w Bρ

η ρ χ
η χ η χ

η χ
 

=  
  

 (28)

where,

() ()
() () ()()

, ,
, ,

ceil , , , , , , ,
SM

SM
T T w w
η ρ

η ρ χ
η ρ χ η η ρ

 
=  
  

∧

∧ ∨
 (29)

As derived from NVIDIA documentation and seen in Equations (28), (29), the
number of warps allocated based on registers depends on the registers allocated
per thread, number of warps allocated per block and allocation granularity of
register memory.

In the equations listed to calculate (), , ww SMη χ , (), ,w SM ψη χ and

(), ,w SM ρη χ , the only unknown is (), ,T Bη χ . The rest of the values are avail-
able as calculated in algorithm design phase, i.e., (), ,Bη ψ χ and (), ,Tη ρ χ
can be calculated by algorithm’s design. (), ,T Bη χ is chosen such that 1ζ → .
This provides a range of (), ,T Bη χ values that can be used.

b) Select blocks to maximize occupancy: The blocks on a GPU tend to in-
crease the number of floating point operations performed rather than hide the
memory latency. Hence choosing higher blocks improves compute bound algo-
rithms performance. The feasible blocks is calculated using:

()
() ()()

,GPU,
min , , , , ,

NB
T B N B

η χ
η χ η χ

= (30)

where, N represents the total number of data elements. Since SIFT is a memory
bound algorithm, we only focus on the scenario when CI < 1. If CI < 1 then se-
lecting (), ,T Bη χ with the highest value, and its corresponding (),GPU,Bη χ
would provide better performance as increased threads per block promote me-
mory latency hiding.

The above guidelines are based on the assumption that the total number of
data points () (),GPU, , ,N B T Bη χ η χ≤ . If otherwise, it is recommended to
increase (), ,Tη ϕ χ till Equation (31) provides blocks and threads within GPU
constraints.

() () ()
,GPU,

, , , ,
NB

T B T
η χ

η χ η ϕ χ
= (31)

The two guidelines in the implementation design phase provide the exact
thread and block numbers that maximizes performance on GPU. Since the cal-
culations depend on the GPU used, image resolution and the number of key-
points generated, its calculation for the entire SIFT is not demonstrated in the
paper. However, calculations of thread and block numbers for SSED are demon-
strated for a 720 p resolution greyscale image on C2075 Tesla architecture GPU.

The algorithm design phase demonstrated that for o = 4, each thread would

R. R. P. Kumar et al.

36

need to handle 24 × 24 data elements. Assuming four bytes per data element,
this would require 2,304 bytes of memory for one thread. However, since we
used the reduce guideline, each neighboring element can be processed by a
thread sharing memory with an additional 768 bytes of data. For C2075,

(), , 16128 bytesBη ψ =∧ (32)

Therefore,

()2304 , , 16128Bη ψ χ≤ ≤ (33)

can be rewritten as,

(), , 2304 768, 0,1, 2, ,18B i iη ψ χ = + × =  (34)

The code implementation showed the requirement of 8 registers per thread,
each of size 32 bytes. Hence,

(), , 256 bytesTη ρ χ = (35)

Using Equations (32), (34), (35) along with C2075 architectural specifications,
we can calculate Equations (25), (27), (28). Plugging in the results back to Equa-
tion (24) and Equation (23), it is seen that (), ,w SM ψη χ is the limiting factor
for ζ. It is observed that ζ is maximum when ()2304 , , 6144Bη ψ χ≤ ≤ . Since
this is a memory bound problem, memory latency hiding is preferred. To hide
memory latency, higher number of elements per block is preferred. Therefore
the configuration with 6144 memory bytes supporting 6 data elements per block
is chosen. Hence, (), ,T Bη χ is chosen to be 256. The blocks are calculated to
be 2400 using Equation (30), where, for 4, 14,400o N= = elements.

6. Performance

The research work of Heymann et al., on parallelization of the SIFT algorithm [3]
has shown that the SSED stage computations are the major computational and
memory bottlenecks in the SIFT algorithm. Feng et al. has shown that 40% - 60%
of the total computational burden [8] is encountered in performing the SSED.

