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Abstract 
The harmonic oscillator with time-dependent (indefinite and variable) mass subject 
to the force proportional to velocity is studied by extending Bateman’s dual Lagran-
gian and Hamiltonian formalism. To study the quantum analog of such a dissipative 
system, the Batemann-Morse-Feshback classical Hamiltonian of the damped har-
monic oscillator with varying (time-dependent) mass is canonically quantized. In 
order to discuss the stability of the quantum dissipative system due to the influence 
of varying mass and the dissipative force, we derived a formula for the vacuum state 
of the dissipative system with the help of quantum field theoretical framework. It is 
shown that the formula based on this simple model could be used to study the influ-
ence of dissipation such as the instability due to the dissipative force and/or the va-
riable mass. It is understood that the change in the oscillator mass corresponds to a 
control parameter in quantum dissipative systems. 
 

Keywords 
Canonical Quantization, Dissipative System, Dumped Harmonic Oscillator, Variable 
Mass, Control Parameter 

 

1. Introduction 

The quantum damped oscillator has been studied by many researchers to understand 
dissipation in quantum theory since the damped harmonic oscillator is one of the 
simplest systems revealing the dissipation of energy. It is well known that quantum 
damped harmonic oscillator is studied within two representations of the model system. 
One representation is the Bateman-Feshbach-Tikochinsky (BFT) oscillator (often called 
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the Bateman oscillator) as a closed system with two degrees of freedom [1] [2]. The 
other representation is the Caldirola-Kanai (CK) oscillator as an open system with one 
degree of freedom [3] [4] [5]. 

The damped harmonic oscillator (DHO) is described by ( )x t  subject to the 2nd- 
order linear differential equation with constant coefficients, where coefficient ( )0γ >  
in the first derivative term is called a damping coefficient and k  is the harmonic 
coefficient while m  is the mass coefficient (constant):  

0,mx x kxγ+ + =                              (1) 

where the overdot denotes the derivative with respect to t . Depending on the relation 
between damping and harmonic coefficients we have three different cases and the general 
solutions of Equation (1) are:  

(a) The over-damping case: 2 2 24 0o m k mγΩ ≡ − > ,  

( ) ( ) 2
1 2e e e .o ot t t mx t C C γ+Ω −Ω −= +                       (2) 

(b) The critical-damping case: 2 2 24 0c k m mγΩ = − = ,  

( ) ( ) 2
3 4 e .t mx t C C t γ−= +                          (3) 

(c) The under-damping case: 2 2 24 0u k m mγΩ = − > ,  

( ) ( ) 2
5 6e e e .u ui t i t t mx t C C γ+ Ω − Ω −= +                      (4) 

The last case is the most interesting case and Celeghini et al. [6] rigorously studied 
classical and quantum damped harmonic oscillator with a constant mass. In this paper 
we will study the case where the oscillator’s mass changes with time. When 0γ = , 
Equation (1) is reduced to the standard harmonic oscillator equation of motion. 
Throughout the paper we consider the 0γ ≠  case along with a time-dependent mass 

( )m m t= , i.e., we consider dissipation by using the simple model. The harmonic 
oscillator described by Equation (1) represents a dissipative system of which energy is not 
conserved although the γ  is time-independent. In order to establish the canonical for- 
malism for the dissipative system we have to construct a Lagrangian-Hamiltonian form in 
any case. Bateman’s formulation [1] resolves this problem of dissipation, where the dyna- 
mics of the system is described by Equation (1) in the classical theory, see below.  

The BFT (Bateman) damped oscillator [1] [2] is regarded as an open system in which 
energy is dissipated by interacting with a heat bath. Bateman’s formulation [1] for the 
DHO resolves this problem of dissipation albeit the dynamics of the system is described 
by Equation (1). Bateman has shown that in order to apply the standard canonical 
formalism1 of classical mechanics to dissipative systems, one can double the numbers of 
degrees of freedom. The new degrees of freedom are assumed to represent a reservoir, 
also called heat bath. Applying this idea to the damped harmonic oscillator one obtains 
a pair of damped oscillators, so-called Bateman’s dual or mirror image system [1], re- 
presented by  

 

 

1In order to establish the canonical formalism for the dissipative systems we have to construct a Lagran-
gian-Hamiltonian form in any cases. 
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0, 0.mx x kx my y kyγ γ+ + = − + =                      (5) 

