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Abstract 
In this paper, auxiliary information is used to determine an estimator of finite popu-
lation total using nonparametric regression under stratified random sampling. To 
achieve this, a model-based approach is adopted by making use of the local poly-
nomial regression estimation to predict the nonsampled values of the survey variable 
y. The performance of the proposed estimator is investigated against some design- 
based and model-based regression estimators. The simulation experiments show that 
the resulting estimator exhibits good properties. Generally, good confidence intervals 
are seen for the nonparametric regression estimators, and use of the proposed esti-
mator leads to relatively smaller values of RE compared to other estimators. 
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1. Introduction 

Sample surveys’ main objective is to obtain information about the population, and then 
use such information to make inference about some population quantities. The 
information that is mostly sought about the population is usually aggregate values of 
various population characteristics, total number of units, proportion of units having 
certain attributes. The information can be collected by either sampling methods or 
census. One of the approaches to using auxiliary information in construction of 
estimators is by assuming a working model that describes the relationship between the 
survey variable and the auxiliary variable. Estimators are then derived based on this 
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model. At this stage, estimators are sought to have good efficiency given that the model 
is true. In most cases, a linear model is assumed. Generalized regression estimators by 
[1] and [2] including linear regression estimators and ratio estimators by [3], and best 
linear unbiased estimators by [4] and [5] and post-stratification estimators by [6] as 
well are all derived from the assumption of linear models. Sometimes the linear model 
fails, and therefore, the resulting estimators do not beat the purely design-based 
estimators. As a result, [7] proposed a class of estimators in which the working model 
assumes a nonlinear parametric model. The improvement of the efficiency of such 
estimators, however, requires prior information about the exact parametric population 
structure. As a result of these concerns, several researchers have so far considered 
nonparametric models for ξ . Nonparametric regression may be used in the estimation 
of unknown finite population quantities such as population totals, means, proportions 
or averages. The idea of nonparametric regression traces its origin in works by [8] and 
[9]. Nonparametric-based estimation is often more robust and flexible than inference 
based on parametric regression models or design probabilities (as in designed-based 
inference) [10]. In sample surveys, auxiliary information is used at the estimation stage 
of finite population quantities-population total or mean, say-to increase the precision 
of estimators of such population quantities [11] [12] [13]. 

A variety of approaches exist for construction of more efficient estimators for 
population total or mean, and they include model-based and design-based methods. 
Model-based approach in sample surveys is based on superpopulation models, which 
assumes that the population under study is a realization of a random variable having a 
superpopulation model ξ . This model ξ  is used to predict the nonsampled values of 
the population, and hence the finite population quantities, total Y  or mean Y  [13]. 
[14] first considered nonparametric models for ξ  within a model-assisted approach 
and obtained a local polynomial regression estimator as a generalization of the ordinary 
generalized regression estimator. Their simulation study shows that the proposed 
estimator performs relatively better than other parametric estimators. [13] improved on 
[14] estimator and developed a model-based local polynomial regression estimator 
applicable to direct sampling designs such as simple random sampling and systematic 
sampling. Their estimator demonstrates better performance than [14] model-assisted 
estimator. Their estimator also beats other parametric estimators. 

In this paper, auxiliary information is used to determine an estimator of finite 
population total using nonparametric regression under stratified random sampling. To 
achieve this, a model-based approach is adopted by making use of the local polynomial 
regression estimation to predict the nonsampled values of the survey variable y. 
Stratified estimators for finite population total Y  or mean Y  have proved to yield 
better estimators than those resulting from simple random sampling [15] [16]. 
Additionally, it has been shown in the literature that local polynomial approximation 
method has several nice features including satisfactory boundary behaviour, easy 
interpretability, applicability for a variety of design-circumstances and nice minimax 
properties (see [17] [18] and [19]). 
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2. Proposed Estimator 
Consider a population consisting of N units. Suppose this population is divided into H 
disjoint strata, each of size , 1, 2, ,hN h H=  . 

Let , 1, 2, ,hj hy j N=   be the survey measurement for the thj  unit in the thh  stra- 
tum. Further, let , 1, 2, ,hj hx j N=   be the auxiliary measurement positively correlated 
with hiy . 

