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Abstract 
Without the successful work of Professor Kakutani on representing a unit vector 

space as a dense vector sub-lattice of ( )( ), ⋅C X  in 1941, where X is a compact 

Hausdorff space and C(X) is the space of real continuous functions on X. Professor 
M. H. Stone would not begin to work on “The generalized Weierstrass approxima-
tion theorem” and published the paper in 1948. Latter, we call this theorem as 
“Stone-Weierstrass theorem” which provided the sufficient and necessary conditions 

for a vector sub-lattice V to be dense in ( )( ), ⋅C X . From the theorem, it is not 

clear and easy to see whether 1) “the vector sub-lattice V of C(X) contains constant 
functions” is or is not a necessary condition; 2) Is there any clear example of a vector 

sub-lattice V which is dense in ( )( ), ⋅C X , but V does not contain constant func-

tions. This implies that we do need some different version of “Stone-Weierstrass 
theorem” so that we will be able to understand the “Stone-Weierstrass theorem” 
clearly and apply it to more places where they need this wonderful theorem. 
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1. Introduction 

Throughout this paper, [T]<ω denotes the collection of all finite subsets of the given set 
T, “nhood” represents the word “neighborhood”, C(Z) (or C(X)) is the space of real (or 
bounded real) continuous functions on compact Hausdorff space Z (or X), and ||⋅|| is 
the supremum norm; i.e., ( ) ( ){ }Sup or f f x x Z X= ∈ . For the other terminologies 
in Functional Analysis or General Topology which are not explicitly defined in this pa-
per, the readers will be referred to the References [1] [2]. 

Works on the sufficient and necessary conditions for a vector sub-lattice or vector 
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sub-algebra V to be dense in ( )( ), ⋅C Z  were initiated in 1941 when Professor Kaku-
tani tried to represent an order unit space V as a dense vector sub-lattice of ( )( ), ⋅C Z . 
It seemed that at that time Professor Kakutani did not know the sufficient and neces-
sary conditions for a vector sub-lattice V to be dense in ( )( ), ⋅C Z . But it is clear that 
Professor Kakutani knew that a vector sub-lattice V is dense in ( )( ), ⋅C Z  if 1) V se-
parates points of Z; and 2) V contains constant functions. In 1948, when Professor M. 
H. Stone published the “Generalized Weierstrass approximation theorem”, as I know, 
he did give honor and credit to Professor Kakutani for the work in inspiring the paper 
M. H. Stone published in 1948. In my personal opinion, a) V separates points of Z and 
b) V contains constant functions are sufficient conditions for a vector sub-lattice V to 
be dense in ( )( ), ⋅C Z . It seemed that it first appeared in Professor Kakutani’s paper 
in1941. So, we should call this theorem as “Kakutani’s theorem”. Therefore, we will cite 
the Theorem 3.4 as Kakutani’s Theorem in Section 3 and prove it with the results either 
in Section 2 or in a Theorem of Section 4. 

2. A Characterization of Compact Sets 

Due to the lack of original document in proving X in Section 3 is compact by Professor 
Kakutani. We insert this section as Section 2 to develop some necessary results for 
proving that X is a compact Haudorff space. Let A be a family of continuous functions 
on a topological space Y. A net { }ix  in Y is called an A-net if ( ){ }if x  converges for 
all f in A. 

Proposition 2.1 Let { }A fα α= ∈Λ  be a family of continuous functions fα on Y 
into Hausdorff spaces Yα such that the topology on Y is the weak topology induced by 
A. E, F two subspaces of Y such that ( )Cl⊆ ⊆E F E , where Cl(E) is the closure of E 
in Y. Then the following are equivalent: 1) Every A-net in E has a cluster point in F. 2) 
Every A-net in F converges in F.  