Moreover, performance analysis and comparison of parallelized SIFT algo-
rithm is challenging. A brief overview of the complexity behind analysis and
comparison with other parallel SIFT versions is provided below:

a) Image variation: The sizes of each image vary. Hence the workload varies
with a change in image resolution.

b) Number of CKs generated: Each image generates different CKs, varying in
number. This leads different workload for each image.

c) Trading accuracy for performance: Dropping accuracy, i.e., not all key-
points are generated, can significantly boost the performance of parallel SIFT
algorithm. For example, dropping precision model, using fast math libraries, lo-
wering the number of octaves and scales in SSED can improve the performance
but generate lower number of keypoints. It may also contain false keypoints that
are not produced by Lowe’s SIFT algorithm. Therefore, a given image can gen-

R. R. P. Kumar et al.

37

erate different number of keypoints.
d) Architecture and algorithmic constraints: SIFT has been a popular algo-

rithm for over a decade. This has led to many different versions of the algorithm.
The implementation of SIFT algorithms on NVIDIA GPGPUs were after 2008.
Over the years the GPGPU have changed their architecture significantly. There-
fore, obtaining the performance benchmark of parallelized Lowe’s SIFT algo-
rithm on a given NVIDIA GPU architecture is very challenging.

Therefore, this section presents results for analysis and comparison of SIFT
algorithm in 4 phases:

1) Performance comparison of SSED: A sequential and parallel version of
Lowe’s SIFT algorithm was implemented on Matlab for comparing SSED per-
formance. This helps in assessing the speedup from an average sequential and
parallel program to our implementation

2) Performance analysis of SIFT-optimized for speed: For real time applica-
tions, it is essential for SIFT to perform within a duration. As discussed before,
trading accuracy for execution time, allows SIFT to execute faster but with less
accurate results. An analysis of the performance and accuracy of our GPU paral-
lel version of SIFT (PSIFT), compiled for speed, is presented.

3) Performance analysis of SIFT-tuned to generate accurate keypoints: For
certain real-time applications, speed and accuracy are both vital. This phase pro-
vides performance for PSIFT when tuned to provide accurate keypoints.

4) Effectiveness of Parallelized SIFT: GPU can spawn high number of threads.
Our approach of selecting thread numbers for optimizing occupancy needs to be
validated. Moreover, as mentioned before, it is challenging to find a parallel
Lowe’s SIFT algorithm benchmarked for an identical GPU. Therefore, using pa-
rallel profiling tools, the effectiveness of PSIFT is demonstrated by monitoring
the occupancy and cache misses on the GPU for the duration of execution of
PSIFT.

6.1. Phase 1

In order to compare the performance of our parallel implementation PSSED, we
implemented Matlab based sequential (MSSED) and parallel (MPSSED) versions
of the SSED. The MSSED version is implemented using standard Matlab func-
tions whereas the MPSSED version is implemented using the Matlab Parallel
Computing Toolbox (MPCT). The MPCT provides the capability to execute the
standard convolution functions on a GPU. The PSSED was coded using CUDA
C and executed on NVIDIA’s C2075 GPU card hosted on a workstation equipped
with Intel Xeon Phi Processor and 32 GBs of System RAM. The MSSED and
MPSSED both were executed on the same host. The average computational time
(ACT) for the PSSED, MSSED and MPSSED were collected with images of reso-
lution increasing from 720 p to 8 K. The average and standard deviation of the
measured computational time is determined by performing hundred trials of the

R. R. P. Kumar et al.

38

simulations.
In Figure 6, the MSSED ACT and the corresponding standard deviation (num-

bers on the graph) for each image resolution are shown.
The ACT for MSSED is less than a second for images with resolution less than

1080 P. Even at this low resolution, only two frames can be processed in a second
using the MSSED implementation. This high value of ACT makes the MSSED
implementation unsuitable for real-time applications. The MSSED ACT is com-
parable to that reported in the research work [3] by Heymann et al. In [3], the
ACT for a 640 × 480 resolution image was 312 msecs compared to 401 msecs for
a 1280 × 720 resolution image. Next, as the image resolution increases the ACT
increases tremendously. The ACT of MSSED can be reduced further by using
multiple cores of the Intel Xeon processor. It can be observed in Figure 6; the
standard deviation is very less.