This closed system includes a primary one expressed by x -variable and its time 
reversed image by y -variable. According to this, the energy dissipated by the oscillator 
is completely absorbed at the same time by the mirror image oscillator, and thus the 
energy of the total system is conserved. Actually these equations can be derived from 
the Lagrangian:  

( ) .
2

mxy xy yx kxyγ
= + − −                         (6) 

It should be noted that this Lagrangian does not depend on time explicitly. By 
Legendre transforming Equation (6), Bateman obtained the Hamiltonian:  

( )
2

,
2 4

x y
x y y x

p p
xp yp yp xp k xy

m m m
γ γ 

= + − = + − + − 
 

           (7) 

where we used 2xp x my yγ= ∂ ∂ = −   and 2yp y mx xγ= ∂ ∂ = +  . The Bateman 
classical dual-Hamiltonian (7) has been rediscovered by Morse and Feshbach [7] and 
its detailed quantum mechanical analysis was performed by Feshbach and Tikochinski 
[2]. The quantum Bateman system for a DHO has been analyzed by many workers 
since it can be regarded as a simple dissipative model system. For review and references, 
see Ref. [8] [9] [10] [11]. We shall further exploit quantum mechanical treatments of 
the DHO by extending to the case where the oscillator mass is time-dependent. It is 
interesting to note that the time-dependent mass ( )m m t=  plays the same role of the 
control parameter for damping as the damping factor γ  in the DHO does in the 
dissipative system (see Equation (10), Section 2). 

In this paper, we treat the Hamiltonian formulation and quantization of the DHO 
where the oscillator mass is time-dependent and study the effect of these control para- 
meters ( )m t  and γ  on dissipation in quantum dissipative systems by examining the 
stability of vacuum state by using the simple model represented by the DHO with 
varying (time-dependent) mass by employing the theoretical scheme of Majima and 
Suzukii [11] and study dissipation in quantum dissipative systems in order to under- 
stand the dissipation in quantum dissipative systems.  

2. Classical Theory  

Let us consider the case where the oscillator’s mass is time-dependent: ( )m m t=  [12]. 
The kinetic momentum of the oscillator is then defined by  

( ) .p m t x≡                                (8) 

Now we differentiate Equation (8) with respect to t , we obtain  

( ) ( )d .
d

p m t x m t x
t

= +                           (9) 

When the oscillator with variable mass is subject to the external force exF x kxγ= − − , 
the equation of motion for the damped harmonic oscillator with variable mass ( )m t  is 
given by  
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( ) ( ) 0.m t x m t x x kxγ+ + + =                         (10) 

Thus, dynamics of the damped harmonic oscillator with variable mass ( )m t  is 
governed by this equation of motion. We note that the second term in Equation (10) 
arises due to the oscillator mass being time-dependent. Damping occurs from the two 
souces xγ−   and ( )m t x−    and thus the varying mass plays the same role as the 
damping coefficient γ , that could be a control parameter for the damping. 

By applying Bateman’s dual oscillator formulation, the equations of motion for the 
dual system of the damped harmonic oscillator (10) may be expressed by the following 
equations of motion:  

( ) ( ) ( ) ( )0, 0.m t x m t x x kx m t y m t y y kyγ γ+ + + = + − + =                 (11) 

If we do not employ an explicit time-dependent dissipative function, the Lagrangian 
leading to Equation (11) can be expressed by  

( ) ( ) .
2

m t xy xy yx kxyγ
= + − −                        (12) 

It is interesting to note that the form of Equation (12) is similar to Equation (6) but the 
mass m  is time-dependent: ( )m m t= . 

Lagrange equations of motion for the Lagrangian (12) reproduce correctly the dual 
equations of motion (11): the first equation represents a damped harmonic oscillator 
with variable mass, while the second one can be considered as its time-reversed image. 

Let us define the canonical momenta ( ),x yp p  for our dual oscillator system by 
using the Lagrangian (12):  

( ) ( ), .
2 2x yp m t y y p m t x x

x y
γ γ∂ ∂

≡ = − ≡ = +
∂ ∂
 

 

 

            (13) 

It should be noted that these canonical momenta defined in Equation (13) are different 
from the kinetic momenta defined by Equation (8). In order to obtain the Hamiltonian 
of this dual system, we apply Legendre transformation to the Lagrangian function (12) 
in a following way:  

( ) ( ) .
2x y x yxp yp xp yp m t xy xy yx kxyγ

= + − = + − − − +                (14) 