Proof. Let { }jy  be an A-net in F. For each yj, pick a net { }jix  in E converging to yj. 
For each fα in A, ( ){ }a jf y  converges to a point zα in Yα and ( ){ } ( )lim j

a i a jf x f y= , 
for each open nhood tOα  of zα, there is an txα  in E such that ( )t t

af x Oα α∈ . Thus for 
any wH L<∈  and t

HO  = { |t tO Oα α  is an open nhood of zα, α is in H}, there is an t
Hx  

in E such that ( )t
a Hf x  is in tOα  for each α in H. Direct ( ){ , wH t H <∈Λ , tOα  is an 

open nhood of zα, }a H∈  by setting that ( ) ( )1 1 2 2, ,H t H t≥  iff 1 2H H⊃  and  
1 2t tO Oα α⊂  for each α in H2. Then { }t

Hx  is an A-net in E. (1) implies that { }t
Hx  has a 

cluster point x in F. Since Yα is Hausdorff and ( ){ }t
a Hf x  converges for each α in Λ, 

thus ( ){ }t
a Hf x  converges to ( )af x  for each α in Λ. This implies that  
( ){ } ( )lim a j af y f x=  for each α in Λ. Thus { }jy  converges to x in F. (2) implying (1) 

is obvious.   
Theorem 2.2 Let A be a family of continuous functions on a topological space Y. 

Then Y is compact iff 1) f(Y) is contained in a compact subset Cf for each f in A, and 2) 
every A-net has a cluster point in Y. 

Proof. Let { }ix  be an ultranet in Y. For each f in A, ( ){ }if x  is an ultranet in Cf, 
hence converges in Cf; i.e., { }ix  is an A-net. (2) implies that { }ix  has a cluster point 
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x in Y. Since { }ix  is an ultranet, { }ix  converges to x. Thus, Y is compact. The con-
verse is obvious.   

Corollary 2.3 Let A be a family of continuous functions on Y into Hausdorff spaces 
such that the topology on Y is the weak topology induced by A. E a subspaces of Y then 
Cl(E) is compact iff 1) ( )( )Cl f E  is compact for each f in A, and 2) every A-net in E 
converges in Cl(E). 

3. Kakutani Theorem 

Definition 3.1 An element e in a vector lattice V is called an order unit if for every v in 
V, there is a r > 0 such that |v| ≤ re.  

Definition 3.2 A topological vector lattice V is called an order unit space if V con-
tains an order unit e such that the topology on V is equivalent to the topology induced  
by the unit norm { }Inf 0

e
v r v re= > ≤  for every v in V. 

Let L be the collection of all real continuous lattice homomorphisms t on the order 
unit space ( ), e⋅V . Equip L with the weak topology induced by V. Then V is a space 
of real continuous functions on L. From now on, we regard every v in V as a real con-
tinuous function on L defined by ( ) ( )v t t v=  for all t in L. It is obvious that: 

1) V separates points of L: Since for any two different points s and t in L, s and t are 
two different real continuous lattice homomorphisms on ( ), e⋅V , thus there is a v in 
V such that ( ) ( )s v v≠ t ; i.e. ( ) ( )v s v≠ t . This implies that V separates points of L. 

2) L is a Hausdorff space : Since the topology on L is the weak topology induced by V, 
V is a set of real continuous functions on L and V separates point of L, therefore, L is a 
Hausdorff space. Let ( ){ }1X t t e= ∈ =L , then X is a Hausdorff space. I believe that 
Professor Kakutani had proved that X is compact. We have no document available to 
see his proof. Let’s prove it by Corollary 2.3 in this paper as the following: 

Theorem 3.3 X is a compact Hausdorff space. 
Proof. By the setting, { }( )1 1X e−= , then X is closed; i.e., ( )Cl X X= . Let’s prove 

that X satisfies (1) and (2) in Corollary 2.3: 1) For each v in V, there is a n in ℕ such 
that v ne< , thus ( ) ( )v x ne x n< = ; i.e. ( ){ } [ ]Cl  is in ,v x x X n n⊆ − . So,  

( ){ }Cl  is in v x x X  is compact. 2) Let { }ix  be a V-net in X. Let r be the function 
from V to ℝ defined by ( ) ( ){ }lim ir v v x= , it can be readily proved that r is a real lat-
tice homomorphism on V such that ( ) 1r e = ; i.e. r is in X and { }ix  converges to r. By 
Corollary 2.3 ( )Cl=X X  is compact.   