In Figure 7, the MPSSED ACT and the corresponding standard deviation for
each image resolution are shown. Based on the ACT, the MPSSED is capable of
processing 720 p and 1080 p images in real time.

In Figure 8, the PSSED ACT and the corresponding standard deviation for
each image resolution are shown.

With PSSED implementation, the ACT is less than 16 msecs even with the 8
K-resolution image. This is comparable ACT of the convolution of 9 K-resolution
images using GPUs, described in [40] to be 10 msecs. The low ACT would allow

Figure 6. MSSED ACT with varying image resolutions.

R. R. P. Kumar et al.

39

Figure 7. MPSSED ACT with varying image resolutions.

Figure 8. PSSED ACT with varying image resolutions.

R. R. P. Kumar et al.

40

processing of the 8 K resolution images at 60 fps making the PSSED implemen-
tation suitable for real-time applications. In the research work [12] it has been
shown with homogenous multi-core DSP implementation a processing rate of 45
fps of 640 × 480 resolution images is achievable.

In Figure 9, the speedup of PSSED over MSSED and MPSSED are shown. The
speedup is found to vary from 592× to 829× and 78× to 143× over MSSED and
MPSSED respectively with increasing image resolutions. It is seen that the spee-
dup increases initially and reaches saturation. This is due to the finite amount of
memory and cores available on the GPU for concurrent execution. The opti-
mized CUDA C PSSED implementation performance is still significantly better
compared to the Matlab based GPU implementation of the SSED.

The test image used for comparing performance is shown in Figure 10, and
the corresponding final DoG image by PSSED is shown in Figure 11. Identical
DoG images are created by the MSSED, MPSSED and PSSED.

6.2. Phase 2

The ACT of PSIFT algorithm and its speed up w.r.t. sequential (SWS) Matlab
SIFT (SSIFT) is provided in Figure 12. The ACT for a 720 p image is nearly 2.5
msecs making SIFT a feasible algorithm for real time applications. However, the
ACT increases non-linearly with an increase in image resolution. The number of

Figure 9. Speedup of PSSED over MSSED and MPSSED.

R. R. P. Kumar et al.

41

Figure 10. Test image.

Figure 11. Final image obtained from PSSED.

image points increases with increasing image resolution causing code to execute
a block of points sequentially instead of parallel execution due to the unavaila-
bility of idle SMs. Therefore, it reduces the speed up w.r.t. SSIFT. The speed up
of PSIFT over SSIFT shown in Figure 12 is only for a set of 4 images of different
resolutions. A change in an image, leads to a change in CKs and keypoints,
leading to different workload.

Figure 13 shows the impact of keypoints on PSIFT’s performance for 720 p
resolution images. The keypoints, expressed in percentage in Figure 13, are
taken as a fraction of the total pixels of an image. As seen in Figure 13, the per-
formance of PSIFT scales linearly for an increase in keypoints. Once beyond a
threshold, 8% in case of Figure 13, the GPU has all SMs occupied. Hence, ex-
ecution of slices of code is delayed till SMs are available. This is observed in the
non-linear rise in ACT from 8% - 16% in Figure 13. Figure 13 also displays the
SWS, which are consistent up to 8%, and decrease thereafter.

R. R. P. Kumar et al.

42

Figure 12. PSIFT performance with varying image resolutions.

Figure 13. PSIFT performance for varying keypoints in 720 p image.

R. R. P. Kumar et al.

43

As mentioned before, phase 2 provides performance results of PSIFT tuned
for faster execution. This performance boost is achieved by lowering the accura-
cy of the SIFT algorithm. Figure 14 shows the accuracy of PSIFT in terms of the
percentage of matching keypoints generated in comparison to SSIFT, which is
adopted from Lowe’s algorithm. Figure 14 shows steep decrease in accuracy
with an increase in performance. However, 89% keypoints matching SSIFT for 8
k images is an acceptable number of keypoints.