Expressing Equation (14) in terms of the canonical momenta ( ),x yp p  with the use of 
Equation (13), we can obtain the Hamiltonian function of the dual system for the 
damped harmonic oscillators with variable mass; by this transformation the velocities 
( ),x y   are transformed into the new variables of momenta ( ),x yp p . The Hamiltonian 
function ( ), , , ,x yx y p p t=   of the system can then be expressed by  

( ) ( ) ( ) ( )
2

.
2 4

x y
y x

p p
yp xp k xy

m t m t m t
γ γ 

= + − + −  
 

            (15) 

This is the extended Bateman dual-Hamiltonian for which Hamilton’s equations of 
motion reproduce correctly the doubled system. Since the energy of the total system is 
constant, the system of damped harmonic oscillator and its time-reversed image is a 
closed system described by the Hamiltonian function (15). We can write the canonical 
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equations of Hamilton as follows:  

( ) ( ) ( ) ( )
, ,

2 2
y x

x y

p px x y y
p m t m t p m t m t

γ γ∂ ∂
= = − = = +
∂ ∂

 

             (16) 

( ) ( ) ( ) ( )
2 2

, .
2 4 2 4x x y yp p k y p p k x

x m t m t y m t m t
γ γ γ γ   ∂ ∂

= − = − − = − = − − −      ∂ ∂   
 

   (17) 

The Hamilton equations of motion reproduce correctly the classical doubled damped 
harmonic oscillator systems. 

The Poisson brackets of the dual system are  

{ } { } { } { } { } { }, , 1,  , , , , 0.x y y x x yx p y p x p y p x y p p= = = = = =        (18) 

The Poisson bracket formulation of Hamilton’s equations is given by  

{ } { } { } { }, , , ; , , , .x x y yx x p p y y p p= = = =                (19) 

It should be noted that the Hamiltonian (15) is a constant of the motion since 
{ }, 0t= ∂ ∂ =   . It is thus concluded that the energy dissipated by the original 
oscillator is completely absorbed by the dual of the system.  

3. Quantum Theory 

Let us consider the quantal case. Canonical quantization for the dual Hamiltonian   
in Equation (15) can be done by applying the standard quantization rules:  

[ ] [ ]ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ; , 0 , ,x y x yx p i y p x y p p   = = = =                  (20) 

where position and momentum operators are denoted respectively by x̂ , ˆ xp , etc. The 
quantized Hamiltonian ̂  is then expressed by  

( ) ( ) ( ) ( )
2ˆ ˆˆ ˆˆ ˆ ˆ ˆˆ ,

2
x y

y x

p p
m t t xy yp xp

m t m t
γ  = + Ω + −            (21) 

where  

( ) ( ) ( )

1 2
21 .

4
t k

m t m t
γ  

Ω ≡ −      
                   (22) 

Note that the mass variable m  depends on time t , so that the common frequency of 
the two damped oscillators Ω  defined by Equation (23) also depends on time. Here 
and hereafter we drop hat ( )  from the operators for the sake of simplicity of the 
notations. 

Now we introduce the pairs of the annihilation and creation operators  
( ) ( )†,  = 1, 2j ja a j :  

( ) ( )
( ) ( )1

1 ,
2

xpa i m t t x
t m t

 
 ≡ − Ω
 Ω  

              (23) 

( ) ( )
( ) ( )†

1
1 ,

2
xpa i m t t x

t m t

 
 ≡ + Ω
 Ω  

              (24) 
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( ) ( )
( ) ( )2

1 ,
2

yp
a i m t t y

t m t

 
 ≡ − Ω
 Ω  

              (25) 

( ) ( )
( ) ( )†

2
1 .

2
yp

a i m t t y
t m t

 
 ≡ + Ω
 Ω  

              (26) 

The creation operator †
ja  is the Hermitian conjugate of the annihilation operator ja . 