From each stratum, a simple random sample of size hn  is selected without replace- 
ment, where hn  is sufficiently large with respect to hN  and 0h h hf n N= → . 

Let hs  be the sample in the thh  stratum and hr  be the nonsampled set in the thh  
stratum. 

The population total is defined as  

1 1 1 1 1 1

h h h

h

N n NH H H

hj hj hj
h j h j h j n

Y y y y
= = = = = = +

= = +∑∑ ∑∑ ∑ ∑                     (1) 

which can rewritten as  

1 1
s r

H H

h h
h h

Y y y
= =

= +∑ ∑                            (2) 

where 
1

h

s

n

h hj
j

y y
=

= ∑  and 
1

h

r
h

N

h hj
j n

y y
= +

= ∑ . 

Once the sample has been observed, the problem of estimating Y becomes the 
problem of predicting the sum of the nonsampled hjy s′ . Usually, inference is made 
using the known sample and the model ξ . 

The first component in Equation (1) is known while the second requires prediction 
which is the focus in this paper. In this paper, local polynomial regression method will 
be used to predict the unknown hjy s′ , hj r∀ ∈ . 

Suppose the distribution generating hjy s′  is given by the superpopulation model, ξ  
in which  

( )hj hj hjy m x e= +                            (3) 

where hje s′  are independently distributed random variables with mean 0 and variance 
( )2

hjxσ . 
Then it follows that  

( ) ( )hj hjE y m x=                            (4) 

( ) ( )2 , for and
,

0, otherwise
hj

hj h j

x h h j j
Cov y y

σ
′ ′

 ′ ′= == 


             (5) 

where ( )2 xσ  and ( )m x  are assumed to be continuous and twice differentiable fun- 
ctions of x, and ( )2 0xσ > . 

In practice, the values of ( )m x  are unknown and so requires prediction. Adopting 
[13] [14] and [20] ideas, we make use of local polynomial regression of degree p, which 
is a generalization of the kernel smoothing, to predict the unobserved hjy s′  in Equation 
(1). Let ( ) ( )1

bK u b K u b−= , where K denotes a continuous kernel function and b is the 
bandwidth. 
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Then a model-based local polynomial regression estimator of the nonsampled hjy s′  
in the thh  stratum is given by: 

( ) 1T T T T T
1ˆ hj hj hj hj hj hj hjm e X W X X W y w y

−
= =                    (6) 

where ( )T
1 1,0,0, , 0e =   is a column vector of length 1p + ; 

h
hj j s

y y
∈

 =   ;  

( ){ }
h

hj b hj hi j s
W diag K x x

∈
= −  and ( ) ( )1, , ,

h

p
hj hj hi hj hi

j s
X x x x x

∈

 = − −  
 . Equation (6)  

holds as long as T
hj hj hjX W X  is a nonsingular matrix. 

Now denoting the estimator for the finite population total by L̂PY  and the estimator 
within the thh  stratum by ˆ

hLPY . Therefore, in stratum h, the estimator of the popu- 
lation total based on local polynomial regression is  

1

ˆ ˆ
h

h s
h

N

LP h hj
j n

Y y m
= +

= + ∑                           (7) 

and the estimator for the finite population total is  

1 1 1

ˆ ˆ ˆ
h

h s
h

NH H

LP LP h hj
h h j n

Y Y y m
= = = +

 
= = + 

 
∑ ∑ ∑                     (8) 

with 
1

h

s

n

h hj
j

y y
=

= ∑ . 

3. Properties of Proposed Estimator 

In this section, a study is carried out on various properties of estimator (8), which may 
be important in practice. In doing so, the following assumptions are made:  

1) The regression function ( )m x  has a bounded second derivative. 
2) The marginal density, ( )Xf x  is continuous and ( ) 0Xf x > . 
3) The conditional variance ( ) ( )2 varx Y X xσ = =  is bounded and continuous. 
4) The kernel density function ( )K x  is bounded and continuous satisfying the  

following: ( )d 1K x x
∞

−∞

=∫ , ( )d 0xK x x
∞

−∞

=∫ , ( )2 d 0x K x x
∞

−∞

>∫  and ( )2 dtx K x x
∞

−∞

< ∞∫   

for 1, 2,t =  . 
These conditions on ( )K ⋅  were imposed and used in [18] work and are purposely 

for the convenience of technical arguments and therefore can be relaxed. 