6.3. Phase 3

Since the accuracy of results are lower in phase 2, it is necessary to compare
PSIFT optimized for ACT and PSIFT tuned for 100% accuracy. Figure 15 pro-
vides the SWS for the two approaches. It is evident that tuning PSIFT for accu-
racy does not scale well for higher resolution.

Figure 16 provides the SIFT descriptors generated for image. The figure
shows a number of keypoints are generated as an output for the SIFT algorithm.
It matches with the keypoints generated by SSIFT, verifying the accuracy.

6.4. Phase 4

In this phase, our approach to select the number of threads is analyzed. The op-
timal thread number for SSED is 256 threads. Figure 17 compares of perfor-
mance of SIFT with optimal threads with threads lower and higher than optimal

Figure 14. PSIFT accuracy for various image resolutions.

R. R. P. Kumar et al.

44

Figure 15. PSIFT accuracy for various image resolutions.

Figure 16. Descriptors generated by PSIFT.

R. R. P. Kumar et al.

45

Figure 17. Performance variation in PSIFT due to variation in threads.

values. It is seen that our approach provides the best performance of the five
cases. Lower threads fail to hide memory latency and hence have worse perfor-
mance. Higher threads hide memory latency as much as optimal case, but for
higher data sizes requires more memory than optimal case. Hence performance
deteriorates as seen in Figure 17.

With no parameters for comparison, it is difficult to compare the effectiveness
of parallelization approaches without having the same algorithm, device, and
dataset. BSC has developed parallel program profiling tools that help analyze
parallelization strategies and performance of the program. Two such tools are
Extrae and Folding. Extrae is for collecting raw performance data from execu-
tion of software. Extrae allows parallel program developers to instrument the
code to collect statistics on PAPI [39] counters to track resources within a GPU.
However, doing so for a single thread does not provide insight for parallelization
strategies. Therefore, the data is collected for 1000 sample runs of SIFT for 128
threads spread across different SMs. The counters are read periodically, and data
is generated based on the counter. The folding tool helps merge the 1000 sam-
ples across 128 threads to provide an average view of execution on GPU. The
smoother the curve folding generates, the better the reproducibility of the pro-
gram. For PSIFT, PAPI counters for MIPS and LCM were monitored on a K20X
GPU card. Readings were obtained from the counter for every 1 usecs, and the
results are presented in Figure 18. It is seen that for the first 30% of the execution

R. R. P. Kumar et al.

46

Figure 18. PSIFT GPU resource utilization.

time, the MIPS are high while LCM is lower than 2% except for the initial load.
This marks the SSED phase where data is pre-fetched by the compiler reducing
LCM and increasing MIPS. During the data rearrangement phase, the MIPS are
cut down by 50%. The LCM during this phase is observed to be between 0% - 15%
indicating scattered memory access. This phase lasts till 85% of the execution
time, followed by the keypoint localization and descriptor generation, which are
similar to SSED. The plot shows that the GPU MIPS is high throughout the ex-
ecution of the algorithm, indicating that our parallelization strategy is effective.

7. Conclusions and Future Work

This paper demonstrates a new two-phase parallelization approach used to im-
plement the SIFT algorithm. Our approach to the two-phase parallelization has
an algorithm design phase—where parallelization strategies are based on data
size, usage and organization, and an implementation design phase—where pa-
rallelization strategies are based on achieving maximum execution efficiency on
a GPU. The algorithm design phase involves reduction in data usage and com-
putations, reusing image data points to maximize cache blocking and, rearrang-
ing data to facilitate faster memory operations. The implementation design phase
maximizes occupancy by adopting a mathematical model that connects occu-
pancy with warps, shared memory, register memory, blocks, and threads. This
model is then solved to get a range of GPU parameters such as number of blocks

R. R. P. Kumar et al.

47

and threads.
The performance of the parallelized SIFT thus obtained is presented, com-

pared and analyzed. The following observations were made:
a) PSIFT performs better than the sequential and parallel Matlab implementa-

tions.
b) Accuracy of the SIFT algorithm, in terms of number of keypoints generated,

can be traded to obtain lower execution time.
c) PSIFT can process high-resolution images under 25 msecs when optimized

for low execution time.
d) The number of keypoints in a given image has a significant impact on the

execution time of PSIFT.
e) The implementation design phase strategies provided the optimal number

of threads and blocks for PSIFT.
f) The two-phase parallelization strategies did show effective use of GPU re-

sources.
Our approach to parallelization facilitates SIFT algorithm to be used for pro-

cessing high-resolution images in real time. The future work would be to pro-
vide a multi-GPU implementation.