These operators ja  and ( )†  1,2ja j =  satisfy the following commutation rules:  

[ ]† † †
1 1 2 2 1 2 1 2, 1 , , , 0 , .a a a a a a a a     = = = =                  (27) 

The Hamiltonian (21) can then be expressed in terns of these creation and annihila- 
tion operators:  

( ) ( ) ( ) ( ) ( )2 2 2 2
1 2 1 2 1 1 2 2 ,

4
it a a a a a a a a
m t
γ  = Ω + − − − − 


 † † † †        (28) 

where ( )tΩ  is given by Equation (23). 
The second-quantized Hamiltonian (28) is not a simple form and it is difficult to 

clarify the physical meaning of each term in the particle picture. We perform the 
following linear canonical transformation by introducing new operators   and  , 
which define the canonical transformations [9]:  

( ) ( )1 2 1 2
1 1, ,
2 2

a a a a≡ + ≡ −                  (29) 

and their conjugates, which resort to Equations (23)-(26). These new operators ( ),   
obey the same algebra as in Equation (27), that is, the following canonical commutation 
rules hold for the new operators ( )† †, , ,    :  

[ ]† † †, 1 , , , 0 , .     = = = =                         (30) 

Thus these operators construct a dual Hilbert (Fock) space = ⊗ H H H , where  

( )†,   on H  and ( )†,   on H . 
The Hamiltonian (21) in the Schrödinger picture (SP) can be expressed in terms of 

the new operators ( )† †, , ,     in a simple form:  

0 1;= +                             (31) 

( ) ( )† †
0 ,t≡ Ω −                          (32) 

( ) ( )† †
1 ,i t≡ Γ −                         (33) 

where ( ) ( )2t m tγΓ ≡ . We note that the Hamiltonians 0  and 1  in SP are both 
time-dependent through Ω  and Γ  since they depend on the time dependent mass 
( )m t . 
In order to see the effect of varying mass, let us define the vacuum states, 0


 for 

the system (A) spanned by the operator   and 0


 for the system (B) spanned by 
the operator  :  

0 0 0 .= =
 

                          (34) 
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Then the vacuum state of the Hamiltonian   on the dual Hilbert space can be 
described by the direct product of 0


 and 0


:  

0 0,0 0 0≡ ≡ ⊗ 
                      (35) 

since any operators on H  commutes with any operators on H . 
The SP evolution operator ( )0,t t  is generally expressed by  

( )
0

0, exp d ,
t

t

it t T t = −  ∫


                      (36) 

where the symbol T  designates the time-ordering operator. Then we can define a 
vacuum state at a time t  for a dissipative system as  

( )0 e 0 .i tt −≡                         (37) 

By using the Hamiltonain   expressed in terms of the operators ( ),   and their 
conjugate operators [see Equations (31)-(33)] and the relations (30) and (34), the 
vacuum state (37) can be evaluated straightforwardly. The vacuum state ( )0 t  at 
time t  is then explicitly given by  

( ) ( ) ( ) † †10 exp tanh 0 .
cosh

t t
t

 = Γ Γ
                (38) 

Recalling ( )2m tγΓ = , Equation (38) can be expressed by  

( ) ( ) ( )( ) † †10 exp tanh 2 0 .
cosh 2

t t m t
t m t

γ
γ

 =    
           (39) 

This equation forms the basis for further evaluation of the vacuum state of the system 
associated with oscillator’s variable mass and other parameters characterizing the 
system. In the following we consider the effect of variable mass ( )m t  on the dissipated 
system.  

4. Effect of Variable Mass 

Let us study the effect of variable mass/dissipative force on the present dissipative 
system by looking at the vacuum states with the use of Equation (39) since the vacuum 
state sensitively reflects the stability (dissipation) of the system. Here we consider the 
following cases: (i) ( ) 0m t m= , (ii) ( ) 0m t m t= , (iii) ( ) 1

0m t m t−= , and (iv) ( ) 0m t m=  
( )exp tγ , where 0m  is the mass value (constant) at 0t = . 

We first consider the case (i) for a constant mass, i.e., ( ) 0m t m= . The vacuum state, 
Equation (39), is then given by that of the damped harmonic oscillator obtained in Ref. 
[11]:  

( ) ( ) ( ) † †
0

0

10 exp tanh 2 0 .
cosh 2

t t m
t m

γ
γ

 =               (40) 

Figure 1 shows the time development of the vacuum state 0  in [ ],t∈ −∞ ∞ . 
Here we see that the physical vacuum 0  (solid line) increases with time, reaches its 
maximum value and then decreases. This asymmetric shape of the 0  vs. t  plot 
can be explained as follows: As seen from Equation (38), the vacuum state 0  is the  
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Figure 1. (Color online) The vacuum state ( )0 t  vs. t  for a TDM with 

( )2m tγΓ ≡ , where ( ) 0m t m= . 
 
product of ( )1 cosh tΓ  and ( )exp tanh tΓ   . The function ( )1 cosh tΓ  (dotted line) 
is symmetric about 0t = , which converges 0 at t = ±∞ , while the function ( )tanh tΓ  
increases monotonically with time for [ ]0,t∈ ∞ , where ( )tanh tΓ  takes the values 
between 0.1  and 1  for 1t = Γ . Accordingly, the monotonically increasing function 