3.1. ˆ
LPY  Is Asymptotically Model-Unbiased 

Now consider the difference: 

1 1 1 1

ˆ ˆ
s s

h h

H H H H

LP h hj h hj
h h j r h h j r

Y Y y m y y
= = ∈ = = ∈

   
− = + − +   

   
∑ ∑∑ ∑ ∑∑              (9) 

( )
1

ˆ
h

H

hj hj
h j r

m y
= ∈

= −∑∑                           (10) 

( ) ( )( )
1

ˆ
h

H

hj hj hj hj
h j r

m m m y
= ∈

= − + −∑∑                     (11) 
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and taking expectation yields  

( ) ( ) ( )
1 1

ˆ ˆ
h h

H H

LP hj hj hj hj
h j r h j r

E Y Y E m m E m yξ ξ ξ
= ∈ = ∈

− = − + −∑∑ ∑∑            (12) 

( )
1

ˆ
h

H

hj hj
h j r

E m mξ
= ∈

= −∑∑                          (13) 

since ( )hj hjE y mξ =  
i.e. 

( ) ( )
1

ˆ ˆ
h

H

LP hj hj
h j r

E Y Y E m mξ ξ
= ∈

− = −∑∑                     (14) 

which is the bias associated with L̂PY . 
Approximating hjm  by Taylor series expansion about a point hjx  and assuming 

further that hn →∞  and 0b → , then observe that  

( ) ( ) ( )2
ˆ 1 2 .hj hj hj hj hi hj hj him m m x x m x x′ ′′≈ + − + − +              (15) 

Letting ( )hj hi hj hiu x x b ub x x= − ⇒ = − , then  

( ) ( ) ( ) ( )2 2ˆ 1 2hj hj hj hjm m m ub m ub O b′ ′′≈ + + +                 (16) 

( ) ( ) ( ) ( )2 2ˆ 1 2hj hj hj hjm m m ub m ub O b′ ′′⇒ − ≈ + +                (17) 

and applying expectations then  

( ) ( ) ( ) ( )( ) ( )2 2ˆ 1 2hj hj hj hjE m m E m ub m ub O bξ ξ ′ ′′− = + +             (18) 

Theorem 3 of [21] allows that under conditions (1)-(4) if 0b →  and hn b →∞ ,  

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

2 2

2 2 2

1 2

d 1 2 d

hj hj

hj b hj b

E m ub m ub O b

m b uK u u m b u K u u O b

ξ ′ ′′+ +

′ ′′→ + +∫ ∫
             (19) 

( ) ( ) ( )2 2 21 2 dhj bm b u K u u O b′′= +∫                      (20) 

So that  

( ) ( ) ( ) ( )2 2 2ˆ 1 2 dhj hj hj bE m m m b u K u u O bξ ′′− = +∫                (21) 

It implies that ( )ˆ 0hj hjE m mξ − →  provided that 0b →  and hn →∞ , and thus 

L̂PY  is asymptotically model-unbiased. 

3.2. Mean Square Error (MSE) of ˆ
LPY  

The estimator (8) has the MSE  

( ) ( )2ˆ ˆ
LP LPMSE Y E Y Yξ= −                         (22) 

which can be decomposed as  

( ) ( ) ( )2ˆ ˆ ˆ
LP LP LPMSE Y Bias Y Var Y = +                    (23) 

Theorem 1 of [18] allows that under Condition (1), if , 0 1hb dn γ γ−= < <  then 
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( ) ( ) ( )

( ) ( ) ( ) ( )( )

2
4 2

1

11 1 1 2 2 4

1

ˆ 4 d
h

h

H

LP hj b
h j r

H

h hj hj b h
h j r

MSE Y b m u K u u

b n f x x K u O b n bσ

∞

= ∈ −∞

∞
−− − −

= ∈ −∞

 
′′=  

 

+ + +

∑∑ ∫

∑∑ ∫
    (24) 

Observe that Equation (24) tends to zero if 0b →  and hn b →∞  and thus  

( )ˆ 0LPMSE Y → . 
This shows that L̂PY  is statistically consistent and thus useful. 

