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Abstract 
This paper discusses comparison of two time series decomposition methods: The 
Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. As 
noted by Iwueze and Nwogu (2014), there exists a research gap for the choice of ap-
propriate model for decomposition and detection of presence of seasonal effect in a 
series model. Estimates of trend parameters and seasonal indices are all that are 
needed to fill the research gap. However, these estimates are obtainable through the 
Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. Hence, 
there is need to compare estimates of the two methods and recommend. The com-
parison of the two methods is done using the Accuracy Measures (Mean Error 
(ME)), Mean Square Error (MSE), the Mean Absolute Error (MAE), and the Mean 
Absolute Percentage Error (MAPE). The results from simulated series show that for 
the additive model; the summary statistics (ME, MSE and MAE) for the two estima-
tion methods and for all the selected trending curves are equal in all the simulations 
both in magnitude and direction. For the multiplicative model, results show that 
when a series is dominated by trend, the estimates of the parameters by both methods 
become less precise and differ more widely from each other. However, if conditions 
for successful transformation (using the logarithmic transform in linearizing the 
multiplicative model to additive model) are met, both of them give similar results. 
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1. Introduction 

The two major goals of time series analysis are 1) identification of the nature of the 
phenomenon represented by the sequence of observations and 2) forecasting (predict-
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ing future values of the time series variable). Identification of the pattern and choice of 
model in time series data is critical to facilitate forecasting. Thus, these two goals of 
time series analysis require that the pattern of observed time series data is identified 
and described. Two patterns that may be present are trend and seasonality. 

The trend represents a general systematic linear or (most often) nonlinear compo-
nent that changes over time and does not repeat or at least does not repeat within the 
time range captured by data. As long as the trend is monotonous (consistently increas-
ing or decreasing) the identification of trend component is not very difficult. Trend 
analysis (methods for estimating the trend parameters) can be done by three important 
methods; 1) smoothing [1] [2] [3] [4] [5] 2) fitting a mathematical function [6] [7] and 
3) differencing to make the series stationary in the ARIMA methodology [1] [8] [9]. 
Tests for trend are given in Kendall and Ord [7]. Correlation analysis can also be used 
to assess trend. If a time series contains a trend, then the values of the autocorrelations 
will not come to zero except for very large values of the lag [6]. 

Many time series exhibit a variation which repeats itself in systematic intervals over 
time and this behaviour is known as seasonal dependency (seasonality). By seasonality, 
we mean periodic fluctuations. It is formally defined as correlational dependency of 
order k between each ith element of the series and the (i − k)th element [10] and meas-
ured by autocorrelation (a correlation between tX  and t kX − ); k is usually called the 
lag. Seasonality can be visually identified in the series as a pattern that repeats every k 
elements. The following graphical techniques can be used to detect seasonality: 1) A run 
sequence plot [11], 2) A seasonal sub-series plot [12], 3) Multiple box plots [11] and 4) 
the autocorrelation plot [1]. Both the seasonal sub-series plot and the box plot assume 
that the seasonal periods are known. In most cases, the seasonal periods are easy to find 
(4 for quarterly data, 12 for monthly data etc). If there is significant seasonality, the 
autocorrelation plot should show spikes at multiples of lags equal to the period, the 
seasonal lag (for quarterly data, we would expect to see significant spikes at lag 4, 8, 12, 
16, and so on). Davey and Flores [13] proposed a method which adds statistical tests of 
seasonal indexes for the multiplicative model that helps identify seasonality with greater 
confidence. Tests for seasonality are also given in Kendall and Ord [7]. 

In time series analysis, it is assumed that the data consist of a systematic pattern and 
random noise (error). The systematic pattern consists of the: trend (denoted as tT ), 
seasonal (denoted as tS ) and cyclical (denoted as tC ) components. The random noise 
is the error or irregular component (denoted as tI  or te ), where t stands for the par-
ticular point in time. These four classes of time series components may or may not co-
exist in real-life data. 

In addition to identifying the patterns (the components), the main two goals of a 
time series analysis are better achieved if and only if the correct model is used. The spe-
cific functional relationship between these components can assume different forms. 
However, the possibilities are that they combine in an additive (additive seasonality) or 
a multiplicative (multiplicative seasonality) fashion, but can also take other forms such 
as pseudo-additive/mixed (combining the elements of both the additive and multiplica-
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tive models). 
Additive model (when trend, seasonal and cyclical components are additively com-

bined): 

,   1, 2, ,t t t t tX T S C I t n= + + + =                   (1.1) 

Multiplicative model (when trend, seasonal and cyclical components are multiplica-
tively combined): 

,   1, 2, ,t t t t tX T S C I t n= × × × =                    (1.2) 

Pseudo-Additive/Mixed Model: (combining the elements of both the additive and 
multiplicative models): 

,   1, 2, ,t t t t tX T S C I t n= × × + =                    (1.3) 

Cyclical variation refers to the long term oscillation or swings about the trend and 
only long period sets of data will show cyclical fluctuation of any appreciable magni-
tude. If short period of time are involved (which is true of all examples of this study), 
the cyclical component is superimposed into the trend [6] and we obtain a trend-cycle 
component denoted by Mt. In this case Equations (1.1), (1.2) and (1.3) may be written 
as: 

,   1, 2, ,t t t tX M S I t n= + + =                    (1.4) 