( )exp tanh tΓ    converges about 2.5  for 2t = Γ . From these results, we can say 
qualitatively that ( )0 t , which is the product of ( )1 cosh tΓ  and ( )exp tanh tΓ   , 
has a peak at 2t = Γ , and then decreases monotonically and converges 0 as t  goes 
infinity. This asymmetry of the vacuum state seen in Figure 1 is due essentially to the 
presence of dissipative (resistive) force. In other words, this collapse of an initial state 
(instability of vacuum state) is characteristic of the dissipative system considered here. 
We may say that in our dissipative model system, the time reversal symmetry of the 
vacuum state breaks down essentially due to the presence of the time reversed resistive 
(damping) force in the present model system. 

Next we consider the case (ii). The vacuum state, Equation (39), is then given by  

( ) ( ) ( ) † †
0

0

10 exp tanh 2 0 .
cosh 2

t m
m

γ
γ

 =                (41) 

It is interesting to note that the vacuum state does not change with time when the mass 
changes linearly with time t . In such a case, the vacuum state remains in a static state. 
See Figure 2.  

Next we consider the case (iii), where the mass decreases with time: ( ) 1
0m t m t−= . 

The time development of the vacuum state 0  in [ ],t∈ −∞ ∞  is then shown in 
Figure 3. In this case, the vacuum state decays abruptly in a short period of time faster 
than the case for a constant mass 0m m=  (cp Figure 1). 

Finally we consider the case (iv), where the mass increases exponentially with time: 
( ) ( )0 expm t m tγ=  [see Figure 4]. The Kanai Hamiltonian [3] represents a particle of  
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Figure 2. (Color online) The vacuum state ( )0 t  vs. t  for a TDM 

with ( )2m tγΓ ≡ , where ( ) 0m t m t= . 
 

 

Figure 3. (Color online) The vacuum state ( )0 t  vs. t  for a TDM 

with ( )2m tγΓ ≡ , where ( ) 1
0m t m t−= . 

 

 

Figure 4. (Color online) The vacuum state ( )0 t  vs. t  for a TDM with 

( )2m tγΓ ≡ , where ( ) ( )0 expm t m tγ= . 
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varying mass, ( ) ( )0 expm t m tγ= . Indeed this type of mass change explains the pe- 
culiar quantum mechanical features of the system represented by the Kanai Hamil- 
tonian, when misinterpreted as representing a particle of fixed mass subject to a dam- 
ping force [11]. In our formulation, Equation (39) for ( ) ( )0 expm t m tγ=  is given by  

( ) ( ) ( ) † †
0

0

10 exp tanh e 2 0 .
cosh e 2

t
t

t t m
t m

γ
γ

γ
γ

−
−

 =             (42) 

In order to study the effects of the dissipative Hamiltonian 1  [cf. Equation (33)] 
on the vacuum state, one could directly compute ( )exp 0i t−   by making use of 
Equation (39) along with the Hamiltonian   [Equation (31)]. The vacuum-to-va- 
cuum (V-to-V) transition amplitude (viz., the vacuum survival probability amplitude) 
subject to 0  [Equation (32)] can be calculated straightforwardly. We generally 
obtain the V-to-V transition amplitude in the limit t →∞ :  

( ) ( )0 0 exp ln cosh 0.
t

t t
→∞

= − Γ →                    (43) 

These are of dissipative nature, their time evolution being controlled by e t−Γ  for large 
t , as Equation (43) shows. This is a general expression for the V-to-V transition 
amplitude in the presence of external force field, from which we can study the effects of 
the external and the dissipative force fields through 0  and 1  on the dissipative 
system expressed by the Hamiltonian   [see Equations (31)-(33)]. 