4. Simulation Study 

In this section, a study is carried out on the practical performance of several estimators 
(see Table 1 and Table 2 for the estimators). 

The first estimator is design-based, the second one is parametric and model-based 
while the last two are nonparametric and model-based. 

4.1. Description of the Population 

The working model is taken to be ( ) ( )hj hjE y m x= , ( ) 2,hj h jCov y y σ′ ′ = . In this study, 
four populations are considered, which are generated from the regression model given 
by  

( )i i iy m x e= +                           (25) 

1 2000i≤ ≤  with the following mean functions  

( ) ( )1: 1 2 0.5Linear m x x= + −                    (26) 

( ) ( )2: 2 sin 2πSine m x x= +                     (27) 

( ) ( ) ( )( )2
3: 1 2 0.5 exp 200 0.5Bump m x x x= + − + − −           (28) 

( ) ( ) { } { }4 0.65 0.65: 1 2 0.5 0.65x xJump m x x I I≤ >= + − +            (29) 

with [ ]0,1x∈ . They represent a class of correct and incorrect model specifications for 
the estimators being considered. For 1m , R̂EGY  is expected to be the best estimator, 
since the model assumed is correctly specified. The rest of the mean functions: 2m , 3m  
and 4m  represent various deviations from the linear model, 1m . These populations 
are plotted in Figure 1. For more on these populations, see [13] and [14]. 

The errors are assumed to be independent and identically distributed (i.i.d) normal 
random variables having mean 0 and standard deviation 0.1σ = . They contain 2000 
units and the population ix  is simulated as i.i.d uniform random variables. The  
 
Table 1. Estimators being compared in the Simulation study. 

ĤTY  Horvitz-Thompson [22] 

R̂EGY  Linear regression [3], p. 200 

P̂EY  Mixed Ratio [15] 

L̂PY  Local polynomial with 1p =  Equation (8) 
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Figure 1. Plot of linear, sine, bump and jump populations. 
 
population values iy s′  ( )1, 2,3, 4i =  are generated from the mean functions by adding 
the errors ie s′  in each of the cases. Each of the populations is divided into 10 equal, 
disjoint and mutually exclusive strata which are made as homogeneous as possible to 
ensure that units in each stratum vary little from each other. A sample of size, 200n =  
is then taken with each stratum contributing a sample size of 20hn = , ( )1, 2, ,10h =  . 
1000 samples are simulated using simple random sampling without replacement for 
each case. 
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Epanechnikov kernel,  

( ) ( ) { }
2

| | 1
3 1 ,
4 uK u u I ≤= −                        (30) 

is used for kernel smoothing on each of the populations. In each case, bandwidth values 
1 5b n−=  (see [20]) (with 200n = ), 0.4b = , 1b =  and 2b =  (see [15]) are con- 

sidered. 
Data simulations, the estimators and computations were obtained using R Software 

on a desktop. 
To analyze the performance of the proposed estimator against some specified 

estimators, relative absolute bias (RAB) is computed as 

( ) ( )( )
1

ˆ
ˆ

R i

i

s Y
RAB

Y

θ
θ

=

−
= ∑                        (31) 

and the relative efficiency (RE) with respect to the Horvitz-Thompson (HT) estimator 
is computed as  

( )
( )( )
( )( )

2

1
2

1

ˆ
ˆ

ˆ

R

i
i

R

HT i
i

s Y
RE

Y s Y

θ
θ =

=

−
=

−

∑

∑
                       (32) 

θ̂  is the estimator of the finite population total being considered; Y is the true 
population total and R is the number of replications. 

The relative efficiency (RE) is meant to examine the robustness of the various 
estimators against the proposed estimator. 