,   1, 2, ,t t t tX M S I t n= × × =                    (1.5) 

and 
,   1, 2, ,t t t tX M S I t n= × + =                    (1.6) 

where tM  is the trend-cycle component; tS  is the seasonal component with the 
property that ( )1 ,  1, 2, ,ji s jS S i m− + = =  , and te  is the irregular or random compo-
nent. For the additive model (1.1), it is assumed that the irregular/error component te  
is the Gaussian ( )2

10,N σ  white noise, while for the multiplicative model (1.2), te  is 
the Gaussian ( )2

21,N σ  white noise. For the additive model (1.1), the assumption is  

that the sum of the seasonal component over a complete period is zero 
0

0
s

j
j

S
=

 
= 

 
∑ ,  

while for the multiplicative model (1.2), the sum of the seasonal component over a  

complete period is 
0

s

j
j

S s
=

 
= 

 
∑ . 

The multiplicative model (1.5) can be linearized to become the additive model (1.4). 
* * *,   1, 2, ,t t t tX M S e t n∗ = + + = 

                  (1.7) 

where * * *log ,  log ,  log ,  logt e t t e t t e t t e tX X M M S S e e∗ = = = = . It follows that we can 
study the additive model (1.1) and apply the results obtain to the multiplicative model 
after linearization. The pseudo-additive model is used when the original time series 
contains very small or zero values. For this reason, this work will discuss only the addi-
tive and multiplicative models. 

As far as the traditional method of decomposition is concerned (to be referred to as 
the Least Squares Estimation (LSE) Method), the first step will usually be to estimate 
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and eliminate tM  for each time period from the actual data either by subtraction for 
Equation (1.4) or division for Equation (1.5). The de-trended series is obtained as 

ˆ
t tX M−  for Equation (1.4) or ˆ

t tX M  for Equation (1.5). In the second step, the 
seasonal effect is obtained by estimating the average of the de-trended series at each 
season. The de-trended, de-seasonalized series is obtained as ˆˆ

t t tX M S− −  for Equa-
tion (1.4) or ( )ˆˆ

t t tX M S  for Equation (1.5). This gives the residual or irregular com-
ponent. Having fitted a model to a time series, one often wants to see if the residuals are 
purely random. For detailed discussion of residual analysis, see [1] [14]. 

This LSE as describe above is known to be associated with computational difficulties 
and does not give an insight for choice of models for time series decomposition and 
detection of presence of seasonal effect in a series. 

However, by arranging a series of length n into m rows ( )( )1 , 1, 2,i s jX i m− + = 
 and s 

columns ( )( )1 , 1, 2,i s jX j s− + = 
, Iwueze et al. [15] showed that the row and column 

averages and variances can be used to 1) determine the need for and appropriate trans-
formation 2) choose the appropriate model for decomposition, 3) detect the presence of 
seasonal effect in the series and 4) obtain estimates of the trend parameters and season-
al indices of the entire series. In particular, for a seasonal series, the rows represent the 
periods/years while the columns are the seasons. This two-dimensional arrangement of 
a series is referred to as Buys-Ballot table, see [16] [17]. 

Using the periodic means ( ). , 1, 2, ,iX i m=  , Iwueze and Nwogu [17] constructed 
two derived variables, the Chain Base Estimation (CBE) and the Fixed Base Estimation 
(FBE)-derived variables, on bases of which they derived the estimates of linear 
trend-cycle parameters. Iwueze and Ohakwe [18] derived the estimates of quadratic 
trend-cycle parameters from the corresponding CBE and the FBE-derived variables, 
while Iwueze and Nwogu [19] derived the estimates of the exponential trend-cycle pa-
rameters from the corresponding CBE and the FBE-derived variables. 

Iwueze and Nwogu [20] have shown that, for seasonal time series data and for all 
trending curves, the row, column and overall averages and variances of the Buys-Ballot 
table are 1) functions of the trend parameters and 2) different for the additive and mul-
tiplicative models. Therefore, the row, column and overall averages and variances can 
be used for i) choice of appropriate model, ii) detection of presence of seasonal effect in 
a series in addition to estimation of trend parameters and seasonal indices. Since esti-
mates of the trend parameters and seasonal indices can also be derived from the Least 
Squares method, there is the need to compare the two decomposition methods. 

Therefore, the ultimate objective of this study is to compare the estimates of trend 
parameters and seasonal indices from the Buys Ballot method with the results from the 
conventional least squares method. The specific objectives are to: 1) Review the Buys 
Ballot method for estimation of trend parameters and seasonal indices for some se-
lected trending curves, 2) obtain estimates of the trend parameters and seasonal indices 
using simulated examples, 3) compare the estimates of the trend parameters and sea-
sonal indices from the Buys Ballot method with estimates from the traditional method 
(LSE) using simulated examples. Based on the results, recommendations are made. 
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2. Methodology 

The comparison of Least Squares Estimates and Buys-Ballot Estimates in this study is 
done using measures often referred to in the literature as Forecasting Accuracy Meas-
ures. These include the Mean Error (ME), Mean Square Error (MSE), the Mean Abso-
lute Error (MAE), and the Mean Absolute Percentage Error (MAPE). 

