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Abstract 
In this paper, we apply the tanh-coth method and traveling wave transformation 
method for solving Gardner equations, including (1 + 1)-Gardner and (2 + 1)- 
Gardner equations. The tanh-coth method proved to be reliable and effective in han-
dling a large number of nonlinear dispersive and disperse equations. Through tanh- 
coth method, we get analytical expressions of soliton solutions of Gardner equations. 
The one-soliton solution is characterized by an infinite wing or infinite tail. 
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1. Introduction 

In the study of nonlinear science, finding the exact solution of nonlinear evolution eq-
uations is an important subject. Different methods have their different types of specific 
applications for nonlinear evolution equations. In recent years many scholars put for-
ward and developed several new methods for solving PDEs which based on the original 
method, such as Hirota’s bilinear method [1], homogeneous balance method [2] [3], 
projective Riccati equation method [4] [5], Jacobi elliptic functions method [6], aux-
iliary equation method [7], and separation of variables [8] [9] [10]. Among them, the 
tanh-coth method and the sine-cosine method are powerful and widely used in several 
research works. For single soliton solution, the tanh-coth method is easy to use and has 
been applied for a wide variety of nonlinear problems. 

In the plasma physics, solid physics, fluid mechanics, etc., the Gardner equation is 
written as  

2 0,t x x xxxu uu u u uα β γ+ + + =                      (1) 

which is also called the KdV-mKdV equation. The model can be well described the 
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wave propagation in a one-dimensional nonlinear lattice with a non harmonic bound 
particle. Gardner equations have very important application in mathematics, physics, 
engineering and other fields. Different types of equations can be obtained by changing 
the value of α , β , γ . 

With 0β = , 1γ = , the KdV equation is written as  

0,t x xxxu uu uα+ + =                          (2) 

where the parameter α  can be scaled to any real number, usually taking 1α = ±  or 
6α = ± . KdV equation simulates a variety of nonlinear phenomena, including the ion 

acoustic waves and diving waves in the plasma. 
With 0, 1α γ= = , we get the mKdV equation which is written as  

2 0.t x xxxu u u uβ+ + =                          (3) 

It is completely integrable [11] and can be obtained by Miura transformation of the 
KdV equation. 

The Gardner equations are used to describe many physical models, which are closely 
related to the study of physics. So it is very important to study it deeply. 

With 26, 6 , 1α β γ= − = − = , the (1 + 1)-Gardner equation turns out to be  
2 26 6 0.t x x xxxυ υυ υ υ υ− − + =                      (4) 

Further, the (2 + 1)-dimensional Gardner Equation [12] [13] [14] [15] is written as  

2 2 23 6 3 3 0
2

,

t xxx x x y x

x y

ω ω α ω ω βωω γ υ αγω υ

υ ω

+ − + + − =

=
            (5) 

which reduces to the (1 + 1)-Gardner equation with 0yω = . 
For 0α = , Equation (5) is transformed into the KP equation as  

2 16 3 0,t xxx x x yyω ω βωω γ υ−+ + + ∂ =                    (6) 

while it is the modified KP equation with 0β = . Therefore, the (2 + 1)-Gardner equa-
tion combines KP equation and modified KP equation. 

With 2, 1,α γ β τ= = − = , the (2 + 1)-Gardner equation turns out to be  
2 1 16 6 6 3 0.t xxx x x x y x x yyω ω ω ω ω ω τωω ω− −+ − + ∂ + + ∂ =             (7) 

We had found soliton solutions, travelling wave solutions and plane periodic solu-
tions of KdV and mKdV equations through tanh-coth method. In order to prove supe-
riority of the tanh-coth method, we apply it on Gardner equations which are more 
complex and have higher dimensions. 

This paper is organized as follows. In Section 2, we introduce the tanh-coth method. 
In Section 3, we first substitute the wave variable x ctξ = −  into the (1 + 1)-Gardner 
equation, and then integrate once. Based on the tanh-coth method, the soliton and kink 
solutions of the (1 + 1)-Gardner are given. In Section 4, we would like to search for so-
lutions to the dimensionally reduced (2 + 1)-Gardner equation from substituting the 
wave variable x dy ctξ = + − . The solutions are obtained by tanh-coth method and the 
soliton solution is graphically revealed. A conclusion is given in Section 5. 
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2. The tanh-coth Method  

A wave variable x ctξ = −  converts any PDE  

( ), , , , , 0t x xx xxxP u u u u u =                        (8) 

to an ODE  

( ), , , , 0.Q u u u u′ ′′ ′′′ =                         (9) 

Equation (9) is then integrated as long as all terms contain derivatives where integra-
tion constants are considered zeros. 

