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Abstract 
A simple model of the closely packed structure for system of hard-sphere particles 
interacting via the long-range Newtonian type attraction is suggested. Based on den-
sity functional theory, the exact equation of state is obtained and the mutual trans-
formations of the crystal structures in such systems are studied. The description 
takes into account the fact impossibility of hard-sphere particles which have the same 
spatial occupation place. 
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The statistical and thermodynamic description of a system of interacting particles is 
one of the basic problems in condensed matter physics. In this direction, significant 
successes have been achieved [1]-[13]. The special method used in these researches is 
based on a density functional theory [1]-[13]. Within the framework of this approach, 
the phase transitions in a system of interacting particles from a gas phase to liquid and 
also from liquid to solid are described [14]-[23]. Various models of the phase formation 
and separation in such systems are considered depending on the strength and nature of 
inter-particle interaction [1] [2] [3]. 

The classical density-functional theory has become increasingly popular in the study 
of liquid-solid transition [1] [2] [3] [4]. This is partially due to the success in providing 
an accurate description of the fluid to close-packed solid transition for a system of hard 
spheres [2] [3]. On the basis of these results, it seems that the density-functional theory 
works well at least for systems of monatomic particles with hard interactions for which 
the equilibrium solid phase is close packed [2] [3] [4]. The question is whether the 
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success of the density-functional theories with hard interactions extends to systems 
with softer interactions where the thermodynamically stable solid phase is not necessarily 
closely packed. The density-functional theory applied to nonuniform classical liquids 
has been able to depict a wide range of physical properties of simple solid systems [14]- 
[23]. It is well known that the hard sphere model is used as the “reference” system, but 
to make the system more realistic, we need to include some attractive interactions. 
Accordingly, a considerable effort has gone into developing a free energy function 
describing nonuniform hard sphere systems and at present there exists a quite better 
functional approach for these systems. Unfortunately no equation of state is known 
which allow for hard disk and the hard sphere fluids in the close-packing limit [10]. A 
new problem appears when the density-functional theory is applied to less packed 
crystal structures such as the bbc lattice, which can be at most a metastable state of the 
system within the density functional approach. It should be noted that the density func- 
tional theory gives better results for higher densities of solid state matter [4] [9] [10]. 
Thus to study the fluid state, it seems useful to start from the solid state density func- 
tional. 

The problem of the solid state formation has not yet been finally solved. From the 
point of the density functional theory, this means that there is no common density 
functional that describes the system of interacting particles at all densities from gas to 
solid state. Instead we have one density functional well adapted for gas phase and 
another one for solid or liquid phase. Another problem is that the system of interacting 
particles crystallizes after passing through many intermediate states such as a super- 
cooled liquid. The description of a supercooled liquid state encounters serious dif- 
ficulties both in computer modelling and in theoretical approach, when it remains the 
problem of reduction of possible states of the system in its statistical description. We 
always can describe criteria of instability in a system but we can not specify a final state. 
A considerable fraction of the elements, when compressed, undergo a first order phase 
transition from a disordered state (a gas, fluid, or liquid) to a face-centered cubic (fcc) 
or hexagonal close packed (hcp) crystal. Computer simulations as well as experiments 
show that this freezing transition is already apparent in the simple model of interacting 
particles [3] [5] [6] [7]. Theory can explain only the transition “afterwards”. A complete 
theory of hard sphere freezing should therefore identify this property of the partition 
function that leads to observed symmetry breaking. Thus, it seems that one obtain 
better description when the final state is given a priori and the conditions under which 
this state exists are determined from the density functional theory. In this sense the 
description of simple model system of interacting spheres with a finite energy of 
contact repulsion and long-range attraction of a gravitational type is offered. It is 
known that particle systems with purely attractive gravitational interaction exhibit 
collapse, sometimes called a zero-order phase transition [8] [18]. If no short-range 
cutoff are introduced, then the discontinuous jump is infinite. This makes all normal 
noncollapsed states of the self-attractive system metastable with respect to such a 
collapse. On the other hand, if the same form of short-range cutoffs are introduced, the 
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entropy and free energy jumps are finite. In this case, in the result of a collapse, the 
system goes into a nonsingular state with a dense core, the precise nature of which 
depends on the details of the short-range behavior of the potential. This model system 
of interacting particles can be used to describe the final state of the mutually gravitating 
particles with a firm nucleus or the colloidal particles in liquids and liquid crystals. 