The confidence intervals (CI) and the average lengths (AL) of the confidence 
intervals of various estimators are also computed as follows: 

( ) ( ) ( )( )
1

ˆ ˆ ˆ1.96
R

i i
i

CI s Var sθ θ θ
=

 = ± 
 ∑                  (33) 

( ) ( )( ) ( )( )( )
1

1ˆ ˆ ˆ
R

U i L i
i

AL CI s CI s
R

θ θ θ
=

= −∑                 (34) 

where UCI  and LCI  are the upper and lower confidence limits respectively; θ̂  and 
R are as defined earlier. 

4.2. Results 

The results of this simulation study are summarized in Table 3 and Table 4. For each 
populations, iy s′  ( 1, 2,3, 4i = ), the performance of each estimator is analyzed using 
the RAB and RE. The RAB indicates the measure of how close the estimator being 
considered is from the actual value, while the RE is used to check the robustness of the 
estimator. For instance, an estimator, 1̂θ , will be said to be “better” or more preferable 
than another one, 2̂θ , if its RE is comparably smaller. That is, if ( ) ( )1 2

ˆ ˆRE REθ θ< , 
where 1̂θ  and 2̂θ  are estimators, then 1̂θ  is said to be “better” than 2̂θ . 
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Table 2. Summary of the formulae used in computing the respective population totals of the 
various estimators. 

Estimator Formulae 

Horvitz-Thompson, ĤTY  ( )
1 1

ˆ
hnH

HT hj hj
h j

Y y
= =

= Π∑∑  

Linear regression estimator, R̂EGY  ( )( )
1

ˆ
H

o
REG h h h h h

h

Y N y X xβ
=

= + −∑  

Mixed Ratio Estimator, P̂EY  ( )
1 1

ˆ
h

H H

PE h hj i hj
h h j r

Y y w x y
= = ∈

= +∑ ∑∑ , 
1

hn

h hj
j

y y
=

= ∑  

Proposed Model-based Local polynomial with 1p = , L̂PY  
1 1

ˆ ˆ
h

H H

LP h hj
h h j r

Y y m
= = ∈

= +∑ ∑∑  

 
The confidence intervals and average length of the intervals are also measured for 

each case. A smaller length is better because it implies that the true population total is 
captured within a smaller range and therefore results are more precise. 

The estimators P̂EY  and L̂PY  are tested under the same bandwidth choice i.e. 
1 5b n−=  (with 200n = ), 0.4b = , 1b =  and 2b = . Results of this simulation are 

shown in Table 3 and Table 4 below. 
Table 3 shows the RAB’s and RE’s of the various estimators with respect to the 

Horvitz-Thompson estimator ( ĤTY ). Table 4 shows the confidence intervals and their 
average lengths. 

In most scenarios, L̂PY  is better than the parametric estimators, but the parametric 
estimator, R̂EGY , performs best when the model is correctly specified, as Table 3 shows. 
This occurs both in the linear and the bump populations, where in the former, a strong 
linear relationship holds between the variables while in the latter, the function is linear 
over most of its range despite a “bump” for a small part of the range of hix s′ . 

When the model is completely misspecified as in the Sine and Jump populations, a 
greater efficiency can be achieved by the nonparametric regression estimators. This can 
be seen in Table 3 for the Sine and Jump populations: the nonparametric estimators 
( L̂PY  and P̂EY ) are more efficient than their parametric opponent, R̂EGY . 

When the underlying superpopulation model is completely unknown, a reasonable 
choice for finite population total estimation would be the nonparametric estimators 
such as L̂PY  and P̂EY  with small bandwidth choices. This can be seen in Table 3 and 
Table 4. 

In this study, L̂PY  is sometimes seen to perform much bettter but not as worse as 

P̂EY , and hence the proposed estimator, L̂PY  emerges as the best performing among 
the nonparametric estimators being considered here (see Table 3). A good overall 
performance is observed with the proposed estimator, with smaller values of RAB and 
RE than the model-based competitor P̂EY  for every population and fixed bandwidth 
under consideration. 