Given the actual values of the parameters , 1, 2,i i Lθ =   these accuracy measures 
may be defined in terms of the deviations of the parameter estimates from the corres-
ponding actual values used in the simulations. Thus, if îθ  is the estimate of the para-
meter iθ , then ˆ

i i ie θ θ= −  is the error made in estimating , 1, 2,i i Lθ =  . In terms of 

ie , the accuracy measures adapted from the forecasting Accuracy Measures are 

( )
1

1Mean Error ME
L

i
i

e
L =

= ∑                      (2.1) 

( ) 2

1

1Mean Square Error MSE
L

i
i

e
L =

= ∑                  (2.2) 

( )
1

1Mean Absolute Error MAE
L

i
i

e
L =

= ∑                 (2.3) 

( )
1

1Mean Absolute Percentage Error MAPE 100
L

i i
i

e
L

θ
=

 =  
 
∑       (2.4) 

In these definitions, the comparison of parameter estimates is done directly using the 
actual and estimated values of the parameters. 

The summary of the estimates of trend parameters and seasonal indices obtained by 
Iwueze and Nwogu [20] are given in Table 1 for Linear, Table 2 for Quadratic and Ta-
ble 3 Exponential trend-cycle component for the additive and multiplicative models. 

We note the following for Tables 1-3: 
1) a′ , b′  and c′  are estimates derived from the regression equations of row av-

erages on row number. 
2) Additive and Multiplicative models give different estimates. 

3) 2
1 2

1 1

ˆ ˆ ˆ ˆ,  .
s s

j j
j j

C jS C j S
= =

= =∑ ∑  

 
Table 1. Estimates of parameters of Linear trend-cycle components and seasonal indices. 

Parameter 
Model 

Additive model Multiplicative model 

a  
1ˆ

2
sa b − ′ +  

 
 1ˆ C

a b s
s

 ′ + − 
 

 

b  b
s
′

 
b
s
′

 

jS  ( ).

ˆ
ˆ 2

2j

bX a n s j
 

− + − +  
 

 ( )
ˆˆ

ˆ
12

j
jS

n n s
b

σ
=

+
 

Source: Iwueze and Nwogu [20]. 
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Table 2. Estimates of parameters of quadratic trend-cycle component and seasonal indices. 

Parameter 
Model 

Additive model Multiplicative model 

a  
( )( )1 2 11 ˆˆ ˆ

2 6
s ssa b c
− − − ′ + −   

   
 21 2

1

ˆ ˆˆ ˆˆ ˆ 2C Ca b s c s C
s s

   
′ + − − − +      

   
 

b  ( )
ˆˆ ˆ 1bb c s
s
′

= + −  ( )2
1

1 2b c s C
s
 ′ + −   

c  
2

ˆ cc
s
′

=  
2

ˆ cc
s
′

=  

jS  ˆ .j j jS X d= −  ˆ .j j jS X d=  

jd  
( ) ( )( )

( )( ) 2

ˆ ˆ 2
ˆ

2 6
ˆ ˆ ˆ  

c n s n sba n s

b c n s j cj

− −
+ − +

+ + − +

 
( ) ( )( )

( )( ) 2

ˆ ˆ 2
ˆ

2 6
ˆ ˆ ˆ  

c n s n sba n s

b c n s j cj

− −
+ − +

+ + − +

 

Source: Iwueze and Nwogu [20]. 

 
Table 3. Estimates of parameters of exponential trend-cycle component and seasonal indices. 

Parameter 
Model 

Additive model Multiplicative model 

b  
ˆ

ˆ

1ˆ
1

c

cs

eb s
e

−

−

− ′  − 
 

ˆ
ˆ

3
13

ˆ 'ˆ ˆ ˆ,ˆ

cs s
cj

j
j

b seb C e S
C =

= = ∑  

c  ˆ 'c
s

 ˆˆ cc
s
′

=  

jS  
ˆ

ˆ
. ˆ

ˆ 1
1

cs
cj

j c

b eX e
m e

− 
−  − 

 

( )

( )

.1

ˆ1
.

1

. ?1
1

.1

, 1

ˆ , 1, 2, ,

s
j e

J
j

j j e

sX
j

X e

X
S e j s

X

− −

=

− −


=




  =   

∑



 

Source: Iwueze and Nwogu [20]. 

3. Simulation Examples 

This Section presents some simulations examples used to compare the estimates of the 
parameters of the selected trend curves and seasonal indices using Buys-Ballot method 
with those based on the conventional Least Squares Estimation method. For the linear 
trend-cycle, the simulated examples consist of 106 series of 120 observations each si-
mulated from ( )t t tX a bt S e= + + +  with 1,  0.02,0.2a b= =  and 2.0 and  

( )0, 1.0te N σ∼ =  for the additive model, ( )t t tX a bt S e= + ∗ ∗ , with  
1,  0.02,0.2, 2.0a b= =  and ( )1, 0.02te N σ∼ =  for the multiplicative model. These 

values of a, b and c were arbitrarily chosen for simulation purposes. The values of  
,  1, 2, ,12jS j =   for the simulated additive and the multiplicative models are given in 

Table 4. 
The Buys-Ballot estimates of trend parameters and seasonal indices are computed 

using the expressions in Table 1. The estimates of the error means and standard devia-
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tions are computed from the residuals from the fitted models. The deviations of these 
estimates from the parameters used in the simulations are given in Appendix A for the 
Additive model and Appendix B for the Multiplicative model, while the summary sta-
tistics for 20 simulations only are given in Table 5 for the Additive model and Tables 
6-8 for the Multiplicative model. 
 