It has been shown that the proper way to perform the canonical quantization of the 
damped harmonic oscillator is to work in the framework of Quantum Field Theory 
(QFT) [13]. In our formulation for many degrees of freedom, ( )0 t  is formally (at 
finite volume) expressed by the free vacuum state ( )0 t  at time t  as  
( ) 0ˆ0 e 0i tt −≡  , which can be calculated straightforwardly by using the explicit 

form of the system Hamiltonian   [see Equations (31)-(33)]:  

( ) ( )

( ) ( )† † † †

0 exp 0

1exp 0 exp tanh 0 .
coshk k k k k k k k

k k k

t i t

t t
t

≡ −

 = Γ − = Γ Γ∑ ∏



     
   (44) 

In QFT we have to consider infinitely many degrees of freedom. Thus, by using the 
continuous limit relation ( )3 32π dk V k∑ ∫ , we obtain  

( ) ( )0 0 0   ,   with  ,
V

t t t t t t
→∞

′ ′ ′→ ∀ ≠                  (45) 

provided that 3d ln cosh kk tΓ∫  is finite and positive. Equation (45) means that the 
representation at a given time t  is unitarily inequivalent to the representation at any 
different time t t′ ≠  in the infinite volume limit: the system spans a whole set of 
unitarily inequivalent representations as time evolves (n.b. each of them is labeled by 
different values of t ).  

5. Summary and Conclusions 

To sum up, we have studied the DHO with a variable mass as a simple model for a 
dissipative system, following the theoretical scheme of Majima and Suzuki [11]. In 
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Section 2, we developed the classical theory for the DHO with a variable (time-de- 
pendent) mass ( )m t . By introducing the kinetic momentum ( )p m t x≡  , the equation 
of motion obtained for the DHO with a time-dependent mass, Equation (10), is dif- 
ferent from the DHO with a constant mass; as seen in Equation (10), the new force 
term ( )m t x−    appears in addition to the damping force xγ−  . This suggests the form 
of ( )m t  plays the same role as γ  in the damping force term. It is worth to mention 
that the replacement of m  by ( )m t  in the equation of motion (1) for the DHO is not 
allowed when we consider the dynamics for the DHO with a time-dependent mass 
(since the kinetic momentum ≠  the canonical momentum). The mass ( )m t  plays 
the same role as the damping constant γ . In other words, the time-dependent mass 
( )m t  could be regarded as the control parameter of damping (dissipation). Depending 

on the form of the time dependency of the mass, we expect that the oscillator mass 
( )m t  plays a passive or active role for the stability of the oscillator state and the 

dissipation. 
Introducing the canonical momenta (13) by using the obtained Lagrangian (12) for 

the time-dependent mass ( )m t , we obtained the classical Hamiltonian (15) in terms of 
the canonical momenta for the dissipative oscillator and its mirror image oscillator by 
applying the classical theory of Bateman’s dual oscillator formulation. 

In Section 3, we extended the theory developed in Section 2 to the quantum case, 
where we showed and discussed in detail how to derive the second quantized form of 
the Hamiltonian in terms of creation and annihilation operators ( )† ,a a  for this dual 
system. The resultant Hamiltonian (28) is not a simple form and it is hard to clarify the 
physical meaning of each term in the particle picture. We showed that the second- 
quantized Hamiltonian (28) can be expressed in a simple form by introducing new 
creation and annihilation operators ( )† †, , ,    , which construct a dual Hilbert 
(Fock) space = ⊗    , ( )†,   on   and ( )†,   on  . Then the 
Hamiltonian (28) can be expressed in a simple form (see Equations (31)-(33). 

In order to discuss the stability of the system arising from the change of oscillator 
mass in time, we focus on the change of the vacuum state of the system due to the 
change in the mass causing dissipation/stability of the system. We derived the general 
formula of the vacuum state 0  of the system (38), which forms the basis of the 
present study of stability of the dissipated system. We have shown that the stability of 
the system due to the mass change and/or other parameters characterizing the system 
can be studied by looking at the behaviour of a vacuum state since the vacuum state 
contains useful information on the system. 

In Section 4, we studied the effect of variable mass/dissipative force on the quantum 
dissipative system by using the formula (40). We considered the following cases: (i) 
( ) 0m t m= , (ii) ( ) 0m t m t= , (iii) ( ) 1

0m t m t−= , and (iv) ( ) ( )0 expm t m tγ= . Characte- 
ristic features of the time development of vacuum state ( )0 t  for a TDM listed above 
are shown Figures 1-4, respectively. 

Noticing that the time-dependent mass could be a control parameter for dissipation/ 
damping of the DHO with varying (time-dependent) mass, we developed the theory to 
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investigate dissipation (damping) in the quantum theory and quantum dissipated 
system by employing the DHO as the simple model system. The time-dependent oscil- 
lator mass ( )m t  as well as the damping factor γ  plays an important role for damping 
(dissipation). Controlling these parameter, we can study the effect of dissipation in 
quantum dissipative systems. 
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