Despite L̂PY  being relatively the best estimator, its performance is significantly 
affected by the bandwidth choices. As the bandwidth size increases, some amount of 
efficiency is lost (see Table 3). 
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Table 3. Relative absolute bias (RAB) and relative efficiency (RE) based on 1000 replications of simple random sampling within strata 
from four fixed populations of size 2000N = . Sample size is 200n = . 

Population b ĤTY  R̂EGY  P̂EY  L̂PY  

 RAB RE RAB RE RAB RE RAB RE 

Linear 

0.3465724 0.03212401 1 0.005778929 0.03155733 0.03321496 1.067811 0.03201888 0.9959899 

0.4 0.03212401 1 0.005778929 0.03155733 0.0335352 1.089573 0.0320533 0.9965037 

1 0.03212401 1 0.005778929 0.03155733 0.03434122 1.144951 0.03210449 0.9991698 

2 0.03212401 1 0.005778929 0.03155733 0.03272264 1.037753 0.03212023 0.9997907 

Estimated Total 

b = 0.3465724 1941.427 1943.161 1939.52 1941.248 

b = 0.4 1941.427 1943.161 1938.807 1941.167 

b = 1 1941.427 1943.161 1937.391 1941.419 

b = 2 1941.427 1943.161 1940.336 1941.424 

Population Total 1943.052 

Sine 

0.3465724 0.01855193 1 0.03836453 4.286723 0.02072086 1.243534 0.01657321 0.7990398 

0.4 0.01855193 1 0.03836453 4.286723 0.02082649 1.255919 0.01685303 0.826246 

1 0.01855193 1 0.03836453 4.286723 0.0201947 1.183826 0.01810882 0.9576443 

2 0.01855193 1 0.03836453 4.286723 0.01895357 1.043951 0.0184607 0.9908383 

Estimated Total 

b = 0.3465724 4071.066 4114.031 4080.316 4056.493 

b = 0.4 4071.066 4114.031 4081.685 4054.513 

b = 1 4071.066 4114.031 4079.156 4066.007 

b = 2 4071.066 4114.031 4073.04 4070.166 

Population Total 4071.383 

Bump 

0.3465724 0.03109618 1 0.01449569 0.2130984 0.03243536 1.085912 0.03100986 0.9935966 

0.4 0.03109618 1 0.01449569 0.2130984 0.03289121 1.116063 0.03319303 1.123072 

1 0.03109618 1 0.01449569 0.2130984 0.03357809 1.165075 0.0321397 1.061732 

2 0.03109618 1 0.01449569 0.2130984 0.03165829 1.036739 0.03106365 0.9988702 

Estimated Total 

b = 0.3465724 2186.49 2192.769 2188.266 2172.2 

b = 0.4 2186.49 2192.769 2195.394 2151.329 

b = 1 2186.49 2192.769 2200.689 2161.91 

b = 2 2186.49 2192.769 2189.318 2182.232 

Population Total 2187.923 

Jump 

0.3465724 0.004845022 1 0.02483609 26.07389 0.005616896 1.353566 0.007676967 2.274792 

0.4 0.004845022 1 0.02483609 26.07389 0.0056205 1.35023 0.007750974 2.329744 

1 0.004845022 1 0.02483609 26.07389 0.005181882 1.155266 0.005505162 1.259671 

2 0.004845022 1 0.02483609 26.07389 0.004852543 1.006773 0.004872778 1.006966 

Estimated Total 

b = 0.3465724 3299.185 3321.699 3288.857 3322.128 

b = 0.4 3299.185 3321.699 3288.415 3322.202 

b = 1 3299.185 3321.699 3291.326 3309.116 

b = 2 3299.185 3321.699 3297.485 3300.881 

Population Total 3300.252 
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Table 4. Estimated lower and upper confidence limits and corresponding average lengths based on 1000 replications of simple random 
sampling within strata from four fixed populations of size 2000N = . Sample size is 200n = . (LCL is the Lower Confidence Limit, UCL 
is the Upper Confidence Limit and AL is the Average Length). 