References
[1] Lowe, D.G. (1999) Object Recognition from Local Scale-Invariant Features. The

Proceedings of the Seventh IEEE International Conference on Computer Vision, 2,
1150-1157. https://doi.org/10.1109/ICCV.1999.790410

[2] Skrypnyk, I. and Lowe, D.G. (2004) Scene Modelling, Recognition and Tracking
with Invariant Image Features. Third IEEE and ACM International Symposium on
Mixed and Augmented Reality, 110-119. https://doi.org/10.1109/ISMAR.2004.53

[3] Heymann, S., Muller, K., Smolic, A., Frohlich, B. and Wiegand, T. (2007) SIFT Im-
plementation and Optimization for General-Purpose GPU. Proceedings of the In-
ternational Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision, 144.

[4] Li, L.Y., Tong, X.H., Jin, Y.M., Chen, P., Liu, S.J. and Hong, Z.H. (2012) Bundle
Adjustment of High Resolution Stereo Camera on Mars Express. Second Interna-
tional Workshop on Earth Observation and Remote Sensing Applications, 243-245.
https://doi.org/10.1109/EORSA.2012.6261174

[5] Yu, X.P., Liu, T., Li, P.X. and Huang, G.M. (2011) The Application of Improved
SIFT Algorithm in High Resolution SAR Image Matching in Mountain Areas. In-
ternational Symposium on Image and Data Fusion, 1-4.

[6] Chen, K., Lin, C., Chiu, T., Chen, M. and Hung, Y. (2011) Multi-Resolution Design
for Large-Scale and High-Resolution Monitoring. IEEE Transactions on Multime-
dia, 13, 1256-1268. https://doi.org/10.1109/TMM.2011.2165055

[7] Turner, D., Lucieer, A. and Watson, C. (2012) An Automated Technique for Gene-
rating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle
(UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote
Sensing, 4, 1392-1410. https://doi.org/10.3390/rs4051392

[8] Feng, H., Li, E., Chen, Y. and Zhang, Y. (2008) Parallelization and Characterization

https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ISMAR.2004.53
https://doi.org/10.1109/EORSA.2012.6261174
https://doi.org/10.1109/TMM.2011.2165055
https://doi.org/10.3390/rs4051392

R. R. P. Kumar et al.

48

of SIFT on Multi-Core Systems. IEEE International Symposium on Workload Cha-
racterization, 14-23.

[9] Feng, L., Xu, T., Huang, Q., Wang, X. and Wang, P. (2010) SIFT Implementation
Based on Parallel Computation. 6th International Conference on Wireless Commu-
nications Networking and Mobile Computing, 1-4.
https://doi.org/10.1109/wicom.2010.5600662

[10] NVIDIA Developer Forum (2015). https://developer.nvidia.com/search/gss/SIFT

[11] Warn, S., Emeneker, W. and Cothren, J. (2009) Accelerating SIFT on Parallel Ar-
chitectures. International Conference on Cluster Computing and Workshops.

[12] Liu, X., Chen, W.J., Ma, T. and Xu, L.S. (2011) Real-Time Algorithm for Sift Based
on Distributed Shared Memory Architecture with Homogeneous Multi-Core dsp.
2nd International Conference on Intelligent Control and Information Processing, 2,
839-843. https://doi.org/10.1109/icicip.2011.6008366

[13] Yao, L., Feng, H., Zhu, Y., Jiang, Z., Zhao, D. and Feng, W. (2009) An Architecture
of Optimised SIFT Feature Detection for an FPGA Implementation of an Image
Matcher. International Conference on Field-Programmable Technology, 30-37.
https://doi.org/10.1109/fpt.2009.5377651

[14] Kim, J., Park, E., Cui, X., Kim, H. and Gruver, W.A. (2009) A Fast Feature Extrac-
tion in Object Recognition Using Parallel Processing on CPU and GPU. IEEE In-
ternational Conference on Systems, Man and Cybernetics, 3842-3847.