Table 4. Seasonal ( )jS  indices used in the simulation of series from additive and multiplicative 

models. 

j  jS  

Additive Multiplicative 

1 −0.89 0.91 
2 −1.22 0.88 
3 0.10 1.00 
4 −0.15 0.98 
5 −0.09 0.98 
6 1.16 1.12 
7 2.34 1.26 
8 1.95 1.20 
9 0.64 1.05 
10 −0.73 0.92 
11 −2.14 0.80 
12 −0.97 0.90 

 
Table 5. Summary statistics for additive model (a = 1 and b = 2). 

Series 
ME MAE MSE 

LSE BBE LSE BBE LSE BBE 

1 −0.009 −0.009 0.221 0.219 0.074 0.076 
2 0.000 0.001 0.156 0.160 0.038 0.041 
3 0.003 0.002 0.226 0.228 0.080 0.085 
4 −0.003 −0.002 0.213 0.221 0.074 0.078 
5 0.002 0.004 0.157 0.159 0.062 0.065 
6 0.016 0.017 0.200 0.199 0.071 0.069 
7 −0.003 −0.002 0.207 0.214 0.073 0.078 

8 0.026 0.027 0.192 0.191 0.072 0.069 

9 0.000 0.003 0.180 0.173 0.076 0.075 

10 0.024 0.025 0.252 0.256 0.097 0.101 

11 0.004 0.004 0.167 0.170 0.048 0.049 

12 0.000 −0.002 0.224 0.235 0.131 0.128 
13 0.015 0.015 0.220 0.226 0.077 0.078 
14 −0.011 −0.010 0.230 0.232 0.093 0.094 
15 0.019 0.020 0.215 0.226 0.083 0.092 
16 0.010 0.011 0.167 0.172 0.057 0.060 

17 0.003 0.004 0.143 0.152 0.041 0.044 

18 0.015 0.015 0.274 0.275 0.146 0.148 

19 0.002 0.003 0.203 0.203 0.070 0.067 

20 0.006 0.006 0.222 0.228 0.082 0.085 
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Table 6. Summary statistics for multiplicative model (a = 1 and b = 0.02). 

S/N 
ME MAE MAPE MSE RSME 

LSE BBE LSE BBE LSE BBE LSE BBE LSE BBE 

1 −0.001 −0.001 0.005 0.012 0.840 2.834 0.000 0.000 0.006 0.016 
2 0.000 0.000 0.003 0.013 0.470 3.271 0.000 0.000 0.004 0.018 
3 0.000 0.000 0.005 0.014 0.799 3.368 0.000 0.000 0.006 0.018 

4 0.000 −0.001 0.004 0.015 0.798 4.924 0.000 0.001 0.006 0.023 

5 0.000 0.000 0.003 0.011 0.578 2.873 0.000 0.000 0.005 0.014 

6 0.001 0.000 0.004 0.014 0.766 4.834 0.000 0.000 0.006 0.021 
7 0.000 −0.001 0.004 0.013 0.773 4.223 0.000 0.000 0.006 0.017 
8 0.001 0.000 0.004 0.012 0.883 3.054 0.000 0.000 0.006 0.016 
9 0.000 0.000 0.004 0.010 0.713 2.069 0.000 0.000 0.005 0.014 

10 0.001 0.000 0.006 0.013 1.055 4.062 0.000 0.000 0.007 0.017 
11 0.000 −0.001 0.004 0.018 0.554 6.065 0.000 0.001 0.005 0.023 
12 0.000 −0.001 0.005 0.012 1.065 3.591 0.000 0.000 0.008 0.019 
13 0.000 0.000 0.004 0.014 0.837 3.310 0.000 0.000 0.006 0.017 
14 0.000 −0.001 0.005 0.010 0.989 2.517 0.000 0.000 0.006 0.015 
15 0.001 0.000 0.004 0.009 0.893 2.073 0.000 0.000 0.006 0.013 

16 0.000 0.000 0.003 0.014 0.577 3.555 0.000 0.000 0.005 0.018 

17 0.000 −0.001 0.003 0.015 0.442 4.974 0.000 0.001 0.004 0.023 

18 0.000 0.000 0.006 0.008 1.215 1.468 0.000 0.000 0.008 0.012 
19 0.000 0.000 0.004 0.013 0.743 3.077 0.000 0.000 0.006 0.018 
20 0.000 −0.001 0.005 0.018 0.809 4.686 0.000 0.001 0.000 0.024 

 
Table 7. Summary statistics for multiplicative model (a = 1 and b = 0.2). 