Introducing an independent variable  

( )tanh , ,Y x ctµξ ξ= = −                       (10) 

where µ  is the wave number. The tanh-coth method admits the use of the finite ex-
pansion  

( ) ( )
0 1

,
M M

k k
k k

k k
u S Y a Y b Yµξ −

= =

= = +∑ ∑                   (11) 

where M  is a positive integer, in most cases, that will be determined by balance me-
thod. And we usually balance the highest order nonlinear terms with the linear terms of 
highest order by using the scheme given as follows:  

,u M→  

,nu nM→  

1,u M′ → +  
( ) .ru M r→ +                            (12) 

Substituting (11) into the reduced ODE results. We then collect all coefficients of 
each power of ,0kY k nM≤ ≤  in the resulting equation where these coefficients have 
to vanish. This will give a system of algebraic equations involving the parameters 

, ,k ka b µ  and c. Finally, we obtain an analytic solution ( ),u x t  in a closed form. 

3. The Solutions of (1 + 1)-Gardner Equation 

We first substitute the wave variable x ctξ = −  into the (1 + 1)-Gardner equation  

( )2 26 0,t x xxxu u u u u− + + =                      (13) 

that gives  

( )2 26 0.cu u u u u′ ′ ′′′− − + + =                      (14) 

Integrating once to obtain  

2 2 33 2 0.cu u u u′′− − − + =                       (15) 

We then balance the nonlinear term 2 32 u−  , that has the exponent 3M , with the 
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highest order derivative u′′ , that has the exponent 2M + . Using the balance process 
leads to  

3 2,M M= +                           (16) 

that gives  

1.M =                               (17) 

The tanh-coth method allows us to use the substitution  

( ) ( ) 1
0 1 1, .u x t S Y a a Y b Y −= = + +                    (18) 

Substituting (18) into (15), collecting the coefficients of each power of ,0 4iY i≤ ≤ , 
setting each coefficient to zero, we find  

0 2 2 3 2
0 0 1 1 0 0 1 1: 3 6 2 12 0,Y ca a a b a a a b= − − − − − =   

1 2 2 2 2 2
1 0 1 0 1 1 1 1: 6 6 6 2 0,Y ca a a a a a b a µ= − − − − − =   

3 2 2 2
1 1 0: 3 6 0,Y a a a= − − =  

4 2 3 2
1 1: 2 2 0.Y a a µ= − + =  

We find the following sets of solutions:  

(i) 0 1 10, , , 0,
2 2
c ca a b cµ= = = − = − <                     (19) 

(ii) 1 0 12 2 2

1 1 1 1 10, , , , 0,
2 22

b a a cµ= = − = = = >
  

           (20) 

(iii) 1 1 02 2 2

1 1 1 1, , , 0.
44 2

a b a cµ= = − = − = = >
  

            (21) 

Consequently, we obtain the following solutions:  

( ) ( )1 2

2 1, tanh , 0,
22

u x t x ct c = − >  
                 (22) 

( ) ( )2 2 2

1 1 1, coth , 0,
22 2

u x t x ct c = − + − >   
              (23) 

( ) ( )
2

3 2 4 2 2

1 3 2 3, sech , 0.
2 2 2

c cu x t x ct c
 −

= − − − − > 
 


   

         (24) 

Following immediately. Figure 1 shows a single soliton solution ( )3 ,u x t  for 
1, 1c = = . In the graph, the X axis is t , the Y axis is x , and the Z axis is ( )3 ,u x t . It 

can be see that the one-soliton solution is characterized by an infinite wing. This shows  

that 
2

1
2

u → −


 as x  and t  one of them tends to infinity, that is, ξ  tends to infin-

ity. 
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Figure 1. Graph of the one-solution solution ( )3 ,u x t  for 1, 1c = =  characterized by an infi-

nite wing. 