[15] Jiang, G., Zhang, G. and Zhang, D. (2010) A Distributed Dynamic Parallel Algo-
rithm for SIFT Feature Extraction. 3rd International Symposium on Parallel Archi-
tectures, Algorithms and Programming, 381-385.
https://doi.org/10.1109/PAAP.2010.58

[16] Kang, S.H., Lee, S.J. and Park, I.K. (2014) Parallelization and Optimization of Fea-
ture Detection Algorithms on Embedded GPU. International Workshop on Ad-
vanced Image Technology, 108, 164-167.

[17] Huang, M. and Lai, C. (2014) Parallelizing Computer Vision Algorithms on Acce-
leration Technologies: A SIFT Case Study. IEEE China Summit & International
Conference on Signal and Information Processing, 325-329.

[18] Fassold, H. and Rosner, J. (2015) A Real-Time GPU Implementation of the SIFT
Algorithm for Large-Scale Video Analysis Tasks. SPIE/IS&T Electronic Imaging,
International Society for Optics and Photonics.

[19] Mohammadi, M.S. and Rezaeian, M. (2014) Towards Affordable Computing: Sift-
CU a Simple but Elegant GPU-Based Implementation of SIFT. International Journal
of Computer Applications, 90.

[20] Marinelli, M., Mancini, A. and Zingaretti, P. (2014) GPU Acceleration of Feature
Extraction and Matching Algorithms. IEEE/ASME 10th International Conference
on Mechatronic and Embedded Systems and Applications, 1-6.
https://doi.org/10.1109/mesa.2014.6935620

[21] Kumar, R.P., Muknahallipatna, S.S. and McInroy, J.E. (2014) SIFT’s Scale-Space
Extrema Detection on GPU for Real-Time Applications (WIP). Proceedings of the
2014 Summer Simulation Multiconference, 67.

[22] Brown, M. and Lowe, D.G. (2002) Invariant Features from Interest Point Groups.
Proceedings of the British Machine Vision Conference, 1.
https://doi.org/10.5244/c.16.23

[23] Fung, J. and Mann, S. (2004) Using Multiple Graphics Cards as a General Purpose

https://doi.org/10.1109/wicom.2010.5600662
https://developer.nvidia.com/search/gss/SIFT
https://doi.org/10.1109/icicip.2011.6008366
https://doi.org/10.1109/fpt.2009.5377651
https://doi.org/10.1109/PAAP.2010.58
https://doi.org/10.1109/mesa.2014.6935620
https://doi.org/10.5244/c.16.23

R. R. P. Kumar et al.

49

Parallel Computer: Applications to Computer Vision. Proceedings of the 17th In-
ternational Conference on Pattern Recognition, 1, 805-808.
https://doi.org/10.1109/ICPR.2004.1334339

[24] NVIDIA, NVIDIA CUDA. http://www.nvidia.com/object/cuda_home_new.html

[25] NVIDIA, NVIDIA CUDA C Programming Guide.
http://docs.nvidia.com/cuda/cuda-c-programming-guide

[26] Meng, J., Morozov, V.A., Vishwanath, V. and Kumaran, K. (2012) Dataflow-Driven
GPU Performance Projection for Multi-Kernel Transformations. Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, 82.