Series 
ME MAE MSE MAPE RMSE 

LSE BBE LSE BBE LSE BBE LSE BBE LSE BBE 

1 0.998 0.998 0.998 0.998 0.996 0.996 13.107 13.097 0.998 0.998 
2 1.001 1.002 1.001 1.002 1.002 1.004 13.302 13.315 1.001 1.002 

3 1.000 1.001 1.000 1.001 1.001 1.003 13.292 13.304 1.001 1.002 

4 1.000 1.000 1.000 1.000 1.001 1.000 13.238 13.218 1.000 1.000 

5 1.001 1.001 1.001 1.001 1.002 1.003 13.278 13.281 1.001 1.001 

6 1.002 1.003 1.002 1.003 1.005 1.007 13.420 13.454 1.002 1.004 

7 0.999 0.998 0.999 0.998 0.998 0.996 13.171 13.143 0.999 0.998 
8 1.000 1.000 1.000 1.000 1.001 1.000 13.342 13.338 1.000 1.000 
9 1.000 1.000 1.000 1.000 1.000 1.000 13.234 13.232 1.000 1.000 

10 1.002 1.002 1.002 1.002 1.005 1.005 13.423 13.440 1.002 1.002 
11 1.001 1.001 1.001 1.001 1.003 1.004 13.333 13.364 1.001 1.002 
12 0.998 0.998 0.998 0.998 0.997 0.997 13.169 13.166 0.998 0.998 
13 0.999 1.000 0.999 1.000 0.999 1.000 13.280 13.280 1.000 1.000 
14 0.999 0.996 0.999 0.996 0.999 1.000 13.166 13.183 0.999 1.000 
15 1.001 1.001 1.001 1.001 1.003 1.003 13.374 13.379 1.001 1.001 

16 0.999 0.999 0.999 0.999 0.998 0.998 13.225 13.226 0.999 0.999 

17 1.000 1.000 1.000 1.000 1.000 1.000 13.251 13.257 1.000 1.000 

18 1.001 1.001 1.001 1.001 1.003 1.002 13.346 13.340 1.001 1.001 
19 0.998 0.998 0.998 0.998 0.997 0.996 13.170 13.148 0.999 0.998 
20 1.000 1.001 1.000 1.001 1.001 1.002 13.296 13.304 1.000 1.001 
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Table 8. Summary statistics for multiplicative model (a = 1 and b = 2.0). 

Series 
ME MAE MSE MAPE RMSE 

LSE BBE LSE BBE LSE BBE LSE BBE LSE BBE 

1 0.995 0.995 0.995 0.995 0.991 0.991 1.948 1.942 0.996 0.996 

2 1.002 1.002 1.002 1.002 1.004 1.005 2.062 2.065 1.002 1.003 

3 1.001 1.002 1.001 1.002 1.002 1.004 2.056 2.057 1.001 1.002 

4 1.000 0.999 1.000 0.999 1.000 0.999 2.025 2.021 1.000 1.000 

5 1.001 1.002 1.001 1.002 1.003 1.004 2.051 2.051 1.001 1.002 

6 1.005 1.006 1.005 1.006 1.012 1.014 2.147 2.159 1.006 1.007 

7 0.997 0.996 0.997 0.996 0.995 0.993 1.984 1.978 0.998 0.997 

8 1.001 1.001 1.001 1.001 1.003 1.003 2.093 2.095 1.002 1.001 

9 0.999 0.999 0.999 0.999 0.999 0.999 2.022 2.020 1.000 1.000 

10 1.005 1.006 1.005 1.006 1.012 1.013 2.155 2.168 1.006 1.006 

11 1.003 1.003 1.003 1.003 1.006 1.006 2.083 2.095 1.003 1.003 

12 0.996 0.996 0.996 0.996 0.993 0.993 1.979 1.977 0.997 0.996 

13 0.999 1.000 0.999 1.000 0.999 1.000 2.047 2.044 0.999 1.000 

14 0.998 0.998 0.998 0.998 0.996 0.997 1.984 1.985 0.998 0.999 

15 1.003 1.003 1.003 1.003 1.007 1.007 2.114 2.119 1.003 1.004 

16 0.998 0.998 0.998 0.998 0.996 0.997 2.015 2.014 0.998 0.998 

17 0.999 1.000 0.999 1.000 0.999 1.000 2.031 2.032 1.000 1.000 

18 1.003 1.003 1.003 1.003 1.006 1.006 2.093 2.097 1.003 1.003 

19 0.997 0.996 0.997 0.996 0.994 0.993 1.981 1.975 0.997 0.996 

20 1.001 1.001 1.001 1.001 1.002 1.003 2.056 2.058 1.001 1.001 

 
For the additive model the results are the same for the selected values of the slope 

parameter ( )0.02,0.2 and 2.0b = . Therefore, the summary statistics for b = 2 only is 
shown in Table 5. As Table 5 shows, the summary statistics (ME, MSE and MAE) for 
the two estimation methods (LSE and BBE) are equal both in magnitude and direction 
all the simulations. This indicates that the two methods are equally effective in estimat-
ing the trend parameters and seasonal indices when the model for decomposition is ad-
ditive. 

For the multiplicative model, Table 6 shows that for b = 0.02, the values of the sum-
mary statistics (ME, RMSE, MSE, MAE and MAPE) are equal in almost all the simula-
tions as in the additive model. However, for values of b = 0.2 and 2.0, Table 7 and Ta-
ble 8 show that the values of the summary statistics (ME, RMSE, MSE, MAE and 
MAPE) are unequal in most all the simulations and the difference increased as the val-
ue of b increased from 0.2 to 2.0. In other words, when a series is dominated by trend, 
not only do the estimates of the parameters by both methods become less precise; esti-
mates of the parameters from the two methods differ more widely from each other. 