The second aspect of the solid state formation is that for systems with long-range 
attraction and short-range repulsion the system crystallizes passing through states with 
different packing (for example, cubic structure can transform to hexagonal). In the 
proposed approach we can find not only the criteria of formation of the particular 
crystal structure but we can also describe the transformations of the system from one 
packing to another. The phase transitions with change of packing due to the change of 
particle shape resulted from strong interparticle attraction (for example, to become a 
deformed spherical colloidal particle) are also can be described within the developed 
approach. It should be emphasized that the contact repulsion between the particles 
implies the use of the Fermi statistics even for classical particles and finite energy of 
contact repulsion that is because particles can not penetrate each other. This feature 
was not taken into account in the statistical description of phase transitions into a 
crystal state [24]. 

Let us consider a model system of particles on a lattice interacting via the following 
potential 

( ) ( )
2

02 ,GmW r r U R r r
r r

θ′ ′− = − + − −
′−

                 (1) 

where the first term accounts for the long-range Newtonian attraction between particles 
and the second one corresponds to the short-range repulsion with 0R  being the 
particle radius, here θ  is the Heaviside step function. Within the density-functional 
theory the free energy for this system can be written in the form [25] [26] 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
,

1 ln 1 ln 1 ,
2 r r r

F W r r f r f r kT f r f r f r f r
′

 ′ ′= − + − − − ∑ ∑   (2) 

where ( )f r  is the one-particle distribution function (the probability to find a particle 
in point r ) and the summation is over the lattice. We assume hard sphere model when 
each site of the lattice can be occupied by only one particle. This feature is accounted by 
Fermi type of the entropy part in (2). 

By minimizing the free energy (2) we obtain some particles distribution ( )f r  
which corresponds to some equilibrium state of the system. Depending on the tem- 
perature and interaction strength the distribution can be homogeneous or inhomo- 
geneous. If the equilibrium state is disordered then the one-particle distribution 
function is homogeneous, that is ( ) 0f r f= , where 0f  is the relative particle 
concentration. Any inhomogeneity in particles distribution can be described by the 
additional term ( )f r∆  in the expression ( ) ( )0=f f f r+ ∆r  that in the Fourier space 
can be expressed as ( ) ( ) ( )0 expf r f f q iqr= + ∆∑ , where the sum is now over re- 
ciprocal lattice vector q . In the density-functional theories the solid density is given  
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a priori by a Gaussian parametrization ( ) ( ) ( )3 2
2π expRf a a r R= − −∑ , where the  

sum is over the lattice vector R  and depends upon the particular crystal structure, 
and a  is the order parameter. The value of parameter a  being different for gas, liquid, 
and solid phases determines the phase of the system. In our case 0 0 6 πf N N v vα= = = , 
where v  is the packing factor. It should be noticed that the multiplier α  is deter- 
mined by the particular arrangement of atoms in a unit cell of the crystal. The value 

6 πα =  corresponds to a cubic cell of linear size equal to the particle’s diameter. The 
small values of the order parameter a  correspond to the situation typical for solids, 
when atoms are strongly localized around the ideal lattice sites, and the free energy can 
be reduced to 

( ) ( )
1
3

2 2
0 1

3

31 1ln ln 1 ,
2

2

GW v vF f N Uv kT v v
v

N

αα α
α

 
−  = − + + −     

 

        (3) 

where 2
0GW Gm R= . Then the equation of state is 

,

.
T N

F F vP
V v V
∂ ∂ ∂ = − = − ∂ ∂ ∂ 

                       (4) 

In our case v v
V V
∂

− =
∂

, thus (4) reduces to 

( )
1
3

2
1
3

1 ln 1 .
2

2

GW vF kTNPV v N Uv v
v v

N
α

α

 
∂  = = − − − ∂  

 

              (5) 

Note that V  is the whole system volume including the volume occupied by par- 
ticles. In the limit of low packing factor, 1v , we obtain the equation of state of 
lattice gas with interaction between particles: 

1
3

2
1
3

1 .
2

2

GW vPV kTN N Uv
N

 
 = + − 
 
 

                      (6) 

This equation is like a Van der Waals equation of state for hard spheres with the 
second part of this equation representing the interaction in the system. The formula (6) 
may serve as a rather good approximation for an equation of state for systems with a 
repulsive hard core and a newtonian attractive potentials. The thermodynamic pro- 
perties of elastic hard-sphere systems depend on the temperature in a trivial manner. 
Two methods can be used to calculate the pressure in the system. The first is based on 
calculating the rate h  from which the pressure can be deduced by the formula  

0

1PV h
kTN h

= + , where ( )2 2
0 08 π 3 1h R N N Vυ= −  is the low-density collision rate  

for large packing factors of hard spheres gas, 2υ  is the mean square velocity and is 
proportional to T . The second method utilizes the following relation between the 
equation of state of hard spheres gas and the value of the radial distribution function  