[27] Zhang, Y. and Mueller, F. (2012) Auto-Generation and Auto-Tuning of 3D Stencil
Codes on GPU Clusters. Proceedings of the Tenth International Symposium on
Code Generation and Optimization, 155-164.
https://doi.org/10.1145/2259016.2259037

[28] Meng, J. and Skadron, K. (2011) A Performance Study for Iterative Stencil Loops on
GPUs with Ghost Zone Optimizations. International Journal of Parallel Program-
ming, 39, 115-142. https://doi.org/10.1007/s10766-010-0142-5

[29] Unat, D., Cai, X. and Baden, S.B. (2011) Mint: Realizing CUDA Performance in 3D
Stencil Methods with Annotated C. Proceedings of the International Conference on
Supercomputing, 214-224. https://doi.org/10.1145/1995896.1995932

[30] Maruyama, N., Sato, K., Nomura, T. and Matsuoka, S. (2011) Physis: An Implicitly
Parallel Programming Model for Stencil Computations on Large-Scale GPU-Accele-
rated Supercomputers. International Conference for High Performance Computing,
Networking, Storage and Analysis, 1-12. https://doi.org/10.1145/2063384.2063398

[31] Stromme, A., Carlson, R. and Newhall, T. (2012) Chestnut: A Gpu Programming
Language for Non-Experts. Proceedings of the 2012 International Workshop on
Programming Models and Applications for Multicores and Manycores, 156-167.
https://doi.org/10.1145/2141702.2141720

[32] Nugteren, C. and Corporaal, H. (2012) Introducing “Bones”: A Parallelizing Source-
to-Source Compiler Based on Algorithmic Skeletons. Proceedings of the 5th Annual
Workshop on General Purpose Processing with Graphics Processing Units, 1-10.
https://doi.org/10.1145/2159430.2159431

[33] Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C. and
Catthoor, F. (2013) Polyhedral Parallel Code Generation for CUDA. ACM Transac-
tions on Architecture and Code Optimization, 9, 54.
https://doi.org/10.1145/2400682.2400713

[34] Brodtkorb, A.R., Hagen, T.R. and Sætra, M.L. (2013) Graphics Processing Unit
(GPU) Programming Strategies and Trends in GPU Computing. Journal of Parallel
and Distributed Computing, 73, 4-13. https://doi.org/10.1016/j.jpdc.2012.04.003

[35] Liu, L., Li, Z. and Sameh, A.H. (2008) Analyzing Memory Access Intensity in Paral-
lel Programs on Multicore. Proceedings of the 22nd Annual International Confe-
rence on Supercomputing, 359-367. https://doi.org/10.1145/1375527.1375579

[36] Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B. and Hwu, W.M.W.
(2008) Optimization Principles and Application Performance Evaluation of a Mul-
tithreaded GPU Using CUDA. Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 73-82.
https://doi.org/10.1145/1345206.1345220

https://doi.org/10.1109/ICPR.2004.1334339
http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide
https://doi.org/10.1145/2259016.2259037
https://doi.org/10.1007/s10766-010-0142-5
https://doi.org/10.1145/1995896.1995932
https://doi.org/10.1145/2063384.2063398
https://doi.org/10.1145/2141702.2141720
https://doi.org/10.1145/2159430.2159431
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1145/1375527.1375579
https://doi.org/10.1145/1345206.1345220

R. R. P. Kumar et al.

50

[37] Volkov, V. (2010) Better Performance at Lower Occupancy. Proceedings of the
GPU Technology Conference, 10, 16.

[38] Iandola, F.N., Sheffield, D., Anderson, M.J., Phothilimthana, P.M. and Keutzer, K.
(2013) Communication-Minimizing 2D Convolution in GPU Registers. IEEE In-
ternational Conference on Image Processing, 2116-2120.
https://doi.org/10.1109/icip.2013.6738436

[39] Papi. http://icl.cs.utk.edu/papi/

[40] Vedaldi, A. (2007) An Open Implementation of the SIFT Detector and Descriptor.
UCLA CSD.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

https://doi.org/10.1109/icip.2013.6738436
http://icl.cs.utk.edu/papi/
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	An Approach to Parallelization of SIFT Algorithm on GPUs for Real-Time Applications
	Abstract
	Keywords
	1. Introduction
	2. Description of SIFT
	3. Steps in SIFT
	4. Compute Unified Device Architecture
	5. Parallelization
	6. Performance
	6.1. Phase 1
	6.2. Phase 2
	6.3. Phase 3
	6.4. Phase 4

	7. Conclusions and Future Work
	References