It could be recalled that logarithm transformation can be used to transform the mul-
tiplicative model to become the additive model. In order to preserve the linearity of the 
trend, Iwueze and Akpanta [21] have shown that the trend parameters (a and b) satisfy 
the condition; 0.01 0.06b a− ≤ ≤ . Therefore, this lack of agreement between estimates 



I. S. Iwueze et al. 
 

1132 

from the two methods and the actual values when b = 0.2 and 2.0 may be attributable to 
the violation of the condition for successful transformation (linearization in this case). 
For b = 0.2 and a = 1, 0.2b a =  and for b = 2.0 and a = 1, 2.0b a = . 

For the Quadratic trend-cycle component, the empirical examples also consist of 106 
series of 120 observations each simulated from ( )2

t t tX a bt ct S e= + + + + , with  
1, 2.0, 3.0a b c= = =  and ( )0, 1.0te N σ∼ =  and jS  given in Table 4 for the addi-

tive model only. However, for want of space, the summary statistics for 20 simulations 
only are given in Table 9. As Table 9 shows, the summary statistics (ME, MSE and 
MAE) for the two estimation methods (LSE and BBE) are equal in almost all the simu-
lations. This indicates that the two methods are equally effective in estimating the trend 
parameters and seasonal indices when the model for decomposition is additive. 

For the Exponential trend-cycle component, the empirical examples also consist of 
106 series of 120 observations each simulated from ( )ct

t t tX be S e= + +  with 10b =  
and 0.02c =  and ( )0, 1.0te N σ =  and jS  given in Table 4 for the additive 
model only. The summary statistics for 20 simulations given in Table 10 shows that the 
summary statistics (ME, MSE and MAE) for the two estimation methods (LSE and 
BBE) are equal in almost all the simulations. This indicates that the two methods are 
equally effective in estimating the trend parameters and seasonal indices when the 
model for decomposition is additive. 
 
Table 9. Summary statistics for additive quadratic model (a = 1, b = 2 and c = 3). 

S/No 
ME MAE MAPE MSE RMSE 

LSE BBE LSE BBE LSE BBE LSE BBE LSE BBE 

1 0.00 0.00 0.00 0.00 −0.15 −0.11 0.88 0.99 0.94 1.00 

2 0.00 0.00 0.00 0.00 −0.06 −0.02 0.93 0.99 0.96 1.00 

3 0.00 0.00 0.00 0.00 −0.07 −0.09 0.88 0.99 0.94 1.00 

4 0.00 0.00 0.00 0.00 0.12 0.07 0.87 0.94 0.93 0.97 

5 0.00 0.00 0.00 0.00 0.07 0.04 0.90 0.97 0.95 0.98 

6 0.00 0.00 0.00 0.00 −0.34 −0.16 0.99 0.96 0.99 0.98 

7 0.00 0.00 0.00 0.00 0.01 −0.02 0.89 0.98 0.94 0.99 

8 0.00 0.00 0.00 0.00 0.06 0.07 0.86 0.89 0.93 0.94 

9 0.00 0.00 0.00 0.00 0.19 0.15 0.89 0.93 0.94 0.97 

10 0.00 0.00 0.00 0.00 −0.01 0.03 0.83 0.90 0.91 0.95 

11 0.00 0.00 0.00 0.00 0.13 0.10 0.91 0.94 0.95 0.97 

12 0.00 0.00 0.00 0.00 0.02 0.04 0.82 0.89 0.90 0.94 

13 0.00 0.00 0.00 0.00 −0.03 −0.03 0.88 0.95 0.94 0.97 

14 0.00 0.00 0.00 0.00 0.10 0.15 0.85 0.91 0.92 0.96 

15 0.00 0.00 0.00 0.00 0.15 0.20 0.86 0.92 0.93 0.96 

16 0.00 0.00 0.00 0.00 0.13 0.14 0.90 0.96 0.95 0.98 

17 0.00 0.00 0.00 0.00 0.04 0.05 0.94 0.96 0.97 0.98 

18 0.00 0.00 0.00 0.00 −0.14 −0.08 0.78 0.86 0.88 0.93 

19 0.00 0.00 0.00 0.00 −0.22 −0.15 0.89 1.02 0.95 1.01 

20 0.00 0.00 0.00 0.00 −0.03 −0.04 0.88 0.95 0.94 0.97 
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Table 10. Summary statistics for additive exponential model (b = 10 and c = 0.02). 