4. The Solutions of (2 + 1)-Gardner Equation 

We first substitute the wave variable x dy ctξ = + −  into the (2 + 1)-Gardner equation  
2 1 16 6 6 3 0,t xxx x x x y x x yyω ω ω ω ω ω τωω ω− −+ + + ∂ + − ∂ =            (25) 

that gives  
2 26 6 6 3 0

x

c d dω ω ω ω ω υ τωω υ
υ ω
 ′ ′′′ ′ ′ ′ ′− + + + + − =
 ′=

 

Based on 
x x
υ υ ξ υ

ξ
∂ ∂ ∂ ′= ⋅ =
∂ ∂ ∂

, we get  

2 26 6 6 3 0.c d dω ω ω ω ωω τωω ω′ ′′′ ′ ′ ′ ′− + + + + − =              (26) 

Integrating once to obtain  

( ) ( )2 2 33 3 3 2 0.c d dω τ ω ω ω′′− − + + + + =                (27) 

We then balance the nonlinear term 32ω , that has the exponent 3M , with the 
highest order derivative ω′′ , that has the exponent 2M + . Using the balance process 
leads to  

3 2,M M= +                            (28) 
that gives  

1.M =                               (29) 

The tanh-coth method allows us to use the substitution  

( ) ( ) 1
0 1 1, .x t S Y a a Y b Yω −= = + +                    (30) 

Substituting (30) into (27), that gives  

( )( )
( )( ) ( )

2 1 2 2 3 2 3
1 0 1 1 1 1

2 32 1 1 1
1 1 0 1 1 0 1

3 2 2 2

2 3 3 2 0.

d c a Y a b Y a Y a Y b Y

b Y d a Y a b Y a Y a b Y

µ µ µ

µ τ

− −

− − −

− − + + − + +

− + + + + + + + =
 

Collecting the coefficients of each power of ,0 4iY i≤ ≤  and then setting each coef-
ficient to zero that leads to the following set of constraining equations for the parame-
ters:  
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( ) ( )( )0 2 2 3
0 0 1 1 0 0 1 1: 3 3 3 2 12 0,Y d c a d a a b a a a bτ= − − + + + + + =  

( ) ( )1 2 2 2 2
1 0 1 0 1 1 1 1: 3 3 3 2 6 6 2 0,Y d c a d a a a a a b aτ µ= − − + + + + − =  

( )3 2
0 1: 3 3 6 0,Y d a aτ= + + =  

( )4 2 2
1 1: 2 0.Y a aµ= + =  

We find the following sets of solutions:  

(i) 0 1 10, , , 0,a a b c c cµ= = = = >                              (31) 

(ii) 
( ) 2 2

1 0 1

3 3 18 9 33 8
0, , 1, 1,

4
d d d c

a a b
τ τ τ

µ
− + + + + +

= = = =      (32) 

(iii) 
( ) 2 2

1 0 1

3 3 18 9 33 8
0, , 1.

4
d d d c

a a b
τ τ τ

µ
− + + + + +

= = = =       (33) 

Consequently, we obtain the solutions as  

( ) ( )1 , , coth , 0,x y t c c x dy ct cω  = + − >                (34) 

( ) ( ) ( )
2 2

2

3 3 18 9 33 8
, , coth ,

4
d d d c

x y t x dy ct
τ τ τ

ω
− + + + + +

= − + −      (35) 

( )

( )

3

2 2 2 2

, ,

9 6 3 2 9 6 3 2sech ,
2 2 2

x y t

d d d c d d c x dy ct

ω

τ τ τ τ τ + + + + + + +
= − + + − 

  

 (36) 

where 1ω  and 2ω  are kink solutions. And the kink solution’s graph is changing along 
with 1b  taking different values. 

Following immediately. Figure 2 below shows the one-soliton solution ( )3 , ,x y tω  
for 1, 1, 1, 1c d tτ= = = = . From the graph we can see, the one-soliton solution is cha- 

racterized by infinite tail. This shows that 
2

d τω +
→ −  as x  and t  one of them 

tends to infinity, that is, ξ  tends to infinity. 
 

 

Figure 2. Graph of ( )3 , ,x y tω  for 1, 1, 1, 1c d tτ= = = =  characterized by an infinite tail. 
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5. Conclusion 

In this paper, we obtain the soliton and kink solutions of the (1 + 1)-Gardner equation 
and (2 + 1)-Gardner equation through the tanh-coth method. The biggest advantage is 
that by traveling wave transformation, the problem of solving nonlinear partial diffe-
rential equations is transformed into the problem of solving nonlinear ordinary diffe-
rential equations or nonlinear algebraic equations. The tanh-coth method is convenient 
to use, and can be further extended to solve other nonlinear partial differential equa-
tions. 
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