Next, we will use the result of Stone-Weierstrass theorem (Theorem 4.1) to prove 
that V is dense in ( )( ), ⋅C X . 

Kakutani’s Theorem 

Theorem 3.4 Let V be a vector sub-lattice of C(X) such that 1) V separates points of X, 
and 2) V contains constant functions, then V is dense in ( )( ), ⋅C X . 

Proof. We are going to show that for any f in C(X), any x, y in X and any ε > 0, there 
is a g in V such that ( ) ( )f x g x ε− <  and ( ) ( )f y g y ε− < : For any x and y in X, 
since V separates points of X, pick a k in V such that ( ) ( )k x k y≠ . Then  
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( ) ( )k x f xα β+ =  and ( ) ( )k y f yα β+ =  has a unique pair of solutions for α and β. 
Since V contains constant function, let g kα β= + , then g is in V such that  

( ) ( ) 0f x g x ε− = <  and ( ) ( ) 0f y g y ε− = < . By the Stone-Weierstrass theorem, 
V is dense in ( )( ), ⋅C X .   

Notes: 
1) A lot of textbooks of Functional Analysis listed The above theorem as the “Stone- 

Weierstrass Theorem”. I strongly disagree on it. 
2) In my opinion, the above Theorem 3.4 should be named as Kakutan’s theorem. 

Because Professor Kakutani used the result of this theorem to represent an order unit 
space ( ), e⋅V  as a dense subspace of ( )( ), ⋅C X , where X is compact Hausdorff 
space. 

4. A New Version of Stone-Weierstrass Theorem for ( )( ), ⋅C X  

Due to that the closure of a sub-algebra is a vector sub-lattice of C(X) (by Lemma 44.3 
in the Reference [1], p. 291), therefore, the sufficient and necessary conditions for a 
vector sub-lattice V of C(X) to be dense in ( )( ), ⋅C X  are also the sufficient and ne-
cessary conditions for a vector sub-algebra of C(X) to be dense in ( )( ), ⋅C X . Let’s 
cite “The generalized Wierstrass approximation theorem” in the Reference ([3], p, 170) 
as the Theorem 4.1 in the following:  

Theorem 4.1. Stone-Weierstrass Theorem 
Let Z be a compact Hausdorff space. A vector sub-lattice or a sub-algebra V of C(Z) 

is dense in ( )( ), ⋅C Z  iff 1) V separates points of Z, and 2) for any f in C(Z), any x, y 
in Z, and any ε with 0 < ε < 1, there is a g in V such that ( ) ( )f x g x ε− <  and 

( ) ( )f y g y ε− < . 
Theorem 4.2. New Version of Stone-Weierstrass 
Theorem 
Let Z be a compact Hausdorff space. A vector sub-lattice or sub-algebra V of C(Z) is 

dense in ( )( ), ⋅C Z  iff 1) V separates points of Z, and 2) for any x in Z, and any ε 
with 0 < ε < 1, there is a g in V such that ( )1 g x g ε− < .  

To show the equivalence between Theorem 4.1 and Theorem 4.2, it is enough to 
show the equivalence between the following statements (A) and (B): 

(A) for any f in C(Z), any x, y in Z and any ε with 0 < ε < 1, there is a g in V such that 
( ) ( )f x g x ε− <  and ( ) ( )f y g y ε− < . 
(B) for any x in Z and any ε with 0 < ε < 1, there is a g in V such that 

( )1 g x g ε− < . 
Proof. (A) ⇒ (B): Let h1 be the function in C(Z) such that ( )1 1h x =  for all x in Z. 