S/No 
ME MAE MAPE MSE RMSE 

LSE BBE LSE BBE LSE BBE LSE BBE LSE BBE 

1 0.03 0.03 0.03 0.03 0.09 0.09 0.89 0.89 0.94 0.94 

2 0.07 0.07 0.07 0.07 0.05 0.05 0.96 0.96 0.98 0.98 

3 0.05 0.05 0.05 0.05 0.09 0.09 0.89 0.89 0.94 0.94 

4 0.10 0.10 0.10 0.10 0.06 0.06 0.95 0.95 0.98 0.98 

5 0.06 0.06 0.06 0.06 0.03 0.03 0.92 0.92 0.96 0.96 

6 0.06 0.06 0.06 0.06 0.06 0.06 0.88 0.88 0.94 0.94 

7 0.05 0.05 0.05 0.05 0.09 0.09 0.90 0.90 0.95 0.95 

8 −0.03 −0.03 −0.03 −0.03 0.02 0.02 1.00 1.00 1.00 1.00 

9 0.07 0.07 0.07 0.07 0.02 0.02 0.90 0.90 0.95 0.95 

10 0.03 0.03 0.03 0.03 0.00 0.00 0.83 0.83 0.91 0.91 

11 0.06 0.06 0.06 0.06 0.10 0.10 0.93 0.93 0.96 0.96 

12 0.03 0.03 0.03 0.03 0.20 0.20 0.83 0.83 0.91 0.91 

13 −0.02 −0.02 −0.02 −0.02 0.05 0.06 0.98 0.98 0.99 0.99 

14 0.08 0.96 0.08 0.96 0.04 0.04 0.91 0.91 0.96 0.96 

15 0.03 0.03 0.03 0.03 0.08 0.08 0.87 0.87 0.93 0.93 

16 −0.02 −0.02 −0.02 −0.02 0.01 0.01 1.03 1.03 1.01 1.01 

17 0.04 0.04 0.04 0.04 0.07 0.07 0.94 0.95 0.97 0.97 

18 −0.63 0.06 −0.63 0.06 −2.88 0.07 2.77 0.79 1.66 0.89 

19 0.02 0.02 0.02 0.02 0.07 0.07 0.96 0.96 0.98 0.98 

20 0.06 0.14 0.06 0.14 0.15 0.47 0.88 0.90 0.94 0.95 

4. Summary, Recommendation and Conclusion 

This study has compared the estimates of trend parameters and seasonal indices from 
the Buys Ballot method with the results from the Least Squares Estimation (LSE) 
method for the linear, quadratic and exponential trending curves. The rationale for this 
study is to assess the performance of the Buys Ballot Estimation (BBE) method in rela-
tion to the Least Squares Estimation (LSE) method. 

The comparison of Least Squares Estimates and Buys-Ballot Estimates in this study is 
done using Accuracy Measures (the Mean Error (ME), Mean Square Error (MSE), the 
Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE)). 
These Accuracy Measures are defined, for each estimation procedure, in terms of the 
deviations of the parameter estimates (using simulated series) from the corresponding 
actual values used in the simulations. 

The results of the analyses show that, for the additive model the summary statistics 
(ME, MSE and MAE) are equal both in magnitude and direction all the simulations for 
the two estimation methods (LSE and BBE) and all the selected trending curves. This 
indicates that the two estimation methods are equally effective in estimating the trend 
parameters and seasonal indices when the model for decomposition is additive. 

For the multiplicative model (shown for linear trend only), results of the analyses 
show that when the slope b = 0.02, the values of the summary statistics (ME, RMSE, 
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MSE, MAE and MAPE) are equal in all the simulations as in the additive model. How-
ever, as the value of b increased from 0.02 to 2.0 the results show that the values of the 
summary statistics (ME, RMSE, MSE, MAE and MAPE) are unequal in all the simula-
tions and the difference increases with an increase in b. In other words, when a series is 
dominated by the trend, the estimates of the parameters by both methods become less 
precise and differ more widely from each other. This has been attributed to the viola-
tion of the condition for successful transformation (linearization in this case). It could 
be recalled that logarithm transformation of the multiplicative model to the additive 
model can preserve the linearity of a linear trend only if the trend parameters (a and b) 
satisfy the condition; 0.01 0.06b a− ≤ ≤  [21]). 

Therefore, when the model is additive, the estimates of trend parameters and sea-
sonal indices are the same for both estimation procedures. However, because of the in-
sight it gives into choice of model and detection of presence of seasonal effect, the BBE 
is recommended. 
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Appendix A 

Deviations of the Buys-Ballot and Least Squares estimates of the linear trend parame-
ters and seasonal indices from the Parameter values (for Additive model with a = 1and 
b= 2.0). 

 

S/no Parameter Parameter Value 
X1 X2 X3 

LSE Error BB Error LSE Error BB Error LSE Error BB Error 

1 1 aθ =  1.00 1.207 −0.207 1.198 −0.198 1.031 −0.031 1.016 −0.016 1.004 −0.004 1.018 −0.018 

2 2 bθ =  2.00 1.997 0.003 1.997 0.003 1.999 0.001 2.000 0.000 2.000 0.000 2.000 0.000 

3 3 1Sθ =  −0.89 −0.633 −0.257 −0.627 −0.263 −0.728 −0.162 −0.710 −0.180 −1.026 0.136 −1.002 0.112 

4 4 2Sθ =  −1.22 −1.503 0.283 −1.523 0.303 −1.029 −0.191 −1.010 −0.210 −0.886 −0.334 −0.901 −0.319 

5 5 3Sθ =  0.10 0.224 −0.124 0.180 −0.080 −0.268 0.368 −0.309 0.409 −0.027 0.127 −0.001 0.101 

6 6 4Sθ =  −0.15 −0.078 −0.072 −0.117 −0.033 −0.075 −0.075 −0.109 −0.041 −0.523 0.373 −0.501 0.351 

7 7 5Sθ =  −0.09 −0.455 0.365 −0.413 0.323 −0.021 −0.069 −0.009 −0.081 −0.554 0.464 −0.600 0.510 

8 8 6Sθ =  1.16 1.283 −0.123 1.290 −0.130 1.457 −0.297 1.492 −0.332 1.219 −0.059 1.200 −0.040 