( )g r  at 02r R= : ( )01 4 2PV vg R
kTN

= + . These two methods give close values but the  
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second one requires some care because the radial distribution function varies rapidly in 
the vicinity of 02r R=  [11]. Another equation of state of the hard spheres gas,  

( )

2 3

3
1

1
v v vPV kTN

v
+ + −

=
−

, where a particle volume is excluded, has quit different form  

though asymptotically is similar to above ones. When ( ) ( )21 3 2 3
02GW U N v N R R≥ =  

and thus ( )0 4GR R N W kT≤ , where R  is the size of the system, the collapse in 
system is possible. The corresponding packing factor is ( )3 24 Gv kT W N −= . The con- 
dition of collapse satisfy to zero value of the pressure, this yields 

( )
1
3

2
1
3

1 ln 1 0
2

2

GW v kTNN Uv v
v

N
α

α

 
 − − − = 
 
 

                 (7) 

In the case when 1vα →  
1 2
3 311 exp .

2 2
GW NNUv

kT kT
αα

α

 
 = − − 
 
 

                   (8) 

Thus a collapse is possible when the mean distance between particles is less than  

02
GW R

U
. 

To study the effect of inhomogeneity of particles distribution we substitute  
( ) ( )0f f f= + ∆r r  into (2) and make use of the long-wavelength expansion of the 

concentration. The result is 

( ) ( ) ( ) ( )
2

3
0 02 2

4π 4π .
2 3 1

i j
ij

q qN Q kTF F F f U R f f
V v vq q

δ
α α

  
∆ ≡ − = − − + + ∆ ∆ −   −  

∑
q

q q  (9) 

For the hexagonal packing we have [24]: 

( )

11
22

0 2
3 1 ,
4 1

GW kTqR
U U v vα α

−
  = +    −   

                 (10) 

and when 0kT →  this reduces to 
1
2

0
3 .
4

GWqR
U

 =  
 

                          (11) 

If 24π 3GW U >  then the inhomogeneity length becomes smaller than the contact 
distance between particles: 02π 2q R< . In this case the attraction obviously prevails 
repulsion resulting in deformation of a particle with a soft nucleus. Thus the form of a 
cell can change from the initial cubic cell to the hexagonal. The origin of such a 
transformation can be explained in the following way. An attraction between particles 
causes a collapse in the system. The particles begin to press upon one another that 
results in the deformation of their shapes. A final equilibrium state in such a system is 
when the system volume is equal to the total volume of all the particles. But this does 
not change the volume of a separate particle but only changes the form of the particle. 
For liquid particles it is possible to estimate pressure created by a gravitational 
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attraction and to compare it to the Laplacian pressure in a separate liquid particle. We  

can estimate it from the condition 2
4GW
mRσ

≥ , where σ  is the surface energy and m   

is the number of possible nearest neighbors. The number of nearest neighbors in the 
close packing 12m = . When particles are deformed the distance between their centers  

must be less than d . Thus the condition 
24π 4

3 m
≥  corresponds to the condition of  

deformation for such a structural unit with a soft nucleus. If ( )2 1kT U v vα α−  then 
the formula (10) gives the period of particles distribution to be  

( )

1 2

2
4π

3 1G

kTd
W v v

λ
α α

 
=   − 

. In this case the equilibrium structure of the system is  

determined by only the attractive and kinetic energy and is not influenced by the 
short-range repulsion. In a system of emulsion particles in a fluid media with the 
screened Coulomb-like interaction it is possible to observe structural phase transitions 
with change of the shape of the droplets. 

Thus the behavior of interacting particles with long-range attraction and short-range 
repulsion can be described in all equilibrium phases [27]. Starting from a gas phase the 
attraction results in the condensation of the system. In the condensed matter phase 
with lowering the temperature the attraction induces transition into solid state with the 
packing factor of cubic structure. At some ratio of the attraction and repulsion in- 
tensities there can be a new structural transition with change of the packing factor. The 
cubic lattice transforms into hexagonal structure. Thus the form of the structure unit 
can change without change of its volume, for example, sphere can transform into some 
dodecahedron (or disk into hexagonal cell). The possible volume of the system will be 
equal to the sum of individual volumes of separate structural units. Thus even a collapse 
of the system produced by a strong attraction between particles will be finished by the 
creation of a new structure with the structural factor up to unit, and this state is final 
for systems with strong long-range attraction and short-range repulsion of a soft type. 
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