Then for each x in Z and any ε with 0 < ε < 1, there is a kx in V such that 
( ) ( ) ( )1 1 2xh x k x kx x ε− = − < ; i.e. for any ε with 0 < ε < 1, ( )1 2 1 2xk xε ε− < < + . 

For each x in Z, let ( )( )1 1 2,1 2x xO k ε ε−= − + . Then x Z xO∈⊂ ∪Z . Since Z is compact, 
there exist 1 2, , , nx x x  in Z such that { }: 1, 2, ,

ixO i n⊆ ∪ = Z . Let  
{ }Sup 1, 2, ,ig kx i n= =  . Then g is in V and for all x in Z, ( )1 2 1 2g xε ε− ≤ ≤ + . 
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Thus ( ) ( ) ( )1 1 1 2 1 2g x g ε ε ε− < − − + < . 


 
(B) ⇒ (A): Let ( )f ∈C Z . For every ε > 0 and any two points x, y in Z, let k be in V 

such that ( ) ( )k x k y≠ . Without loss of generality, assume that there exist α, β in ℝ, 
0α ≠  such that ( ) ( )k x f xα β+ =  and ( ) ( )k y f yα β+ = . Pick r, s in V such that 
( )1 r x r aε− <  and ( )1 s x s aε− < . Let ( )Sup ,t r r s s=  and  

g t kα β= + . Then g is in V satisfying that  

( ) ( ) ( ) ( ) ( ) ( )1 1f x g x t x r x rα α ε − = − ≤ − <  , and  

( ) ( ) ( ) ( ) ( ) ( )1 1f y g y t y s y sα α ε− = − ≤  −  <  .   
Theorem 4.3. Theorem 4.1 and Theorem 4.2 are equivalent. 
Remark 4.4:  
1) If the vector sub-lattice or sub-algebra V in the Theorem 3.4 contains constant 

functions, (without using Theorem 4.1) then let g be the function such that ( ) 1g x =  
for all x in Z, it is clear that the condition 2) in Theorem 4.2 is satisfied, thus by Theo-
rem 4,2, the vector sub-lattice or sub-algebra V in Theorem 3.4 is dense in ( )( ), ⋅C Z . 

2) It is also clear to get an example of a vector sub-lattice V that is dense in 
( )( ), ⋅C Z , but V does not contain constant functions. See the example in the follow-

ing:  
Example. For each ( )0,1t∈ , let ( ) 1te x = , if x = t; ( ) ( )2te x x t t= − , if [ ]2,x t t∈ ; 
( ) ( ) ( )2 1 1te x x t t= − − − , if ( ), 1 2x t t∈ +   ; ( ) 0te x = , otherwise. Let ( )0 1e x = , if 

0x = ; ( )0 2 1e x x= − + , if [ ]0,1 2x∈ ; ( )0 0e x = , otherwise. Let ( )1 1e x = , if 1x = ; 
( )1 2 1e x x= − , if [ ]1 2,1x∈ ; ( )1 0e x = , otherwise. Let V be the vector sub-lattice of 
[ ]( )0,1C  generated by [ ]{ }: 0,1te t∈ . Then V does not contain constant functions, 

and V is dense in [ ]( )( )0,1 , ⋅C , by Theorem 4.2. 

5. Conclusions 

1) The Stone-Weierstrass Theorem is a great and wonderful theorem. We provided 
new version of Stone-Weierstrass Theorem, simply trying to understand the theorem 
better and trying to obtain more applications to where it should be.  

2) It must be a tough work for getting sufficient and necessary conditions for a vector 
sub-lattice V to be dense in ( )( ), ⋅C X . It is not surprised for a mathematician to 
spend three years or more to get it. Recently, I heard that some publishers or editors of 
mathematical journals claimed that they could publish more than 50, 60, 80 or 90 multi- 
authors’ papers in a year. Is it possible? Do you believe it? Any comments or informa-
tion are welcome. 
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