9 9 7Sθ =  2.34 1.782 0.558 1.793 0.547 2.208 0.132 2.192 0.148 2.536 −0.196 2.500 −0.160 

10 10 8Sθ =  1.95 2.376 −0.426 2.397 −0.447 1.804 0.146 1.792 0.158 1.486 0.464 1.500 0.450 

11 11 9Sθ =  0.64 0.865 −0.225 0.900 −0.260 0.763 −0.123 0.792 −0.152 1.057 −0.417 1.101 −0.461 

12 12 10Sθ =  −0.73 −0.432 −0.298 −0.397 −0.333 −1.005 0.275 −1.007 0.277 −0.390 −0.340 −0.399 −0.331 

13 13 11Sθ =  −2.14 −2.566 0.426 −2.593 0.453 −2.438 0.298 −2.407 0.267 −2.355 0.215 −2.399 0.259 

14 14 12Sθ =  −0.97 −0.863 −0.107 −0.890 −0.080 −0.668 −0.302 −0.707 −0.263 −0.537 −0.433 −0.498 −0.472 

15 15θ µ=  0.00 0.000 0.000 0.002 −0.002 0.000 0.000 0.000 0.000 0.000 0.000 −0.001 0.001 

16 16θ σ=  1.00 0.944 0.056 0.944 0.056 0.974 0.026 0.974 0.026 0.945 0.055 0.945 0.055 

ME −0.009 −0.009 0.000 0.001 0.003 0.002 
MAE 0.221 0.219 0.156 0.160 0.226 0.228 
MSE 0.074 0.076 0.038 0.041 0.080 0.085 

Appendix B 

Deviations of the Buys-Ballot and Least Squares estimates of the linear trend parame-
ters and seasonal indices from the Parameter values (Multiplicative Model and b = 
0.02). 

 

S/no Parameter Parameter Value 
U1 U2 U3 

LSE Error BB Error LSE Error BB Error LSE Error BB Error 

1 1 aθ =  1.00 1.011 −0.011 1.009 −0.009 0.999 0.001 0.997 0.003 0.999 0.001 0.998 0.002 

2 2 bθ =  0.02 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 

3 3 1Sθ =  0.91 0.914 −0.004 0.938 −0.028 0.913 −0.003 0.910 0.000 0.908 0.002 0.914 −0.004 

4 4 2Sθ =  0.88 0.875 0.005 0.851 0.029 0.883 −0.003 0.888 −0.008 0.886 −0.006 0.901 −0.021 

5 5 3Sθ =  1.00 1.002 −0.002 0.995 0.005 0.993 0.007 0.992 0.008 0.998 0.002 0.966 0.034 

6 6 4Sθ =  0.98 0.981 −0.001 1.014 −0.034 0.982 −0.002 0.985 −0.005 0.973 0.007 0.973 0.007 

7 7 5Sθ =  0.98 0.973 0.007 0.968 0.012 0.981 −0.001 0.962 0.018 0.971 0.009 0.966 0.014 

8 8 6Sθ =  1.12 1.123 −0.003 1.136 −0.016 1.127 −0.007 1.124 −0.004 1.121 −0.001 1.136 −0.016 

9 9 7Sθ =  1.26 1.246 0.014 1.232 0.028 1.257 0.003 1.242 0.018 1.265 −0.005 1.295 −0.035 

10 10 8Sθ =  1.20 1.210 −0.010 1.193 0.007 1.197 0.003 1.243 −0.043 1.189 0.011 1.192 0.008 



I. S. Iwueze et al. 
 

1137 

Continued 

11 11 9Sθ =  1.05 1.055 −0.005 1.056 −0.006 1.053 −0.003 1.073 −0.023 1.059 −0.009 1.070 −0.020 

12 12 10Sθ =  0.92 0.926 −0.006 0.914 0.006 0.915 0.005 0.889 0.031 0.926 −0.006 0.901 0.019 

13 13 11Sθ =  0.80 0.793 0.007 0.799 0.001 0.795 0.005 0.777 0.023 0.797 0.003 0.773 0.027 

14 14 12Sθ =  0.90 0.902 −0.002 0.903 −0.003 0.905 −0.005 0.914 −0.014 0.908 −0.008 0.911 −0.011 

15 15θ µ=  1.00 1.000 0.000 1.000 0.000 1.000 0.000 1.001 −0.001 1.000 0.000 1.002 −0.002 

16 16θ σ=  0.02 0.019 0.001 0.025 −0.005 0.020 0.000 0.026 −0.006 0.019 0.001 0.026 −0.006 

ME 1.000 −0.001 1.000 −0.001 1.000 0.000 1.001 0.000 1.000 0.000 1.002 0.000 

MAE 1.000 0.005 1.000 0.012 1.000 0.003 1.001 0.013 1.000 0.005 1.002 0.014 

MAPE 51.441 0.840 51.418 2.834 51.528 0.470 51.639 3.271 51.529 0.799 51.657 3.368 

MSE 1.000 0.000 1.000 0.000 1.001 0.000 1.004 0.000 1.001 0.000 1.004 0.000 

RMSE 1.000 0.006 1.000 0.016 1.000 0.004 1.002 0.018 1.000 0.006 1.002 0.018 
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