Population b ĤTY  R̂EGY  P̂EY  L̂PY  

 LCL UCL AL LCL UCL AL LCL UCL AL LCL UCL AL 

Linear 

0.3465724 1905.431 1977.423 71.992 1919.139 1967.183 48.044 1934.86 1944.18 9.32 1936.249 1946.247 9.998 

0.4 1905.431 1977.423 71.992 1919.139 1967.183 48.044 1934.250 1943.364 9.114 1936.169 1946.165 9.996 

1 1905.431 1977.423 71.992 1919.139 1967.183 48.044 1933.711 1941.071 7.360 1936.418 1946.420 10.002 

2 1905.431 1977.423 71.992 1919.139 1967.183 48.044 1936.733 1943.938 7.206 1936.424 1946.424 9.999 

Population Total 1943.052 

Sine 

0.3465724 4026.580 4115.552 88.973 4044.296 4183.766 139.470 4074.654 4085.978 11.324 4050.937 4062.049 11.113 

0.4 4026.580 4115.552 88.973 4044.296 4183.766 139.470 4076.156 4087.213 11.057 4049.014 4060.012 10.998 

1 4026.580 4115.552 88.973 4044.296 4183.766 139.470 4074.650 4083.661 9.012 4060.254 4071.760 11.506 

2 4026.580 4115.552 88.973 4044.296 4183.766 139.470 4068.589 4077.491 8.902 4064.498 4075.834 11.336 

Population Total 4071.383 

Bump 

0.3465724 2146.545 2226.434 79.889 2156.490 2229.048 72.558 2183.234 2193.299 10.065 2166.839 2177.560 10.721 

0.4 2146.545 2226.434 79.889 2156.490 2229.048 72.558 2190.473 2200.315 9.842 2145.980 2156.678 10.698 

1 2146.545 2226.434 79.889 2156.490 2229.048 72.558 2196.621 2204.758 8.137 2156.582 2167.238 10.656 

2 2146.545 2226.434 79.889 2156.490 2229.048 72.558 2185.320 2193.315 7.995 2176.909 2187.554 10.645 

Population Total 2187.923 

Jump 

0.3465724 3290.027 3308.344 18.317 3127.463 3515.934 388.471 3287.902 3289.813 1.912 3321.078 3323.179 2.101 

0.4 3290.027 3308.344 18.317 3127.463 3515.934 388.471 3287.47 3289.36 1.89 3321.172 3323.232 2.060 

1 3290.027 3308.344 18.317 3127.463 3515.934 388.471 3290.409 3292.244 1.835 3308.167 3310.065 1.898 

2 3290.027 3308.344 18.317 3127.463 3515.934 388.471 3296.569 3298.401 1.832 3299.932 3301.829 1.897 

Population Total 3300.252 

 
Additionally, a keen look at the estimated totals in Table 3 shows that: as the 

bandwidth increases, the local linear regression estimator, L̂PY  becomes equivalent to 
the linear regression estimator, R̂EGY . This shows that the bandwidth has an effect on 
the mean square error of L̂PY . Particularly, for whichever bandwidth that is considered 
in this study, L̂PY  essentially dominates R̂EGY  for all the populations except Linear 
and Bump populations, where R̂EGY  is competitive. Further, L̂PY  essentially dominates 

ĤTY  for all populations except in the Jump population, where ĤTY  dominates all 
estimators being considered. The overall performance of L̂PY  is consistently good as 
long as the bandwidth remains small in this particular study. 

5. Conclusion 

In this study, performance of the proposed estimator has been investigated against 
some design-based and model-based regression estimators. The RE values of the 
proposed estimator are in general close to one. It has been shown that for whichever 
bandwidth considered, L̂PY  essentially dominates R̂EGY  for all the populations except 



C. K. Syengo et al. 
 

1096 

Linear and Bump populations, where R̂EGY  is competitive. Further, L̂PY  essentially 
dominates ĤTY  for all populations except in the Jump population, where it dominates 
all estimators being considered. Generally, good confidence intervals are seen for the 
nonparametric regression estimators, and use of the proposed estimator leads to 
relatively smaller values of RE compared to other estimators. We conclude that non- 
parametric regression approach under stratified random sampling using the proposed 
estimator yields good results. 
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